Bittner, D., Schmeling, H., 1995. Numerical Modelling of Melting Processes and Induced Diapirism in the Lower Crust. Geophysical Journal International, 123(1): 59-70. https://doi.org/10.1111/j.1365-246x.1995.tb06661.x |
Burg, J. P., Podladchikov, Y., 2000. From Buckling to Asymmetric Folding of the Continental Lithosphere: Numerical Modelling and Application to the Himalayan Syntaxes. Geological Society, London, Special Publications, 170(1): 219-236. https://doi.org/10.1144/gsl.sp.2000.170.01.12 |
Burg, J. P., Gerya, T. V., 2005. The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens: Thermomechanical Models and Application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23(2): 75-95. https://doi.org/10.1111/j.1525-1314.2005.00563.x |
Burov, E., Francois, T., Yamato, P., et al., 2014a. Mechanisms of Continental Subduction and Exhumation of HP and UHP Rocks. Gondwana Research, 25(2): 464-493. https://doi.org/10.1016/j.gr.2012.09.010 |
Burov, E., Francois, T., Agard, P., et al., 2014b. Rheological and Geodynamic Controls on the Mechanisms of Subduction and HP/UHP Exhumation of Crustal Rocks during Continental Collision: Insights from Numerical Models. Tectonophysics, 631: 212-250. https://doi.org/10.1016/j.tecto.2014.04.033 |
Burov, E. B., Molnar, P., 1998. Gravity Anomalies over the Ferghana Valley (Central Asia) and Intracontinental Deformation. Journal of Geophysical Research: Solid Earth, 103(B8): 18137-18152. https://doi.org/10.1029/98jb01079 |
Chen, Y., Li, W., Yuan, X. H., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13-24. https://doi.org/10.1016/j.epsl.2014.12.041 |
Chiarabba, C., Chiodini, G., 2013. Continental Delamination and Mantle Dynamics Drive Topography, Extension and Fluid Discharge in the Apennines. Geology, 41(6): 715-718. https://doi.org/10.1130/g33992.1 |
Chiarabba, C., Giacomuzzi, G., Bianchi, I., et al., 2014. From Underplating to Delamination-Retreat in the Northern Apennines. Earth and Planetary Science Letters, 403: 108-116. https://doi.org/10.1016/j.epsl.2014.06.041 |
Clauser, C., Huenges, E., 1995. Thermal Conductivity of Rocks and Minerals. AGU Reference Shelf, 3: 105-126. http://doi.10.1029/RF003p0105 doi: 10.1029/RF003p0105 |
Cloetingh, S., Burov, E., Poliakov, A., 1999. Lithosphere Folding: Primary Response to Compression? (From Central Asia to Paris Basin). Tectonics, 18(6): 1064-1083. https://doi.org/10.1029/1999tc900040 |
Cloetingh, S. A. P. L., Burov, E., Matenco, L., et al., 2004. Thermo-Mechanical Controls on the Mode of Continental Collision in the SE Carpathians (Romania). Earth and Planetary Science Letters, 218(1/2): 57-76. https://doi.org/10.1016/s0012-821x(03)00645-9 |
Conrad, C. P., Molnar, P., 1997. The Growth of Rayleigh-Taylor-Type Instabilities in the Lithosphere for Various Rheological and Density Structures. Geophysical Journal International, 129(1): 95-112. https://doi.org/10.1111/j.1365-246x.1997.tb00939.x |
Currie, C. A., Beaumont, C., Huismans, R. S., 2007. The Fate of Subducted Sediments: A Case for Backarc Intrusion and Underplating. Geology, 35(12): 1111. https://doi.org/10.1130/g24098a.1 |
Dai, L. Q., Zheng, Y. F., He, H. Y., et al., 2016. Postcollisional Mafic Igneous Rocks Record Recycling of Noble Gases by Deep Subduction of the Continental Crust. Lithos, 252/253: 135-144. https://doi.org/10.1016/j.lithos.2016.02.025 |
Faccenda, M., Gerya, T. V., Chakraborty, S., 2008. Styles of Post-Subduction Collisional Orogeny: Influence of Convergence Velocity, Crustal Rheology and Radiogenic Heat Production. Lithos, 103(1/2): 257-287. https://doi.org/10.1016/j.lithos.2007.09.009 |
Gerya, T. V., Yuen, D. A., 2003a. Rayleigh-Taylor Instabilities from Hydration and Melting Propel 'Cold Plumes' at Subduction Zones. Earth and Planetary Science Letters, 212(1/2): 47-62. https://doi.org/10.1016/s0012-821x(03)00265-6 |
Gerya, T. V., Yuen, D. A., 2003b. Characteristics-Based Marker-in-Cell Method with Conservative Finite-Differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties. Physics of the Earth and Planetary Interiors, 140(4): 293-318. https://doi.org/10.1016/j.pepi.2003.09.006 |
Gray, R., Pysklywec, R. N., 2012. Geodynamic Models of Mature Continental Collision: Evolution of an Orogen from Lithospheric Subduction to Continental Retreat/Delamination. Journal of Geophysical Research: Solid Earth, 117(B3). https://doi.org/10.1029/2011jb008692 |
Houseman, G. A., Molnar, P., 1997. Gravitational (Rayleigh-Taylor) Instability of a Layer with Non-Linear Viscosity and Convective Thinning of Continental Lithosphere. Geophysical Journal International, 128(1): 125-150. https://doi.org/10.1111/j.1365-246x.1997.tb04075.x |
Huangfu, P. P., Wang, Y. J., Fan, W. M., et al., 2017. Dynamics of Unstable Continental Subduction: Insights from Numerical Modeling. Science China: Earth Sciences, 60(2): 218-234. https://doi.org/10.1007/s11430-016-5014-6 |
Ji, S. C., Zhao, P. L., 1993. Flow Laws of Multiphase Rocks Calculated from Experimental Data on the Constituent Phases. Earth and Planetary Science Letters, 117(1/2): 181-187. https://doi.org/10.1016/0012-821x(93)90125-s |
Kirby, S. H., Kronenberg, A. K., 1987. Rheology of the Lithosphere: Selected Topics. Reviews of Geophysics, 25(6): 1219-1244. https://doi.org/10.1029/rg025i006p01219 |
Li, C., Van der Hilst, R. D., Meltzer, A. S., et al., 2008. Subduction of the Indian Lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1/2): 157-168. https://doi.org/10.1016/j.epsl.2008.07.016 |
Li, F. C., Sun, Z., Zhang, J. Y., 2018. Numerical Studies on Continental Lithospheric Breakup in Response to the Extension Induced by Subduction Direction Inversion. Earth Scinece, 43(10): 3762-3777 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dqkx201810032 |
Li, Z. H., Gerya, T. V., 2009. Polyphase Formation and Exhumation of High- to Ultrahigh-Pressure Rocks in Continental Subduction Zone: Numerical Modeling and Application to the Sulu Ultrahigh-Pressure Terrane in Eastern China. Journal of Geophysical Research, 114(B9): B09406. https://doi.org/10.1029/2008jb005935 |
Li, Z. H., Gerya, T. V., Burg, J. P., 2010. Influence of Tectonic Overpressure OnP-Tpaths of HP-UHP Rocks in Continental Collision Zones: Thermomechanical Modelling. Journal of Metamorphic Geology, 28(3): 227-247. https://doi.org/10.1111/j.1525-1314.2009.00864.x |
Li, Z. H., Xu, Z. Q., Gerya, T. V., 2011. Flat versus Steep Subduction: Contrasting Modes for the Formation and Exhumation of High- to Ultrahigh-Pressure Rocks in Continental Collision Zones. Earth and Planetary Science Letters, 301(1/2): 65-77. https://doi.org/10.1016/j.epsl.2010.10.014 |
Li, Z. H., 2014. A Review on the Numerical Geodynamic Modeling of Continental Subduction, Collision and Exhumation. Science China: Earth Sciences, 57(1): 47-69. https://doi.org/10.1007/s11430-013-4696-0 |
Li, Z. Y., Li, Y. L., Wijbrans, J. R., et al., 2018. Metamorphic P-T Path Differences between the Two UHP Terranes of Sulu Orogen, Eastern China: Petrologic Comparison between Eclogites from Donghai and Rongcheng. Journal of Earth Science, 29(5): 1151-1166. https://doi.org/10.1007/s12583-018-0845-x |
Nabelek, J., Hetenyi, G., Vergne, J., et al., 2009. Underplating in the Himalaya- Tibet Collision Zone Revealed by the HI-CLIMB Experiment. Science, 325(5946): 1371-1374. https://doi.org/10.1126/science.1167719 |
Owens, T. J., Zandt, G., 1997. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387(6628): 37-43. https://doi.org/10.1038/387037a0 |
Radulescu, F., 1988. Seismic Models of the Crustal Structure in Romania. Rev. Roum. Geol. Geophys. Geogr. Ser. Geophys, 32: 13-17 |
Ranalli, G., 1995. Rheology of the Earth. Springer, Berlin. https://doi.org/10.1016/s0040-1951(96)00042-x |
Schmeling, H., Babeyko, A. Y., Enns, A., et al., 2008. A Benchmark Comparison of Spontaneous Subduction Models-Towards a Free Surface. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 198-223. https://doi.org/10.1016/j.pepi.2008.06.028 |
Schmidt, M. W., Poli, S., 1998. Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation. Earth and Planetary Science Letters, 163(1/2/3/4): 361-379. https://doi.org/10.1016/s0012-821x(98)00142-3 |
Tilmann, F., Ni, j., 2003. Seismic Imaging of the Downwelling Indian Lithosphere beneath Central Tibet. Science, 300(5624): 1424-1427. https://doi.org/10.1126/science.1082777 |
Turcotte, D. L., Schubert, G., 2002. Geodynamics. Cambridge University Press, Cambridge. http://doi.10.1017/cbo9780511807442 doi: 10.1017/cbo9780511807442 |
Ueda, K., Gerya, T., Sobolev, S. V., 2008. Subduction Initiation by Thermal-Chemical Plumes: Numerical Studies. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 296-312. https://doi.org/10.1016/j.pepi.2008.06.032 |
Van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan Subducted Slabs under India. Earth and Planetary Science Letters, 171(1): 7-20. https://doi.org/10.1016/s0012-821x(99)00131-4 |
Warren, C. J., 2013. Exhumation of (Ultra-)High-Pressure Terranes: Concepts and Mechanisms. Solid Earth, 4(1): 75-92. https://doi.org/10.5194/se-4-75-2013 |
Wortel, M. J. R., Spakman, W., 2000. Subduction and Slab Detachment in the Mediterranean-Carpathian Region. Science, 290(5498): 1910-1917. https://doi.org/10.1126/science.290.5498.1910 |
Zhang, L., Ye, Y., Qin, S., et al., 2018. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1040-1048. https://doi.org/10.1007/s12583-018-0880-7 |
Zhao, J. M., Yuan, X. H., Liu, H. B., et al., 2010. The Boundary between the Indian and Asian Tectonic Plates below Tibet. Proceedings of the National Academy of Sciences, 107(25): 11229-11233. https://doi.org/10.1073/pnas.1001921107 |
Zheng, J. P., Sun, M., Griffin, W. L., et al., 2008. Age and Geochemistry of Contrasting Peridotite Types in the Dabie UHP Belt, Eastern China: Petrogenetic and Geodynamic Implications. Chemical Geology, 247(1/2): 282-304. https://doi.org/10.1016/j.chemgeo.2007.10.023 |