Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 3
Aug 2018
Turn off MathJax
Article Contents
Yu Shi, Yuwang Wang, Jingbin Wang, Lutong Zhao, Hongjing Xie, Lingli Long, Tao Zou, Dedong Li, Guochao Zhou. Physicochemical Control of the Early Permian Xiangshan Fe-Ti Oxide Deposit in Eastern Tianshan (Xinjiang), NW China. Journal of Earth Science, 2018, 29(3): 520-536. doi: 10.1007/s12583-017-0969-4
Citation: Yu Shi, Yuwang Wang, Jingbin Wang, Lutong Zhao, Hongjing Xie, Lingli Long, Tao Zou, Dedong Li, Guochao Zhou. Physicochemical Control of the Early Permian Xiangshan Fe-Ti Oxide Deposit in Eastern Tianshan (Xinjiang), NW China. Journal of Earth Science, 2018, 29(3): 520-536. doi: 10.1007/s12583-017-0969-4

Physicochemical Control of the Early Permian Xiangshan Fe-Ti Oxide Deposit in Eastern Tianshan (Xinjiang), NW China

doi: 10.1007/s12583-017-0969-4
More Information
  • Corresponding author: Yu Shi, orounaxiong@sina.com
  • Received Date: 17 Jan 2017
  • Accepted Date: 10 May 2017
  • Publish Date: 01 Jun 2018
  • The Xiangshan mafic-ultramafic complex is one of the major Early Permian mafic- ultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce4+/Ce3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, H2O-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization

     

  • loading
  • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
    Aranovich, L. Y., Zinger, T. F., Bortnikov, N. S., et al., 2013. Zircon in Gabbroids from the Axial Zone of the Mid-Atlantic Ridge, Markov Deep, 6°N: Correlation of Geochemical Features with Petrogenetic Processes. Petrology, 21(1): 1-15. https: //doi. org/10. 1134/S0869591113010025
    Ballard, J. R., Palin, M. J., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5
    Blundy, J., Wood, B., 1994. Prediction of Crystal-Melt Partition Coefficients from Elastic Moduli. Nature, 372(6505): 452-454. https://doi.org/10.1038/372452a0
    Botcharnikov, R. E., Almeev, R. R., Koepke, J., et al., 2008. Phase Relations and Liquid Lines of Descent in Hydrous Ferrobasalt: Implications for the Skaergaard Intrusion and Columbia River Flood Basalts. Journal of Petrology, 49(9): 1687-1727. https://doi.org/10.1093/petrology/egn043
    Chai, F. M., Zhang, Z. C., Mao, J. W., et al., 2008. Geology, Petrology and Geochemistry of the Baishiquan Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Xinjiang, NW China: Implications for Tectonics and Genesis of Ores. Journal of Asian Earth Sciences, 32(2-4): 218-235. https://doi.org/10.1016/j.jseaes.2007.10.014
    Chen, J. P., Liao, Q. A., Zhang, H. X., et al., 2013. Contrast of Huangshandong and Xiangshan Mafic-Ultramafic Complex, East Tianshan. Earth Science—Journal of China University of Geosciences, 38(6): 1183-1196. https://doi.org/10.3799/dqkx.2013.117 (in Chinese with English Abstract) doi: 10.3799/dqkx.2013.117(inChinesewithEnglishAbstract)
    Dai, M. N., Bao, Z. A., Chen, K. Y., et al., 2017. Simultaneous Measurement of Major, Trace Elements and Pb Isotopes in Silicate Glasses by Laser Ablation Quadrupole and Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Earth Science, 28(1): 92-102. https://doi.org/10.1007/s12583-017-0742-8
    Deng, Y. F., Song, X. Y., Chen, L. M., et al., 2014. Geochemistry of the Huangshandong Ni-Cu Deposit in Northwestern China: Implications for the Formation of Magmatic Sulfide Mineralization in Orogenic Belts. Ore Geology Reviews, 56(1): 181-198. https://doi.org/10.1016/j.oregeorev.2013.08.012
    Feig, S. T., Koepke, J., Snow, J. E., 2006. Effect of Water on Tholeiitic Basalt Phase Equilibria: An Experimental Study under Oxidizing Conditions. Contributions to Mineralogy and Petrology, 152(5): 611-638. https://doi.org/10.1007/s00410-006-0123-2
    Feig, S. T., Koepke, J., Snow, J. E., 2010. Effect of Oxygen Fugacity and Water on Phase Equilibria of a Hydrous Tholeiitic Basalt. Contributions to Mineralogy and Petrology, 160(4): 551-568. https://doi.org/10.1007/s00410-010-0493-3
    Foden, J. D., Green, D. H., 1992. Possible Role of Amphibole in the Origin of Andesite: Some Experimental and Natural Evidence. Contributions to Mineralogy and Petrology, 109(4): 479-493. https://doi.org/10.1007/BF00306551
    Fu, B., Page, F. Z., Cavosie, A. J., et al., 2008. Ti-in-Zircon Thermometry: Applications and Limitations. Contributions to Mineralogy and Petrology, 156(2): 197-215. https://doi.org/10.1007/s00410-008-0281-5
    Gaetani, G. A., Grove, T. L., Bryan, W. B., 1993. The Influence of Water on the Petrogenesis of Subduction-Related Igneous Rocks. Nature, 365(6444): 332-334. https://doi.org/10.1038/365332a0
    Gao, X. Y., Zheng, Y. F., 2011. On the Zr-in-Rutile and Ti-in-Zircon Geothermometers. Acta Petrologica Sinica, 27(2): 417-432 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201102006.htm
    Gu, L. X., Zhu, J. L., Guo, J. C., et al., 1994. The East Xinjiang-Type Mafic-Ultramafic Complexes in Orogenic Environments. Acta Petrologica Sinica, 10(4): 339-356 (in Chinese with English Abstract) https://www.deepdyve.com/lp/elsevier/geochronology-and-geochemistry-of-early-permian-mafic-ultramafic-1jtBQS0gf0
    Han, B. F., Ji, J. Q., Song, B., et al., 2004. SHRIMP Zircon U-Pb Ages of Kalatongke No. 1 and Huangshandong Cu-Ni-Bearing Mafic-Ultramafic Complexes, North Xinjiang, and Geological Implications. Chinese Science Bulletin, 49(22): 2424-2429. https://doi.org/10.1360/04wd0163
    Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2010. In-situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the Timing and Genesis of the Mineralization. Lithos, 120(3/4): 547-562. https://doi.org/10.1016/j.lithos.2010.09.019
    Hilyard, M., Nielsen, R. L., Beard, J. S., et al., 2000. Experimental Determination of the Partitioning Behavior of Rare Earth and High Field Strength Elements between Pargasitic Amphibole and Natural Silicate Melts. Geochimica et Cosmochimica Acta, 64(6): 1103-1120. https://doi.org/10.1016/S0016-7037(99)00379-8
    Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j. gca.2004.07.006 doi: 10.1016/j.gca.2004.07.006
    Jahn, B. M., Windley, B., Natalʼin, B., et al., 2004. Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599-603. https://doi.org/10.1016/S1367-9120(03)00124-X
    Jahn, B. M., Wu, F. Y., Chen, B., 2000. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82-92 http://www.oalib.com/references/19187916
    Li, D. D., Wang, Y. W., Long, L. L., et al., 2012. Chronology and Geochemistry of the Transitional Mineralized Mafic-Ultramafic Rock Bodies in the Eastern Tianshan Mountains. Geological Review, 58(6): 1145-1160 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201206017.htm
    Li, Y. C., Zhao, G. C., Qu, W. J., et al., 2006. Re-Os Isotopic Dating of the Xiangshan Deposit, East Tianshan, NW China. Acta Petrologica Sinica, 22(1): 245-251 (in Chinese with English Abstract) http://www.oalib.com/paper/1472861
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(51): 537-571. https://doi.org/10.1093/petrology/egp082
    Mao, J. W., Pirajno, F., Zhang, Z. H., et al., 2008. A Review of the Cu-Ni Sulphide Deposits in the Chinese Tianshan and Altay Orogens (Xinjiang Autonomous Region, NW China): Principal Characteristics and Ore-Forming Processes. Journal of Asian Earth Sciences, 32(2-4): 184-203. https://doi.org/10.1016/j.jseaes.2007.10.006
    Mao, J. W., Yang, J. M., Qu, W. J., et al., 2003. Re-Os Age of Cu-Ni Ores from the Huangshandong Cu-Ni Sulfide Deposit in the East Tianshan Mountains and Its Implication for Geodynamic Processes. Acta Geologica Sinica (English Edition), 77(2): 220-226 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxb-e200302010
    Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2006. Zircon U-Pb Age and the Geochemistry of the Baishiquan Mafic-Ultramafic Complex in the Eastern Tianshan, Xinjiang Province: Constraints on the Closure of the Paleo-Asian Ocean. Acta Petrologica Sinica, 22(1): 153-162 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200601016.htm
    Müntener, O., Kelemen, P. B., Grove, T. L., 2001. The Role of H2O during Crystallization of Primitive Arc Magmas under Uppermost Mantle Conditions and Genesis of Igneous Pyroxenites: An Experimental Study. Contributions to Mineralogy and Petrology, 141(6): 643-658. https://doi.org/10.1007/s004100100266
    Pirajno, F., Mao, J. W., Zhang, Z. C., et al., 2008. The Association of Mafic-Ultramafic Intrusions and A-Type Magmatism in the Tian Shan and Altay Orogens, NW China: Implications for Geodynamic Evolution and Potential for the Discovery of New Ore Deposits. Journal of Asian Earth Sciences, 32(2-4): 165-183. https://doi.org/10.1016/j.jseaes.2007.10.012
    Qin, K. Z., Fang, T. H., Wang, S. L., et al., 2002. Plate Tectonics Division, Evolution and Metallogenic Settings in Eastern Tianshan Mountains, NW China. Xinjiang Geology, 20(4): 302-308 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200204002.htm
    Qin, K. Z., Su, B. X., Sakyi, P. A., et al., 2011. SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma Mantle Plume. American Journal of Science, 311(3): 237-260. https://doi.org/10.2475/03.2011.03
    Qin, Q. X., 2003. Geological Character of the Ilmenite Deposit in Western Part of Xiangshan and Its Genesis. Mineral Resources and Geology, 17(4): 533-535 (in Chinese with English Abstract) https://www.deepdyve.com/lp/elsevier/box-8-4-fennoscandian-shield-rogaland-anorthosite-province-B0JqDCiLwV
    Safonova, I. Y., Buslov, M. M., Iwata, K., et al., 2004. Fragments of Vendian-Early Carboniferous Oceanic Crust of the Paleo-Asian Ocean in Foldbelts of the Altai-Sayan Region of Central Asia: Geochemistry, Biostratigraphy and Structural setting. Gondwana Research, 7(3): 771-790. https://doi.org/10.1016/S1342-937X(05)71063-7
    Safonova, I. Y., Seltmann, R., Kröner, A., et al., 2011. A New Concept of Continental Construction in the Central Asian Orogenic Belt: Compared to Actualistic Examples from the Western Pacific. Episodes, 34(2): 1-11 http://www.mendeley.com/research/new-concept-continental-construction-central-asian-orogenic-belt-compared-actualistic-examples-weste/
    San, J. Z., Qin, K. Z., Tang, Z. L., et al., 2010. Precise Zircon U-Pb Age Dating of Two Mafic-Ultramafic Complexes at Tulaergen Large Cu-Ni District and Its Geological Implications. Acta Petrologica Sinica, 26(10): 3027-3035 (in Chinese with English Abstract) http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20101014
    Sengör, A. M. C., Natalʼin, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Asia. Nature, 364: 299-307. https://doi.org/10.1038/364299a0
    Shi, Y., Wang, Y. W., Wang, J. B., 2017a. Relationship between Amphibole-Porphyric Gabbroic Rocks and Fe-Ti Oxide Ore Deposits of the East Tianshan. Earth Science Frontiers, 24(6): 80-97. https://doi.org/10.13745/j.esf.yx.2016-11-22 (in Chinese with English Abstract) doi: 10.13745/j.esf.yx.2016-11-22(inChinesewithEnglishAbstract)
    Shi, Y., Wang, Y. W., Wang, J. B., et al., 2017b. Olivine Composition of Erhongwa Complex, East Tianshan, and Its Implication on CuNi-VTiFe Composite Mineralization. Earth Science—Journal of China University of Geosciences, 42(3): 325-338. https://doi.org/10.3799/dqkx.2017.025 (in Chinese with English Abstract) doi: 10.3799/dqkx.2017.025(inChinesewithEnglishAbstract)
    Sisson, T. W., 1994. Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe. Chemical Geology, 117(1-4): 331-344. https://doi.org/10.1016/0009-2541(94)90135-X
    Sisson, T. W., Grove, T. L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/BF00283225
    Song, X. Y., Xie, W., Deng, Y. F., et al., 2011. Slab Break-off and the Formation of Permian Mafic-Ultramafic Intrusions in Southern Margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1/2): 128-143. https://doi.org/10.1016/j.lithos.2011.08.011
    Stone, W. E., Deloule, E., Larson, M. S., et al., 1997. Evidence for Hydrous High-MgO Melts in the Precambrian. Geology, 25(2): 143-146. https://doi.org/10.1007/s00410-007-0240-6
    Su, B. X., Qin, K. Z., Sakyi, P. A., et al., 2011. U-Pb Ages and Hf-O Isotopes of Zircons from Late Paleozoic Mafic-Ultramafic Units in the Southern Central Asian Orogenic Belt: Tectonic Implications and Evidence for an Early-Permian Mantle Plume. Gondwana Research, 20(2/3): 516-531. https://doi.org/10.1016/j.gr.2010.11.015
    Su, B. X., Qin, K. Z., Su, H., et al., 2012. Subduction-Induced Mantle Heterogeneity beneath Eastern Tianshan and Beishan: Insights from Nd-Sr-Hf-O Isotopic Mapping of Late Paleozoic Mafic-Ultramafic Complexes. Lithos, 134/135(2): 41-51. https://doi.org/10.1016/j.lithos.2011.12.011
    Su, B. X., Qin, K. Z., Tang, D. M., et al., 2013. Late Paleozoic Mafic-Ultramafic Intrusions in Southern Central Asian Orogenic Belt (NW China): Insight into Magmatic Ni-Cu Sulfide Mineralization in Orogenic Setting. Ore Geology Reviews, 51(6): 57-73. https://doi.org/10.1016/j.oregeorev.2012.11.007
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
    Sun, T., Qian, Z. Z., Li, C. S., et al., 2013. Petrogenesis and Economic Potential of the Erhongwa Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China: Constraints from Olivine Chemistry, U-Pb Age and Hf Isotopes of Zircons, and Whole-Rock Sr-Nd-Pb Isotopes. Lithos, 182/183(7): 185-199. https://doi.org/10.1016/j.lithos.2013.10.004
    Tang, D. M., Qin, K. Z., Li, C. S., et al., 2011. Zircon Dating, Hf-Sr-Nd-Os Isotopes and PGE Geochemistry of the Tianyu Sulfide-Bearing Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China. Lithos, 126(1-2): 84-98. https://doi.org/10.1016/j.lithos.2011.06.007
    Tang, D. M., Qin, K. Z., Su, B. X., et al., 2013. Magma Source and Tectonics of the Xiangshanzhong Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China, Traced from Geochemical and Isotopic Signatures. Lithos, 170/171(6): 144-163. https://doi.org/10.1016/j.lithos.2013.02.013
    Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70-87. https://doi.org/10.1016/j.gca.2012.08.032
    Wang, J. B., Wang, Y. W., Zhou, T. F., 2008. Metallogenic Spectrum Related to Post-Collisional Mantle-Derived Magma in North Xingjiang. Acta Petrologica Sinica, 24(4): 743-752 (in Chinese with English Abstract) http://www.oalib.com/paper/1472984
    Wang, J. B., Xu, X., 2006. Post-Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23-31 (in Chinese with English Abstract) https://www.researchgate.net/publication/279622123_Post-collisional_tectonic_evolution_and_metallogenesis_in_Northern_Xinjiang_China
    Wang, S., Sun, F. Y., Qian, Z. Z., et al., 2014. Magmatic Evolution and Metal Element Enrichment during Formation of the Niumaoquan Magnetite Ore Deposit, Xinjiang, China. Ore Geology Reviews, 63(2): 64-75. https://doi.org/10.1016/j.oregeorev.2014.04.021
    Wang, Y. W., Wang, J. B., Wang, L. J., 2006. Comparison of Host Rocks between Two Vanadic Titanomagnetite Deposit Types from the Eastern Tianshan Mountains. Acta Petrologica Sinica, 22(5): 1425-1436 (in Chinese with English Abstract) http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ysxb98200605031
    Wang, Y. W., Wang, J. B., Wang, L. J., et al., 2009. Characteristics of Two Mafic-Ultramafic Rocks Series in the Xiangshan Cu-Ni-(V) Ti-Fe Ore District, Xinjiang. Acta Petrologica Sinica, 25(4): 888-900 (in Chinese with English Abstract) http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090413
    Wang, Y. W., Wang, J. B., Wang, L. J., et al., 2010a. Petrographical and Lithogeochemical Characteristics of the Mafic-Ultramafic Complex Related to CuNi-VTiFe Composite Mineralization: Taking the North Xinjiang as an Example. Acta Petrologica Sinica, 26(2): 401-412 (in Chinese with English Abstract) https://www.researchgate.net/publication/279543075_Petrographical_and_lithogeochemical_characteristics_of_the_mafic-ultramafic_complex_related_to_CuNi-VTiFe_composite_mineralization_Taking_the_North_Xinjiang_as_an_example
    Wang, Y. W., Wang, J. B., Wang, L. J., et al., 2010b. Problems of PGE Metallogenesis Related to Mafic-Ultramafic Complexes in North Xinjiang, China. Geoscience Frontiers, 2(2): 187-198. https://doi.org/10.1016/j.gsf.2011.03.008
    Watson, E. B., Harrison, T. M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723): 841-844 doi: 10.1126/science.1110873
    Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
    Xiao, Q. H., Qin, K. Z., Tang, D. M., et al., 2010. Xiangshanxi Composite Cu-Ni-Ti-Fe Deposit belongs to Comagmatic Evolution Product: Evidence from Ore Microscopy, Zircon U-Pb Chronology and Petrological Geochemistry, Hami, Xinjiang, NW China. Acta Petrologica Sinica, 26(2): 503-522 (in Chinese with English Abstract) https://www.researchgate.net/publication/279620997_Xiangshanxi_composite_Cu-Ni_-_Ti-Fe_deposit_belongs_to_comagmatic_evolution_product_Evidences_from_ore_microscopy_zircon_U-Pb_chronology_and_petrological_geochemistry_Hami_Xinjiang_NW_China
    Xiao, W. J., Han, C. M., Yuan, C., et al., 2008. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008
    Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Sciences, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12
    Xiao, W. J., Zhang, L. C., Qin, K. Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304: 370-395. https://doi.org/10.2475/ajs.304.4.370
    Zhang, H. C., Zhu, Y. F., Feng, W. Y., et al., 2017. Paleozoic Intrusive Rocks in the Nalati Mountain Range (NMR), Southwest Tianshan: Geodynamic Evolution Based on Petrology and Geochemical Studies. Journal of Earth Science, 28(2): 196-217. https://doi.org/10.1007/s12583-016-0922-1
    Zhao, Y., Xue, C. J., Zhao, X. B., et al., 2015. Magmatic Cu-Ni Sulfide Mineralization of the Huangshannan Mafic-Ultramafic Intrusion, Eastern Tianshan, China. Journal of Asian Earth Sciences, 105: 155-172. https://doi.org/10.1016/j.jseaes.2015.03.031
    Zhou, M. F., Lesher, C. M., Yang, Z. X., et al., 2004. Geochemistry and Petrogenesis of 270 Ma Ni-Cu-(PGE) Sulfide-Bearing Mafic Intrusions in the Huangshan District, Eastern Xinjiang, Northwest China: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Chemical Geology, 209(3-4): 233-257. https://doi.org/10.1016/j.chemgeo.2004.05.005
    Zhu, Y. F., An, F., Feng, W. Y., et al., 2016. Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region. Journal of Earth Science, 27(3): 491-506. https://doi.org/10.1007/s12583-016-0673-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(456) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return