Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 1
Jan 2018
Turn off MathJax
Article Contents
Xutuo Li, Danping Yan, Liang Qiu. Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-alkaline to Alkaline Basalts in Xiqiu Area, Southwest China. Journal of Earth Science, 2018, 29(1): 57-77. doi: 10.1007/s12583-018-0825-1
Citation: Xutuo Li, Danping Yan, Liang Qiu. Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-alkaline to Alkaline Basalts in Xiqiu Area, Southwest China. Journal of Earth Science, 2018, 29(1): 57-77. doi: 10.1007/s12583-018-0825-1

Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-alkaline to Alkaline Basalts in Xiqiu Area, Southwest China

doi: 10.1007/s12583-018-0825-1
More Information
  • Corresponding author: Xutuo Li, yandp@cugb.edu.cn
  • Received Date: 24 Jul 2017
  • Accepted Date: 20 Sep 2017
  • Publish Date: 01 Feb 2018
  • Several Cretaceous Carlin-like or hydrothermal gold deposits along the Garze-Litang suture zone and Early Cretaceous hydrothermal copper mineralization along the southeastern margin of the Songpan-Garze fold belt were presumed to have a magmatic heat source. However, no actual coeval magmatic events nearby were discovered. Here, we report zircon SIMS U-Pb age, whole-rock geochemical and Sr-Nd isotopic data of the Xiqiu basalts in the southern end of the Yidun terrane, eastern Tibetan Plateau. New zircon U-Pb ages yield weighted mean 206Pb/238U age of 117.7±1.6 Ma. The basalts are classified as calc-alkaline to alkaline and have relatively high MgO (4.77 wt.%–10.84 wt.%) and Mg number values (Mg#=(100×Mg/(Mg+Fe2+)); 45.35–67.28) and positive εNd(t) (t=118 Ma) values (+1.86 to +3.2), suggesting a OIB-like mantle source that is consistent with the normalized patterns of trace elements and rare earth elements (REEs). Geochemical data suggest that the primary basaltic magma was generated by low degree partial melting of a peridotite-dominated mantle source with a minor component of garnet-eclogite or pyroxenite and experienced olivine+clinopyroxene dominated fractional crystallization. The primary melt compositions calculated from the high MgO samples, in turn, suggest that the Xiqiu basalts were generated at 1.6–2.9 GPa with abnormally hot mantle potential temperatures from 1 465 to 1 540 ℃. The melting temperatures are similar to the abnormally hot mantle underneath the Colorado Plateau and hotter than the mid-ocean range basalt (MORB) mantle and normal intra-continental mantle. Combined with previous studies, the Cretaceous Xiqiu basalts allow us to reconstruct a tectonic and geodynamic evolutionary model responsible for the Late Jurassic to Late Cretaceous geological records (magmatism, ore deposits and enhanced exhumation) in the Yidun terrane and southern Songpan-Garze fold belt.

     

  • loading
  • Albarède, F., 1992. How Deep do Common Basaltic Magmas form and Differentiate?. Journal of Geophysical Research, 97(B7): 10997-11009. https://doi.org/10.1029/91jb02927
    Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67-95. https://doi.org/10.1016/s0377-0273(00)00182-7
    Allen, P. A., Allen, J. R., 2005. Basin Analysis: Principles and Applications (Second Edition). Blackwell Publishing, Oxford. 549
    Beattie, P., 1993. Olivine-Melt and Orthopyroxene-Melt Equilibria. Contributions to Mineralogy and Petrology, 115(1): 103-111. https://doi.org/10.1007/bf00712982
    Bown, J. W., White, R. S., 1995. Effect of Finite Extension Rate on Melt Generation at Rifted Continental Margins. Journal of Geophysical Research: Solid Earth, 100(B9): 18011-18029. https://doi.org/10.1029/94jb01478
    Burchfiel, B. C., Chen, Z. L., 2013. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Geological Society of America Memoirs, 210: 1-164 doi: 10.1130/9780813712109
    Cao, W. T., Yan, D. P., Qiu, L., et al., 2015. Structural Style and Metamorphic Conditions of the Jinshajiang Metamorphic Belt: Nature of the Paleo-Jinshajiang Orogenic Belt in the Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 113: 748-765. https://doi.org/10.13039/501100001809
    Castillo, P. R., 2008. Origin of the Adakite-High-Nb Basalt Association and Its Implications for Postsubduction Magmatism in Baja California, Mexico. Geological Society of America Bulletin, 120(3/4): 451-462. https://doi.org/10.1130/b26166.1
    Castillo, P. R., Rigby, S. J., Solidum, R. U., 2007. Origin of High Field Strength Element Enrichment in Volcanic Arcs: Geochemical Evidence from the Sulu Arc, Southern Philippines. Lithos, 97(3/4): 271-288. https://doi.org/10.1016/j.lithos.2006.12.012
    Cen, T., Li, W. X., Wang, X. C., et al., 2016. Petrogenesis of Early Jurassic Basalts in Southern Jiangxi Province, South China: Implications for the Thermal State of the Mesozoic Mantle beneath South China. Lithos, 256/257: 311-330. https://doi.org/10.13039/501100001809
    Chen, B., Wang, K., Liu, W., et al., 1987. Geotectonics of the Nujiang-Lancangjiang-Jinshajiang Region. Geological Publishing House, Beijing. 204 (in Chinese)
    Chen, M. H., Deng, J., Chen, D. Q., 2011. Origin of the Ore-Forming Matter from the Liwu Copper Orefield in Jiulong, Sichuan. Sedimentary Geology and Tethyan Geology, 31(1): 89-93 (in Chinese with English Abstract) https://www.sciencedirect.com/science/article/pii/S0009281917301046
    Deng, B., Liu, S. G., Li, Z. W., et al., 2012. Late Cretaceous Tectonic Change of the Eastern Margin of the Tibetan Plateau—Results from Multisystem Thermochronology. Journal of the Geological Society of India, 80(2): 241-254. https://doi.org/10.1007/s12594-012-0134-8
    Deng, J., Wang, Q. F., Li, G. J., 2017. Tectonic Evolution, Superimposed Orogeny, and Composite Metallogenic System in China. Gondwana Research, 50: 216-266. https://doi.org/10.13039/501100001809
    Deng, J., Wang, Q. F., Li, G. J., et al., 2014. Tethys Tectonic Evolution and Its Bearing on the Distribution of Important Mineral Deposits in the Sanjiang Region, SW China. Gondwana Research, 26(2): 419-437. https://doi.org/10.1016/j.gr.2013.08.002
    Ding, L., Yang, D., Cai, F. L., et al., 2013. Provenance Analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi Turbidites in Northern Tibet: Implications for the Tectonic Evolution of the Eastern Paleo-Tethys Ocean. Tectonics, 32(1): 34-48. https://doi.org/10.1002/tect.20013
    Du, D. D., Qu, X. M., Wang, G. H., et al., 2011. Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet: Evidence from Zircon U-Pb LAICPMS Dating and Petrogeochemistry of Arc Granites. Acta Petrologica Sinica, 27: 1993-2002 (in Chinese with English Abstract)
    Ellam, R. M., 1992. Lithospheric Thickness as a Control on Basalt Geochemistry. Geology, 20(2): 153. https://doi.org/10.1130/0091-7613(1992)020<0153:ltaaco>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0153:ltaaco>2.3.co;2
    Falloon, T. J., Danyushevsky, L. V., 2000. Melting of Refractory Mantle at 1.5, 2 and 2.5 GPa under Anhydrous and H2O-Undersaturated Conditions: Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting. Journal of Petrology, 41(2): 257-283. https://doi.org/10.1093/petrology/41.2.257
    Griffin, W. L., Begg, G. C., O'Reilly, S. Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11): 905-910. https://doi.org/10.1038/ngeo1954
    Gutscher, M. A., Maury, R., Eissen, J. P., et al., 2000. Can Slab Melting be Caused by Flat Subduction?. Geology, 28(6): 535. https://doi.org/10.1130/0091-7613(2000)28<535:csmbcb>2.0.co;2 doi: 10.1130/0091-7613(2000)28<535:csmbcb>2.0.co;2
    Haase, K. M., 1996. The Relationship between the Age of the Lithosphere and the Composition of Oceanic Magmas: Constraints on Partial Melting, Mantle Sources and the Thermal Structure of the Plates. Earth and Planetary Science Letters, 144(1/2): 75-92. https://doi.org/10.1016/0012-821x(96)00145-8
    Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341-2357. https://doi.org/10.1093/petrology/egm062
    Hastie, A. R., Mitchell, S. F., Kerr, A. C., et al., 2011. Geochemistry of Rare High-Nb Basalt Lavas: Are They Derived from a Mantle Wedge Metasomatised by Slab Melts?. Geochimica et Cosmochimica Acta, 75(17): 5049-5072. https://doi.org/10.1016/j.gca.2011.06.018
    Herzberg, C., Asimow, P. D., Arndt, N., et al., 2007. Temperatures in Ambient Mantle and Plumes: Constraints from Basalts, Picrites, and Komatiites. Geochemistry, Geophysics, Geosystems, 8(2): 1-34. https://doi.org/10.1029/2006gc001390
    Herzberg, C., O'Hara, M. J., 2002. Plume-Associated Ultramafic Magmas of Phanerozoic Age. Journal of Petrology, 43(10): 1857-1883 doi: 10.1093/petrology/43.10.1857
    Hou, Z. Q., 1993. Tectono-Magmatic Evolution of the Yidun Island-Arc and Geodynamic Setting of Kuroko-Type Sulfide Deposits in Sanjiang Region, SW China. Resource Geology, 17: 336-350 http://mrdata.usgs.gov/vms/show-vms.php?rec_id=1658
    Hou, Z. Q., Yang, Y. Q., Wang, H. P., et al., 2003. Collision-Orogenic Progress and Mineralization System of Yidun Arc. Geological Publishing House, Beijing. 335 (in Chinese)
    Hronsky, J. M. A., Groves, D. I., Loucks, R. R., et al., 2012. A Unified Model for Gold Mineralisation in Accretionary Orogens and Implications for Regional-Scale Exploration Targeting Methods. Mineralium Deposita, 47(4): 339-358. https://doi.org/10.1007/s00126-012-0402-y
    Hu, R. Z., Wen, H. J., Su, W. C., et al., 2014. Some Advances in Ore Deposit Geochemistry in Last Decade. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 128-144 (in Chinese with English Abstract) doi: 10.3969/j.issn.1007-2802.2014.02.016
    Huan, W. J., Li, N., Yuan, W. M., et al., 2013. Fission Track Constrain on Mineralization Time and Tectonic Events in Ganzi-Litang Gold Belt, Tibet Plateau. Acta Petrologica Sinica, 29(4): 1338-1346 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201304019.htm
    Huan, W. J., Yuan, W. M., Li, N., 2011. Study on the Mineral Electron Microprobe Evidence of the Formation Conditions and Fission Track of Gold Deposits in Garze-Litang Gold Belt, Western Sichuan Province. Geosciences, 25: 261-270 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ201102010.htm
    Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1
    Jian, P., Liu, D. Y., Kröner, A., et al., 2009. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (Ⅱ): Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113(3/4): 767-784. https://doi.org/10.1016/j.lithos.2009.04.006
    Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7/8): 917-933. https://doi.org/10.1130/b26033.1
    Kapp, P., Yin, A., Harrison, T. M., et al., 2005. Cretaceous-Tertiary Shortening, Basin Development, and Volcanism in Central Tibet. Geological Society of America Bulletin, 117(7): 865. https://doi.org/10.1130/b25595.1
    Katz, R. F., Spiegelman, M., Langmuir, C. H., 2003. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems, 4(9): 1-19. https://doi.org/10.1029/2002gc000433
    Kelley, K. A., Plank, T., Grove, T. L., et al., 2006. Mantle Melting as a Function of Water Content beneath Back-Arc Basins. Journal of Geophysical Research, 111(B9): 1-27. https://doi.org/10.1029/2005jb003732
    Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. https://doi.org/10.1016/s0016-7037(96)00349-3
    Lai, Q. Z., Ding, L., Wang, H. W., et al., 2007. Constraining the Stepwise Migration of the Eastern Tibetan Plateau Margin by Apatite Fission Track Thermochronology. Science in China Series D: Earth Sciences, 50(2): 172-183. https://doi.org/10.1007/s11430-007-2048-7
    Langmuir, C. H., Klein, E. M., Plank, T., 1992. Petrological Systematics of Mid-Ocean Ridge Basalts: Constraints on Melt Generation beneath Ocean Ridges. In: Mantle Flow and Melt Generation at Mid-Ocean Ridges. American Geophysical Union, Geophysical Monograph, 71: 183-280 https://dukespace.lib.duke.edu/dspace/handle/10161/8316
    Le Roux, V., Lee, C. T. A., Turner, S. J., 2010. Zn/Fe Systematics in Mafic and Ultramafic Systems: Implications for Detecting Major Element Heterogeneities in the Earth's Mantle. Geochimica et Cosmochimica Acta, 74(9): 2779-2796. https://doi.org/10.1016/j.gca.2010.02.004
    Lee, C. T. A., Luffi, P., Plank, T., et al., 2009. Constraints on the Depths and Temperatures of Basaltic Magma Generation on Earth and Other Terrestrial Planets Using New Thermobarometers for Mafic Magmas. Earth and Planetary Science Letters, 279(1/2): 20-33. https://doi.org/10.1016/j.epsl.2008.12.020
    Li, D. P., Chen, Y. L., Luo, Z. H., et al., 2009. Zircon SHRIMP U-Pb Dating and Neoproterozoic Metamorphism of Kangding and Yuanmou Intrusive Complexes, Sichuan and Yunnan. Journal of Earth Science, 20(6): 897-908. https://doi.org/10.1007/s12583-009-0076-2 http://en.earth-science.net/WebPage/Article.aspx?id=523
    Li, H. L., Zhang, Y. Q., Zhang, C. H., et al., 2015. Middle Jurassic Syn-Kinematic Magmatism, Anatexis and Metamorphism in the Zheduo-Gonggar Massif, Implication for the Deformation of the Xianshuihe Fault Zone, East Tibet. Journal of Asian Earth Sciences, 107: 35-52. https://doi.org/10.13039/501100001809
    Li, J. K., Li, W. C., Wang, D. H., et al., 2007. Re-Os Dating for Ore Forming Event in the Late of Yanshan Epoch and Research of Ore-Forming Regularity in Zhongdian Arc. Acta Petrologica Sinica, 23: 2415-2422 (in Chinese with English Abstract) http://www.oalib.com/paper/1473240
    Li, T. Z., Dai, Y. P., Ma, G. T., et al., 2016a. SHRIMP zircon U-Pb Dating of the Wulaxi Granite in the Western Margin of the Yangtze Block and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 35(4): 744-749 (in Chinese with English Abstract) doi: 10.1007/s11430-008-0072-x
    Li, T. Z., Zhou, Q., Zhang, H. H., et al., 2016b. Ore Geology and Molybdenite Re-Os Dating of the Wulaxi Tungsten Deposit in Western Sichuan. Geological Journal of China Universities, 22(3): 423-430 (in Chinese with English Abstract) http://www.en.cnki.com.cn/Article_en/CJFDTotal-GXDX201603003.htm
    Li, X. H., Liu, Y., Li, Q. L., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. https://doi.org/10.1029/2009gc002400
    Li, X. H., Tang, G. Q., Gong, B., et al., 2013. Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 58(36): 4647-4654. https://doi.org/10.1007/s11434-013-5932-x
    Li, Y. J., Wei, J. H., Chen, H. Y., et al., 2014. Petrogenesis of the Xiasai Early Cretaceous A-Type Granite from the Yidun Island Arc Belt, SW China: Constraints from Zircon U-Pb Age, Geochemistry and Hf Isotope. Geotectonica et Metallogenia, 38(4): 939-954 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201404019.htm
    Liang, Q., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507-513. https://doi.org/10.1016/s0039-9140(99)00318-5
    Liu, S. S., Fan, W. Y., Nie, F., et al., 2015. Geological Characteristics and Ore-Controlling Factors Analysis of Suoluogou Gold Deposit, Muli County, Sichuan Province. Gold, 6(36): 98-13 (in Chinese with English Abstract) https://www.researchgate.net/profile/Hua_Wen_Cao
    Liu, Y. S., Gao, S., Kelemen, P. B., et al., 2008. Recycled Crust Controls Contrasting Source Compositions of Mesozoic and Cenozoic Basalts in the North China Craton. Geochimica et Cosmochimica Acta, 72(9): 2349-2376. https://doi.org/10.1016/j.gca.2008.02.018
    Ludwig, K. R., 2003. User's Manual for Isoplot/EX, Version 3.70. A Geochronological Toolkit for Microsoft Excel, Special Publication 4. Berkeley Geochronology Center, Berkeley. 76
    Luo, H. C., Kan, Z. Z., Yang, H., et al., 2012. Mineralogy and Metamorphism of the Changqiang Metamorphic Dome. Journal of Sichuan Geology, 32(2): 133-138 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SCDB201202003.htm
    Ma, G. T., Wang, M. J., Yao, P., et al., 2009. 40Ar-39Ar Dating of Biotite from the Heiniudong Copper Deposit in Jiulong County, Sichuan Province, and Its Geological Significance. Acta Geologica Sinica, 83(5): 673-679 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200905008.htm
    McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625-679. https://doi.org/10.1093/petrology/29.3.625
    McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
    Moucha, R., Forte, A. M., Rowley, D. B., et al., 2008. Mantle Convection and the Recent Evolution of the Colorado Plateau and the Rio Grande Rift Valley. Geology, 36(6): 439. https://doi.org/10.1130/g24577a.1
    Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3/4): 556-574 http://www.sciencedirect.com/science/article/pii/S0024493709001285
    Nie, F., Fan, W. Y., Liu, S. S., et al., 2015. Structural Characteristics of the Suoluogou Gold Deposit in Muli County, West Sichuan Province. Acta Geologica Sinica—English Edition, 89(5): 1773-1774. https://doi.org/10.1111/1755-6724.12583
    Pan, G. T., Li, X. Z., Wang, L. Q., et al., 2002. Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions. Geological Bulletin of China, 21: 701-707 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200211001.htm
    Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
    Pearce, J. A., 1996. A User's Guide to Basalt Discrimination Diagrams. In: Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications of Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes, 12: 79-113 https://www.researchgate.net/publication/238170061_A_User%27s_Guide_to_Basalt_Discrimination_Diagrams
    Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
    Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2
    Putirka, K. D., Mikaelian, H., Ryerson, F., et al., 2003. New Clinopyroxene-Liquid Thermobarometers for Mafic, Evolved, and Volatile-Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542-1554. https://doi.org/10.2138/am-2003-1017
    Putirka, K. D., Perfit, M., Ryerson, F. J., et al., 2007. Ambient and Excess Mantle Temperatures, Olivine Thermometry, and Active vs. Passive Upwelling. Chemical Geology, 241(3/4): 177-206 https://www.sciencedirect.com/science/article/pii/S0009254107000666
    Qu, X. M., Hou, Z. Q., Tang, S. H., 2003. Age of Intraplate Volcanism in the Back-Arc Area of Yidun Island Arc and Its Significance. Petrol. Mineral., 22: 131-137 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200302004.htm
    Reid, A. J., Fowler, A. P., Phillips, D., et al., 2005a. Thermochronology of the Yidun Arc, Central Eastern Tibetan Plateau: Constraints from 40Ar/39Ar K-Feldspar and Apatite Fission Track Data. Journal of Asian Earth Sciences, 25(6): 915-935. https://doi.org/10.1016/j.jseaes.2004.09.002
    Reid, A. J., Wilson, C. J. L., Liu, S., 2005b. Structural Evidence for the Permo-Triassic Tectonic Evolution of the Yidun Arc, Eastern Tibetan Plateau. Journal of Structural Geology, 27(1): 119-137. https://doi.org/10.1016/j.jsg.2004.06.011
    Reid, A. J., Wilson, C. J. L., Liu, S., et al., 2007. Mesozoic Plutons of the Yidun Arc, SW China: U/Pb Geochronology and Hf Isotopic Signature. Ore Geology Reviews, 31(1/2/3/4): 88-106. https://doi.org/10.1016/j.oregeorev.2004.11.003
    Roger, F., Jolivet, M., Cattin, R., et al., 2011. Mesozoic-Cenozoic Tectonothermal Evolution of the Eastern Part of the Tibetan Plateau (Songpan-Garze, Longmen Shan Area): Insights from Thermochronological Data and Simple Thermal Modelling. Geological Society, London, Special Publications, 353(1): 9-25. https://doi.org/10.1144/sp353.2
    Roger, F., Jolivet, M., Malavieille, J., 2010. The Tectonic Evolution of the Songpan-Garze (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 39(4): 254-269. https://doi.org/10.1016/j.jseaes.2010.03.008
    Roy, M., Jordan, T. H., Pederson, J., 2009. Colorado Plateau Magmatism and Uplift by Warming of Heterogeneous Lithosphere. Nature, 459(7249): 978-982. https://doi.org/10.1038/nature08052
    Shellnutt, J. G., Zhou, M. F., Yan, D. P., et al., 2008. Longevity of the Permian Emeishan Mantle Plume (SW China): 1 Ma, 8 Ma or 18 Ma?. Geological Magazine, 145(3): 373-388. https://doi.org/10.1017/s0016756808004524
    Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Science Publishing, Oxford. 312 http://www.worldcat.org/title/continental-crust-its-composition-and-evolution-an-examination-of-the-geochemical-record-preserved-in-sedimentary-rocks/oclc/59256950
    Tian, Y. T., Kohn, B. P., Gleadow, A. W., et al., 2014. A Thermochronological Perspective on the Morphotectonic Evolution of the Southeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119(1): 676-698. https://doi.org/10.1002/2013jb010429
    Tschegg, C., Ntaflos, T., Akinin, V. V., 2011. Polybaric Petrogenesis of Neogene Alkaline Magmas in an Extensional Tectonic Environment: Viliga Volcanic Field, Northeast Russia. Lithos, 122(1/2): 13-24. https://doi.org/10.13039/100005243
    Wan, C. H., 2015. Mesozoic Granitoids of the Southern Part, Songpan-Garze Fold Belt: Petrology, Geochemical Composition and Petrogenesis: [Dissertation]. Chengdu University of Technology, Chengdu. 53 (in Chinese with English Abstract)
    Wang, B. Q., Wang, W., Chen, W. T., et al., 2013a. Constraints of Detrital Zircon U-Pb Ages and Hf Isotopes on the Provenance of the Triassic Yidun Group and Tectonic Evolution of the Yidun Terrane, Eastern Tibet. Sedimentary Geology, 289: 74-98. https://doi.org/10.1016/j.sedgeo.2013.02.005
    Wang, B. Q., Zhou, M. F., Chen, W. T., et al., 2013b. Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet. Lithos, 175/176: 285-301. https://doi.org/10.13039/501100001809
    Wang, B. Q., Zhou, M. F., Li, J. W., et al., 2011. Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Adakitic Magmatism and Porphyry Copper Mineralization. Lithos, 127(1/2): 24-38. https://doi.org/10.1016/j.lithos.2011.07.028
    Wang, C. Y., Zhou, M. F., Keays, R. R., 2006. Geochemical Constraints on the Origin of the Permian Baimazhai Mafic-Ultramafic Intrusion, SW China. Contributions to Mineralogy and Petrology, 152(3): 309-321. https://doi.org/10.1007/s00410-006-0103-6
    Wang, C. Y., Zhou, M. F., Qi, L., 2007. Permian Flood Basalts and Mafic Intrusions in the Jinping (SW China)-Song Da (Northern Vietnam) District: Mantle Sources, Crustal Contamination and Sulfide Segregation. Chemical Geology, 243(3/4): 317-343. https://doi.org/10.1016/j.chemgeo.2007.05.017
    Wang, Q. W., Wang, K. M., Kan, Z. Z., 2008. Granites and Related Mineralization in Western Sichuan. Geological Publishing House, Beijing. 303 (in Chinese)
    Wang, S. W., Liao, Z. W., Sun, X. M., et al., 2014. The Yanshanian Lithospheric Evolution in the Kangdian Area: Restriction from SHRIMP Zircons U-Pb Age and Geochemistry of Mafic Dykes in Dongchuan, Yunan Province, SW China. Acta Geologica Snica, 88(3): 299-317 (in Chinese with English Abstract)
    Wang, X. C., Li, X. H., Li, Z. X., et al., 2010. The Willouran Basic Province of South Australia: Its Relation to the Guibei Large Igneous Province in South China and the Breakup of Rodinia. Lithos, 119(3/4): 569-584. https://doi.org/10.1016/j.lithos.2010.08.011
    Wang, X. C., Li, Z. X., Li, X. H., et al., 2012. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume Close to Subduction Zones?. Journal of Petrology, 53(1): 177-233. https://doi.org/10.1093/petrology/egr061
    Wang, X. C., Wilde, S. A., Li, Q. L., et al., 2015. Continental Flood Basalts Derived from the Hydrous Mantle Transition Zone. Nature Communications, 6: 7700. https://doi.org/10.1038/ncomms8700
    Wang, X. S., Bi, X. W., Leng, C. B., et al., 2014a. Geochronology and Geochemistry of Late Cretaceous Igneous Intrusions and Mo-Cu-(W) Mineralization in the Southern Yidun Arc, SW China: Implications for Metallogenesis and Geodynamic Setting. Ore Geology Reviews, 61: 73-95. https://doi.org/10.1016/j.oregeorev.2014.01.006
    Wang, X. S., Hu, R. Z., Bi, X. W., et al., 2014b. Petrogenesis of Late Cretaceous Ⅰ-Type Granites in the Southern Yidun Terrane: New Constraints on the Late Mesozoic Tectonic Evolution of the Eastern Tibetan Plateau. Lithos, 208/209: 202-219. https://doi.org/10.13039/501100005231
    Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
    Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London. 466
    Wu, T., Xiao, L., Gao, R., et al., 2014. Petrogenesis and Tectonic Setting of the Queershan Composite Granitic Pluton, Eastern Tibetan Plateau: Constraints from Geochronology, Geochemistry and Hf Isotope Data. Science China Earth Sciences, 57(11): 2712-2725. https://doi.org/10.1007/s11430-014-4936-y
    Wu, T., Xiao, L., Ma, C. Q., 2016. U-Pb Geochronology of Detrital and Inherited Zircons in the Yidun Arc Belt, Eastern Tibet Plateau and Its Tectonic Implications. Journal of Earth Science, 27(3): 461-473. https://doi.org/10.1007/s12583-016-0675-5 http://en.earth-science.net/WebPage/Article.aspx?id=1224
    Xu, C., Huang, Z. L., Qi, L., et al., 2007. Geochemistry of Cretaceous Granites from Mianning in the Panxi Region, Sichuan Province, Southwestern China: Implications for Their Generation. Journal of Asian Earth Sciences, 29(5/6): 737-750. https://doi.org/10.1016/j.jseaes.2006.03.013
    Xu, G. Q., Kamp, P. J. J., 2000. Tectonics and Denudation Adjacent to the Xianshuihe Fault, Eastern Tibetan Plateau: Constraints from Fission Track Thermochronology. Journal of Geophysical Research: Solid Earth, 105(B8): 19231-19251. https://doi.org/10.1029/2000jb900159
    Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3/4): 145-168 https://www.sciencedirect.com/science/article/pii/S002449370100055X
    Yan, D. P., Zhou, M. F., Li, S. B., et al., 2011. Structural and Geochronological Constraints on the Mesozoic-Cenozoic Tectonic Evolution of the Longmen Shan Thrust Belt, Eastern Tibetan Plateau. Tectonics, 30(6): TC6005. https://doi.org/10.1029/2011tc002867
    Yan, D. P., Zhou, M. F., Song, H. L., et al., 2003. Structural Style and Tectonic Significance of the Jianglang Dome in the Eastern Margin of the Tibetan Plateau, China. Journal of Structural Geology, 25(5): 765-779. https://doi.org/10.1016/s0191-8141(02)00059-7
    Yang, L. Q., Deng, J., Dilek, Y., et al., 2016. Melt Source and Evolution of Ⅰ-Type Granitoids in the SE Tibetan Plateau: Late Cretaceous Magmatism and Mineralization Driven by Collision-Induced Transtensional Tectonics. Lithos, 245: 258-273. https://doi.org/10.13039/501100002366
    Yang, L. Q., Deng, J., Gao, X., et al., 2017. Timing of Formation and Origin of the Tongchanggou Porphyry-Skarn Deposit: Implications for Late Cretaceous Mo-Cu Metallogenesis in the Southern Yidun Terrane, SE Tibetan Plateau. Ore Geology Reviews, 81: 1015-1032. https://doi.org/10.1016/j.oregeorev.2016.03.015
    Yang, T. N., Ding, Y., Zhang, H. R., et al., 2014. Two-Phase Subduction and Subsequent Collision Defines the Paleotethyan Tectonics of the Southeastern Tibetan Plateau: Evidence from Zircon U-Pb Dating, Geochemistry, and Structural Geology of the Sanjiang Orogenic Belt, Southwest China. Geological Society of America Bulletin, 126(11/12): 1654-1682. https://doi.org/10.1130/b30921.1
    Yang, T. N., Hou, Z. Q., Wang, Y., et al., 2012. Late Paleozoic to Early Mesozoic Tectonic Evolution of Northeast Tibet: Evidence from the Triassic Composite Western Jinsha-Garze-Litang Suture. Tectonics, 31(4): TC4004. https://doi.org/10.1029/2011tc003044
    Yao, P., Wang, M. J., Li, J. Z., et al., 2008. Isotopic Tracing of the Liwu-Type Cu-Rich Deposits and Its Ore-Forming Geological Significance. Acta Geologica Sinica, 29(6): 691-696 (in Chinese with English Abstract) https://www.sciencedirect.com/science/article/pii/S0169136817303220
    Zhang, K. J., Zhang, Y. X., Tang, X. C., et al., 2012. Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 114(3/4): 236-249 https://www.sciencedirect.com/science/article/pii/S0012825212000736
    Zhang, Y., Wang, Q. F., Zhang, J., et al., 2012. Geological Characteristics and Genesis of Ajialongwa Gold Deposit in Ganzi-Litang Suture Zone, West Sichuan. Acta Petrologica Sinica, 28(2): 691-701 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201202027.htm
    Zhang, Z. C., Wang, F. S., Hao, Y. L., et al., 2004. Geochemistry of the Picrites and Associated Basalts from the Emeishan Large Igneous Basalt Province and Constraints on Their Source Region. Acta Geologica Sinica, 78: 171-180 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200402004.htm
    Zheng, M. H., Yang, Z. X., Gu, X. X., 1995. Metallogenic Environment and Genetic Model of Erze Karst-Type Gold Deposit of Muli, Sichuan Province. Scientia Geologica Sinica, 30: 363-373 (in Chinese with English Abstract) doi: 10.1007/BF03166882
    Zhou, J. Y., Tan, H. Q., Gong, D. X., et al., 2013. Zircon LA-ICP-MS U-Pb Dating and Hf Isotopic Composition of Xinhuoshan Granite in the Core of Jianglang Dome, Western Sichuan, China. J. Mineral. Petrol., 33(4): 42-52 (in Chinese with English Abstract) https://www.sciencedirect.com/science/article/pii/S0301926807003051
    Zhou, M. F., Robinson, P. T., Wang, C. Y., et al., 2012. Heterogeneous Mantle Source and Magma Differentiation of Quaternary Arc-Like Volcanic Rocks from Tengchong, SE Margin of the Tibetan Plateau. Contributions to Mineralogy and Petrology, 163(5): 841-860. https://doi.org/10.1007/s00410-011-0702-8
    Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1/2): 51-67. https://doi.org/10.1016/s0012-821x(01)00595-7
    Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006a. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1/2): 286-300. https://doi.org/10.1016/j.epsl.2006.05.032
    Zhou, M. F., Ma, Y., Yan, D. P., et al., 2006b. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1/2): 19-38. https://doi.org/10.1016/j.precamres.2005.11.002
    Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.13039/501100002367
    Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2013. Late Permian-Triassic Magmatic Evolution in the Jinshajiang Orogenic Belt, SW China and Implications for Orogenic Processes Following Closure of the Paleo-Tethys. American Journal of Science, 313(2): 81-112. https://doi.org/10.2475/02.2013.02
    Zu, B., Xue, C. J., Chi, G. X., et al., 2016. Geology, Geochronology and Geochemistry of Granitic Intrusions and the Related Ores at the Hongshan Cu-Polymetallic Deposit: Insights into the Late Cretaceous Post-Collisional Porphyry-Related Mineralization Systems in the Southern Yidun Arc, SW China. Ore Geology Reviews, 77: 25-42. https://doi.org/10.13039/501100001809
    Zu, B., Xue, C. J., Zhao, Y., et al., 2015. Late Cretaceous Metallogeny in the Zhongdian Area: Constraints from Re-Os Dating of Molybdenite and Pyrrhotite from the Hongshan Cu Deposit, Yunnan, China. Ore Geology Reviews, 64: 1-12. https://doi.org/10.13039/501100001809
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(1393) PDF downloads(233) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return