Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 4
Aug 2019
Turn off MathJax
Article Contents
Yang Tuoxin, Huangfu Pengpeng, Zhang Yan. Differentiation of Continental Subduction Mode: Numerical Modeling. Journal of Earth Science, 2019, 30(4): 809-822. doi: 10.1007/s12583-017-0946-y
Citation: Yang Tuoxin, Huangfu Pengpeng, Zhang Yan. Differentiation of Continental Subduction Mode: Numerical Modeling. Journal of Earth Science, 2019, 30(4): 809-822. doi: 10.1007/s12583-017-0946-y

Differentiation of Continental Subduction Mode: Numerical Modeling

doi: 10.1007/s12583-017-0946-y
Funds:

the NSFC Project 41622404

the NSFC Project 41704091

the Strategic Priority Research Program (B) of Chinese Academy of Sciences XDB18000000

the NSFC Project 41688103

the 973 Project 2015CB856106

the NSFC Project U1701641

More Information
  • Corresponding author: Yan Zhang
  • Received Date: 13 Jul 2018
  • Accepted Date: 23 Nov 2018
  • Publish Date: 01 Aug 2019
  • The convergence of the multi-layered continental lithospheres with variable and complex thermal and rheological properties results in various modes of continental collision with distinct deformation behavior of the lithospheric mantle. Using high-resolution thermo-mechanical numerical models, we systematically investigated the effects of crustal rheological strength and the convergence rate on the continental subduction mode. The model results reveal three basic modes of continental subduction, including slab break-off, steep subduction and continental flat-slab subduction. Whether lithospheric mantle of the overriding plate retreats or not during convergence enables the division of the first two modes into two sub-types, which are dominated by the crustal rheological strength. The mode of slab break-off develops under the conditions of low/moderate rheological strength of the continental crust and low convergence rate. In contrast, continental flat-slab subduction favors the strong crust and the high convergence rate. Otherwise, continental steep subduction occurs. The numerical results provide further implications for Geodynamics conditions and physical processes of different modes of continental collision that occur in nature.

     

  • loading
  • Bittner, D., Schmeling, H., 1995. Numerical Modelling of Melting Processes and Induced Diapirism in the Lower Crust. Geophysical Journal International, 123(1): 59-70. https://doi.org/10.1111/j.1365-246x.1995.tb06661.x
    Burg, J. P., Podladchikov, Y., 2000. From Buckling to Asymmetric Folding of the Continental Lithosphere: Numerical Modelling and Application to the Himalayan Syntaxes. Geological Society, London, Special Publications, 170(1): 219-236. https://doi.org/10.1144/gsl.sp.2000.170.01.12
    Burg, J. P., Gerya, T. V., 2005. The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens: Thermomechanical Models and Application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23(2): 75-95. https://doi.org/10.1111/j.1525-1314.2005.00563.x
    Burov, E., Francois, T., Yamato, P., et al., 2014a. Mechanisms of Continental Subduction and Exhumation of HP and UHP Rocks. Gondwana Research, 25(2): 464-493. https://doi.org/10.1016/j.gr.2012.09.010
    Burov, E., Francois, T., Agard, P., et al., 2014b. Rheological and Geodynamic Controls on the Mechanisms of Subduction and HP/UHP Exhumation of Crustal Rocks during Continental Collision: Insights from Numerical Models. Tectonophysics, 631: 212-250. https://doi.org/10.1016/j.tecto.2014.04.033
    Burov, E. B., Molnar, P., 1998. Gravity Anomalies over the Ferghana Valley (Central Asia) and Intracontinental Deformation. Journal of Geophysical Research: Solid Earth, 103(B8): 18137-18152. https://doi.org/10.1029/98jb01079
    Chen, Y., Li, W., Yuan, X. H., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13-24. https://doi.org/10.1016/j.epsl.2014.12.041
    Chiarabba, C., Chiodini, G., 2013. Continental Delamination and Mantle Dynamics Drive Topography, Extension and Fluid Discharge in the Apennines. Geology, 41(6): 715-718. https://doi.org/10.1130/g33992.1
    Chiarabba, C., Giacomuzzi, G., Bianchi, I., et al., 2014. From Underplating to Delamination-Retreat in the Northern Apennines. Earth and Planetary Science Letters, 403: 108-116. https://doi.org/10.1016/j.epsl.2014.06.041
    Clauser, C., Huenges, E., 1995. Thermal Conductivity of Rocks and Minerals. AGU Reference Shelf, 3: 105-126. http://doi.10.1029/RF003p0105 doi: 10.1029/RF003p0105
    Cloetingh, S., Burov, E., Poliakov, A., 1999. Lithosphere Folding: Primary Response to Compression? (From Central Asia to Paris Basin). Tectonics, 18(6): 1064-1083. https://doi.org/10.1029/1999tc900040
    Cloetingh, S. A. P. L., Burov, E., Matenco, L., et al., 2004. Thermo-Mechanical Controls on the Mode of Continental Collision in the SE Carpathians (Romania). Earth and Planetary Science Letters, 218(1/2): 57-76. https://doi.org/10.1016/s0012-821x(03)00645-9
    Conrad, C. P., Molnar, P., 1997. The Growth of Rayleigh-Taylor-Type Instabilities in the Lithosphere for Various Rheological and Density Structures. Geophysical Journal International, 129(1): 95-112. https://doi.org/10.1111/j.1365-246x.1997.tb00939.x
    Currie, C. A., Beaumont, C., Huismans, R. S., 2007. The Fate of Subducted Sediments: A Case for Backarc Intrusion and Underplating. Geology, 35(12): 1111. https://doi.org/10.1130/g24098a.1
    Dai, L. Q., Zheng, Y. F., He, H. Y., et al., 2016. Postcollisional Mafic Igneous Rocks Record Recycling of Noble Gases by Deep Subduction of the Continental Crust. Lithos, 252/253: 135-144. https://doi.org/10.1016/j.lithos.2016.02.025
    Faccenda, M., Gerya, T. V., Chakraborty, S., 2008. Styles of Post-Subduction Collisional Orogeny: Influence of Convergence Velocity, Crustal Rheology and Radiogenic Heat Production. Lithos, 103(1/2): 257-287. https://doi.org/10.1016/j.lithos.2007.09.009
    Gerya, T. V., Yuen, D. A., 2003a. Rayleigh-Taylor Instabilities from Hydration and Melting Propel 'Cold Plumes' at Subduction Zones. Earth and Planetary Science Letters, 212(1/2): 47-62. https://doi.org/10.1016/s0012-821x(03)00265-6
    Gerya, T. V., Yuen, D. A., 2003b. Characteristics-Based Marker-in-Cell Method with Conservative Finite-Differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties. Physics of the Earth and Planetary Interiors, 140(4): 293-318. https://doi.org/10.1016/j.pepi.2003.09.006
    Gray, R., Pysklywec, R. N., 2012. Geodynamic Models of Mature Continental Collision: Evolution of an Orogen from Lithospheric Subduction to Continental Retreat/Delamination. Journal of Geophysical Research: Solid Earth, 117(B3). https://doi.org/10.1029/2011jb008692
    Houseman, G. A., Molnar, P., 1997. Gravitational (Rayleigh-Taylor) Instability of a Layer with Non-Linear Viscosity and Convective Thinning of Continental Lithosphere. Geophysical Journal International, 128(1): 125-150. https://doi.org/10.1111/j.1365-246x.1997.tb04075.x
    Huangfu, P. P., Wang, Y. J., Fan, W. M., et al., 2017. Dynamics of Unstable Continental Subduction: Insights from Numerical Modeling. Science China: Earth Sciences, 60(2): 218-234. https://doi.org/10.1007/s11430-016-5014-6
    Ji, S. C., Zhao, P. L., 1993. Flow Laws of Multiphase Rocks Calculated from Experimental Data on the Constituent Phases. Earth and Planetary Science Letters, 117(1/2): 181-187. https://doi.org/10.1016/0012-821x(93)90125-s
    Kirby, S. H., Kronenberg, A. K., 1987. Rheology of the Lithosphere: Selected Topics. Reviews of Geophysics, 25(6): 1219-1244. https://doi.org/10.1029/rg025i006p01219
    Li, C., Van der Hilst, R. D., Meltzer, A. S., et al., 2008. Subduction of the Indian Lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1/2): 157-168. https://doi.org/10.1016/j.epsl.2008.07.016
    Li, F. C., Sun, Z., Zhang, J. Y., 2018. Numerical Studies on Continental Lithospheric Breakup in Response to the Extension Induced by Subduction Direction Inversion. Earth Scinece, 43(10): 3762-3777 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dqkx201810032
    Li, Z. H., Gerya, T. V., 2009. Polyphase Formation and Exhumation of High- to Ultrahigh-Pressure Rocks in Continental Subduction Zone: Numerical Modeling and Application to the Sulu Ultrahigh-Pressure Terrane in Eastern China. Journal of Geophysical Research, 114(B9): B09406. https://doi.org/10.1029/2008jb005935
    Li, Z. H., Gerya, T. V., Burg, J. P., 2010. Influence of Tectonic Overpressure OnP-Tpaths of HP-UHP Rocks in Continental Collision Zones: Thermomechanical Modelling. Journal of Metamorphic Geology, 28(3): 227-247. https://doi.org/10.1111/j.1525-1314.2009.00864.x
    Li, Z. H., Xu, Z. Q., Gerya, T. V., 2011. Flat versus Steep Subduction: Contrasting Modes for the Formation and Exhumation of High- to Ultrahigh-Pressure Rocks in Continental Collision Zones. Earth and Planetary Science Letters, 301(1/2): 65-77. https://doi.org/10.1016/j.epsl.2010.10.014
    Li, Z. H., 2014. A Review on the Numerical Geodynamic Modeling of Continental Subduction, Collision and Exhumation. Science China: Earth Sciences, 57(1): 47-69. https://doi.org/10.1007/s11430-013-4696-0
    Li, Z. Y., Li, Y. L., Wijbrans, J. R., et al., 2018. Metamorphic P-T Path Differences between the Two UHP Terranes of Sulu Orogen, Eastern China: Petrologic Comparison between Eclogites from Donghai and Rongcheng. Journal of Earth Science, 29(5): 1151-1166. https://doi.org/10.1007/s12583-018-0845-x
    Nabelek, J., Hetenyi, G., Vergne, J., et al., 2009. Underplating in the Himalaya- Tibet Collision Zone Revealed by the HI-CLIMB Experiment. Science, 325(5946): 1371-1374. https://doi.org/10.1126/science.1167719
    Owens, T. J., Zandt, G., 1997. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387(6628): 37-43. https://doi.org/10.1038/387037a0
    Radulescu, F., 1988. Seismic Models of the Crustal Structure in Romania. Rev. Roum. Geol. Geophys. Geogr. Ser. Geophys, 32: 13-17
    Ranalli, G., 1995. Rheology of the Earth. Springer, Berlin. https://doi.org/10.1016/s0040-1951(96)00042-x
    Schmeling, H., Babeyko, A. Y., Enns, A., et al., 2008. A Benchmark Comparison of Spontaneous Subduction Models-Towards a Free Surface. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 198-223. https://doi.org/10.1016/j.pepi.2008.06.028
    Schmidt, M. W., Poli, S., 1998. Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation. Earth and Planetary Science Letters, 163(1/2/3/4): 361-379. https://doi.org/10.1016/s0012-821x(98)00142-3
    Tilmann, F., Ni, j., 2003. Seismic Imaging of the Downwelling Indian Lithosphere beneath Central Tibet. Science, 300(5624): 1424-1427. https://doi.org/10.1126/science.1082777
    Turcotte, D. L., Schubert, G., 2002. Geodynamics. Cambridge University Press, Cambridge. http://doi.10.1017/cbo9780511807442 doi: 10.1017/cbo9780511807442
    Ueda, K., Gerya, T., Sobolev, S. V., 2008. Subduction Initiation by Thermal-Chemical Plumes: Numerical Studies. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 296-312. https://doi.org/10.1016/j.pepi.2008.06.032
    Van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan Subducted Slabs under India. Earth and Planetary Science Letters, 171(1): 7-20. https://doi.org/10.1016/s0012-821x(99)00131-4
    Warren, C. J., 2013. Exhumation of (Ultra-)High-Pressure Terranes: Concepts and Mechanisms. Solid Earth, 4(1): 75-92. https://doi.org/10.5194/se-4-75-2013
    Wortel, M. J. R., Spakman, W., 2000. Subduction and Slab Detachment in the Mediterranean-Carpathian Region. Science, 290(5498): 1910-1917. https://doi.org/10.1126/science.290.5498.1910
    Zhang, L., Ye, Y., Qin, S., et al., 2018. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1040-1048. https://doi.org/10.1007/s12583-018-0880-7
    Zhao, J. M., Yuan, X. H., Liu, H. B., et al., 2010. The Boundary between the Indian and Asian Tectonic Plates below Tibet. Proceedings of the National Academy of Sciences, 107(25): 11229-11233. https://doi.org/10.1073/pnas.1001921107
    Zheng, J. P., Sun, M., Griffin, W. L., et al., 2008. Age and Geochemistry of Contrasting Peridotite Types in the Dabie UHP Belt, Eastern China: Petrogenetic and Geodynamic Implications. Chemical Geology, 247(1/2): 282-304. https://doi.org/10.1016/j.chemgeo.2007.10.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(573) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return