Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 1
Jan 2018
Turn off MathJax
Article Contents
Honglin Yuan, Xu Liu, Zhian Bao, Kaiyun Chen, Chunlei Zong. A Fast Separation Method for Isotope Analysis Based on Compressed Nitrogen Gas and Ion-Exchange Chromatography Technique—A Case Study of Sr-Nd Isotope Measurement. Journal of Earth Science, 2018, 29(1): 223-229. doi: 10.1007/s12583-017-0944-0
Citation: Honglin Yuan, Xu Liu, Zhian Bao, Kaiyun Chen, Chunlei Zong. A Fast Separation Method for Isotope Analysis Based on Compressed Nitrogen Gas and Ion-Exchange Chromatography Technique—A Case Study of Sr-Nd Isotope Measurement. Journal of Earth Science, 2018, 29(1): 223-229. doi: 10.1007/s12583-017-0944-0

A Fast Separation Method for Isotope Analysis Based on Compressed Nitrogen Gas and Ion-Exchange Chromatography Technique—A Case Study of Sr-Nd Isotope Measurement

doi: 10.1007/s12583-017-0944-0
More Information
  • Corresponding author: Honglin Yuan, sklcd@nwu.edu.cn
  • Received Date: 21 Jun 2017
  • Accepted Date: 13 Nov 2017
  • Publish Date: 01 Feb 2018
  • High-purity N2 was used to increase the mobile phase flow rate during ion purification of ion-exchange resin. This was performed to improve the efficiency of isotope separation and purification, and to meet the efficiency requirements of rapid multiple-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) analysis. For Cu isotope separation, our results indicated that at a gas flow rate > 60 mL/min, the separation chromatographic peaks broadened and the recovery rate decreased to < 99.2%. On the other hand, no significant change in the Cu peaks was observed at a gas flow rate of 20 mL/min and the recovery rate was determined to be > 99.9%. The Cu isotope ratio, measured by the standard-sample bracketing method, agreed with reference data within a ±2 SD error range. The separation time was reduced from the traditional 10 h (without N2) to 4 h (with N2), indicating that the efficiency was more than doubled. Moreover, Sr and Nd isotope separation in AGV-2 (US Geological Survey andesite standard sample) accelerated with a 20 mL/min gas flow, demonstrating that with the passage of N2, the purified liquid comprised Rb/Sr and Sm/Nd ratios of < 0.000 049 and < 0.000 001 5, respectively. This indicated an effective separation of Rb from Sr and Sm from Nd. MC-ICPMS could therefore be applied to accurately determine Sr and Nd isotope ratios. The results afforded were consistent with the reference data within a ±2 SD error range and the total separation time was shortened from 2 d to < 10 h.

     

  • loading
  • Bast, R., Scherer, E. E., Sprung, P., et al., 2015. A Rapid and Efficient Ion-Exchange Chromatography for Lu-Hf, Sm-Nd, and Rb-Sr Geochronology and the Routine Isotope Analysis of Sub-Ng Amounts of Hf by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30(11): 2323-2333. DOI: 10.13039/501100001659
    Beard, B. L., Johnson, C. M., Skulan, J. L., et al., 2003. Application of Fe Isotopes to Tracing the Geochemical and Biological Cycling of Fe. Chemical Geology, 195(1/2/3/4): 87-117. DOI: 10.1016/s0009-2541(02)00390-x
    Bizzarro, M., Baker, J. A., Ulfbeck, D., 2003. A New Digestion and Chemical Separation Technique for Rapid and Highly Reproducible Determination of Lu/Hf and Hf Isotope Ratios in Geological Materials by MC-ICP-MS. Geostandards and Geoanalytical Research, 27(2): 133-145. DOI: 10.1111/j.1751-908x.2003.tb00641.x
    Blättler, C. L., Higgins, J. A., 2014. Calcium Isotopes in Evaporites Record Variations in Phanerozoic Seawater SO4 and Ca. Geology, 42(8): 711-714. DOI: 10.1130/g35721.1
    Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. DOI: 10.1007/s004100050278
    Blichert-Toft, J., 2001. On the Lu-Hf Isotope Geochemistry of Silicate Rocks. Geostandards and Geoanalytical Research, 25(1): 41-56. DOI: 10.1111/j.1751-908x.2001.tb00786.x
    Dong, S. F., Wasylenki, L. E., 2016. Zinc Isotope Fractionation during Adsorption to Calcite at High and Low Ionic Strength. Chemical Geology, 447: 70-78. DOI: 10.1016/j.chemgeo.2016.10.031
    Enge, T. G., Field, M. P., Jolley, D. F., et al., 2016. An Automated Chromatography Procedure Optimized for Analysis of Stable Cu Isotopes from Biological Materials. Journal of Analytical Atomic Spectrometry, 31(10): 2023-2030. DOI: 10.1039/c6ja00120c
    Field, M. P., Romaniello, S. J., Gordon, G. W., et al., 2012. Automated Sample Preparation for Radiogenic and Non-Traditional Metal Isotope Analysis by MC-ICP-MS. American Geophysical Union, Fall Meeting, December, 2012, San Francisco. Abstract #V23B-2823 http://adsabs.harvard.edu/abs/2012AGUFM.V23B2823F
    Gao, T., Ke, S., Teng, F. Z., et al., 2016. Magnesium Isotope Fractionation during Dolostone Weathering. Chemical Geology, 445: 14-23. DOI: 10.13039/501100001809
    Halliday, A. N., Lee, D. C., Christensen, J. N., et al., 1995. Recent Developments in Inductively Coupled Plasma Magnetic Sector Multiple Collector Mass Spectrometry. International Journal of Mass Spectrometry and Ion Processes, 146/147: 21-33. DOI: 10.1016/0168-1176(95)04200-5
    Jochum, K. P., Nohl, U., Herwig, K., et al., 2005. GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostandards and Geoanalytical Research, 29(3): 333-338. DOI: 10.1111/j.1751-908x.2005.tb00904.x
    Jochum, K. P., Weis, U., Schwager, B., et al., 2016. Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials. Geostandards and Geoanalytical Research, 40(3): 333-350. DOI: 10.1111/j.1751-908x.2015.00392.x
    Kleinhanns, I. C., Kreissig, K., Kamber, B. S., et al., 2002. Combined Chemical Separation of Lu, Hf, Sm, Nd, and REEs from a Single Rock Digest: Precise and Accurate Isotope Determinations of Lu-Hf and Sm-Nd Using Multicollector-ICPMS. Analytical Chemistry, 74(1): 67-73. DOI: 10.1021/ac010705z
    Lapen, T. J., Mahlen, N. J., Johnson, C. M., et al., 2004. High Precision Lu and Hf Isotope Analyses of both Spiked and Unspiked Samples: A New Approach. Geochemistry, Geophysics, Geosystems, 5(1): 01010. DOI: 10.1029/2003gc000582
    Li, C. F., Chu, Z.-Y., Guo, J.-H., et al., 2015. A Rapid Single Column Separation Scheme for High-Precision Sr-Nd-Pb Isotopic Analysis in Geological Samples Using Thermal Ionization Mass Spectrometry. Analytical Methods, 7(11): 4793-4802. DOI: 10.1039/c4ay02896a
    Meynadier, L., Gorge, C., Birck, J. L., et al., 2006. Automated Separation of Sr from Natural Water Samples or Carbonate Rocks by High Performance Ion Chromatography. Chemical Geology, 227(1/2): 26-36. DOI: 10.1016/j.chemgeo.2005.05.012
    Münker, C., Weyer, S., Scherer, E., et al., 2001. Separation of High Field Strength Elements (Nb, Ta, Zr, Hf) and Lu from Rock Samples for MC-ICPMS Measurements. Geochemistry, Geophysics, Geosystems, 2(12): 2001GC000183. DOI: 10.1029/2001gc000183
    Romaniello, S. J., Field, M. P., Smith, H. B., et al., 2015. Fully Automated Chromatographic Purification of Sr and Ca for Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 30(9): 1906-1912. DOI: 10.13039/100000104
    Ryu, J.-S., Vigier, N., Decarreau, A., et al., 2016. Experimental Investigation of Mg Isotope Fractionation during Mineral Dissolution and Clay Formation. Chemical Geology, 445: 135-145. DOI: 10.13039/501100003716
    Salters, V. J. M., 1994. 176Hf/177Hf Determination in Small Samples by a High-Temperature SIMS Technique. Analytical Chemistry, 66(23): 4186-4189. DOI: 10.1021/ac00095a012
    Sikdar, J., Rai, V. K., 2017. Simultaneous Chromatographic Purification of Si and Mg for Isotopic Analyses Using MC-ICPMS. Journal of Analytical Atomic Spectrometry, 32(4): 822-833. DOI: 10.1039/c6ja00426a
    Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chemical Geology, 168(3/4): 279-281. DOI: 10.1016/s0009-2541(00)00198-4
    Teng, F.-Z., Rudnick, R. L., McDonough, W. F., et al., 2009. Lithium Isotopic Systematics of A-Type Granites and Their Mafic Enclaves: Further Constraints on the Li Isotopic Composition of the Continental Crust. Chemical Geology, 262(3/4): 370-379. DOI: 10.1016/j.chemgeo.2009.02.009
    Ulfbeck, D., Baker, J., Waight, T., et al., 2003. Rapid Sample Digestion by Fusion and Chemical Separation of Hf for Isotopic Analysis by MC-ICPMS. Talanta, 59(2): 365-373. DOI: 10.1016/s0039-9140(02)00525-8
    Yang, Y.-H., Zhang, H.-F., Chu, Z.-Y., et al., 2010. Combined Chemical Separation of Lu, Hf, Rb, Sr, Sm and Nd from a Single Rock Digest and Precise and Accurate Isotope Determinations of Lu-Hf, Rb-Sr and Sm-Nd Isotope Systems Using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 290(2/3): 120-126. DOI: 10.1016/j.ijms.2009.12.011
    Yuan, H. L., Yuan, W. T., Bao, Z. A., et al., 2017. Development of Two New Copper Isotope Standard Solutions and Their Copper Isotopic Compositions. Geostandards and Geoanalytical Research, 41(1): 77-84. DOI: 10.13039/501100001809
    Zheng, X.-Y., Beard, B. L., Lee, S., et al., 2017. Contrasting Particle Size Distributions and Fe Isotope Fractionations during Nanosecond and Femtosecond Laser Ablation of Fe Minerals: Implications for LA-MC-ICP-MS Analysis of Stable Isotopes. Chemical Geology, 450: 235-247. DOI: 10.1016/j.chemgeo.2016.12.038
    Zhu, C., Liu, Z. Y., Zhang, Y. L., et al., 2016. Measuring Silicate Mineral Dissolution Rates Using Si Isotope Doping. Chemical Geology, 445: 146-163. https://doi.org/10.13039/501100004835
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(7)

    Article Metrics

    Article views(762) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return