Akatsuka, T., Takamoto, M., Katori, H., 2008. Optical Lattice Clocks with Non-Interacting Bosons and Fermions. Nature Physics, 4(12): 954-959. https://doi.org/10.1038/nphys1108 |
Bjerhammar, A., 1985. On a Relativistic Geodesy. Bulletin Géodésique, 59(3): 207-220. https://doi.org/10.1007/bf02520327 |
Bloom, B. J., Nicholson, T. L., Williams, J. R., et al., 2014. An Optical Lattice Clock with Accuracy and Stability at the 10-18 Level. Nature, 506(7486): 71-75. https://doi.org/10.1038/nature12941 |
Chou, C. W., Hume, D. B., Koelemeij, J., et al., 2010a. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks. Physical Review Letters, 104(7): 070802. https://doi.org/10.1103/physrevlett.104.070802 |
Chou, C. W., Hume, D. B., Rosenband, T., et al., 2010b. Optical Clocks and Relativity. Science, 329(5999): 1630-1633. https://doi.org/10.1126/science.1192720 |
Diddams, S. A., Bergquist, J. C., Jefferts, S. R., et al., 2004. Standards of Time and Frequency at the Outset of the 21st Century. Science, 306(5700): 1318-1324. https://doi.org/10.1126/science.1102330 |
Diddams, S. A., Udem, T., Bergquist, J. C., et al., 2001. An Optical Clock Based on a Single Trapped 199Hg+ Ion. Science, 293(5531): 825-828. https://doi.org/10.1126/science.1061171 |
Droste, S., Ozimek, F., Udem, T., et al., 2013. Optical-Frequency Transfer over a Single-Span 1 840 km Fiber Link. Physical Review Letters, 111(11): 110801. https://doi.org/10.1103/physrevlett.111.110801 |
Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356. https://doi.org/10.1016/0031-9201(81)90046-7 |
Flury, J., 2016. Relativistic Geodesy. Journal of Physics Conference Series, 723(1): 012051 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230556294/ |
Grosche, G., Terra, O., Predehl, K., et al., 2009. Optical Frequency Transfer via 146 km Fiber Link with 10-19 Relative Accuracy. Optics Letters, 34(15): 2270-2272. https://doi.org/10.13039/501100000844 |
Grotti, J., Koller, S., Vogt, S., et al., 2018. Geodesy and Metrology with a Transportable Optical Clock. Nature Physics, 14(5): 437-441. https://doi.org/10.1038/s41567-017-0042-3 |
Guena, J., Abgrall, M., Rovera, D., et al., 2012. Progress in Atomic Fountains at LNE-SYRTE. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 59(3): 391-409. https://doi.org/10.1109/tuffc.2012.2208 |
Heiskanen, W. A., Moritz, H., 1967. Physical Geodesy. Freeman and Company, San Francisco |
Hinkley, N., Sherman, J. A., Phillips, N. B., et al., 2013. An Atomic Clock with 10-18 Instability. Science, 341(6151): 1215-1218. https://doi.org/10.1126/science.1240420 |
Hofmann-Wellenhof, B., Moritz, H., 2006. Physical Geodesy. Springer |
Huntemann, N., Okhapkin, M., Lipphardt, B., et al., 2012. High-Accuracy Optical Clock Based on the Octupole Transition in 171Yb+. Physical Review Letters, 108(9): 090801. https://doi.org/10.1103/physrevlett.108.090801 |
Jiang, H., Kéfélian, F., Crane, S., et al., 2008. Long-Distance Frequency Transfer over an Urban Fiber Link Using Optical Phase Stabilization. Journal of the Optical Society of America B, 25(12): 2029-2035. https://doi.org/10.13039/501100001665 |
Katila, T., Riski, K. J., 1981. Measurement of the Interaction between Electromagnetic Radiation and Gravitational Field Using 67Zn Mössbauer Spectroscopy. Physics Letters A, 83(2): 51-54. https://doi.org/10.1016/0375-9601(81)90062-1 |
Katori, H., 2011. Optical Lattice Clocks and Quantum Metrology. Nature Photonics, 5(4): 203-210. https://doi.org/10.1038/nphoton.2011.45 |
Kéfélian, F., Lopez, O., Jiang, H. F., et al., 2009. High-Resolution Optical Frequency Dissemination on a Telecommunications Network with Data Traffic. Optics Letters, 34(10): 1573-1575. https://doi.org/10.13039/501100001665 |
Li, W. Y., Liu, Y. X., Li, B., et al., 2016. Hydrocarbon Exploration in the South Yellow Sea Based on Airborne Gravity, China. Journal of Earth Science, 27(4): 686-698. https://doi.org/10.1007/s12583-015-0607-y |
Lion, G. I., Panet, I., Wolf, P., et al., 2017. Determination of a High Spatial Resolution Geopotential Model Using Atomic Clock Comparisons. Journal of Geodesy, 91(6): 597-611. https://doi.org/10.13039/501100000781 |
Lisdat, C., Grosche, G., Quintin, N., et al., 2016. A Clock Network for Geodesy and Fundamental Science. Nature Communications, 7: 12443. https://doi.org/10.1038/ncomms12443 |
Lopez, O., Haboucha, A., Chanteau, B., et al., 2012. Ultra-Stable Long Distance Optical Frequency Distribution Using the Internet Fiber Network. Optics Express, 20(21): 23518. https://doi.org/10.1364/oe.20.023518 |
Lopez, O., Kanj, A., Pottie, P. E., et al., 2013. Simultaneous Remote Transfer of Accurate Timing and Optical Frequency over a Public Fiber Network. Applied Physics B, 110(1): 3-6. https://doi.org/10.1007/s00340-012-5241-0 |
Ludlow, A. D., Zelevinsky, T., Campbell, G. K., et al., 2008. Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock. Science, 319(5871): 1805-1808. https://doi.org/10.1126/science.1153341 |
Ma, L. S., Bartels, A., Robertsson, L., et al., 2004. Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level. Science, 303(5665): 1843-1845. https://doi.org/10.1126/science.1095092 |
Ma, L. S., Jungner, P., Ye, J., et al., 1994. Delivering the Same Optical Frequency at Two Places: Accurate Cancellation of Phase Noise Introduced by an Optical Fiber or other Time-Varying Path. Optics Letters, 19(21): 1777-1779. https://doi.org/10.1364/ol.19.001777 |
Madej, A. A., Dubé, P., Zhou, Z. C., et al., 2012. 88Sr+ 445-THz Single-Ion Reference at the 10-17 Level via Control and Cancellation of Systematic Uncertainties and Its Measurement against the SI Second. Physical Review Letters, 109(20): 203002. https://doi.org/10.1103/physrevlett.109.203002 |
Mai, E., 2013. Time, Atomic Clocks, and Relativistic Geodesy. Deutsche Geodätische Kommission, Reihe A, Theoretische Geodäsie, Heft Nr. 124, Verlag der Bayerischen Akademie der Wissenschaften, München |
Marra, G., Slavík, R., Margolis, H. S., et al., 2011. High-Resolution Microwave Frequency Transfer over an 86-km-Long Optical Fiber Network Using a Mode-Locked Laser. Optics Letters, 36(4): 511. https://doi.org/10.13039/501100000821 |
Müller, H., Peters, A., Chu, S., 2010. A Precision Measurement of the Gravitational Redshift by the Interference of Matter Waves. Nature, 463(7283): 926-929. https://doi.org/10.1038/nature08776 |
Newbury, N. R., Swann, W. C., Coddington, I., et al., 2007a. Fiber Laser- Based Frequency Combs with High Relative Frequency Stability. Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International. 980-983. https://doi.org/ 10.1109/FREQ.2007.4319226 |
Newbury, N. R., Williams, P. A., Swann, W. C., 2007b. Coherent Transfer of an Optical Carrier over 251 km. Optics Letters, 32(21): 3056-3058. https://doi.org/10.1364/ol.32.003056 |
Pound, R. V., Rebka, G. A. Jr., 1959. Gravitational Red-Shift in Nuclear Resonance. Physical Review Letters, 3(9): 439-441. https://doi.org/10.1103/physrevlett.3.439 |
Pound, R. V., Rebka, G. A. Jr., 1960a. Attempts to Detect Resonance Scattering InZn67; The Effect of Zero-Point Vibrations. Physical Review Letters, 4(8): 397-399. https://doi.org/10.1103/physrevlett.4.397 |
Pound, R. V., Rebka, G. A. Jr., 1960b. Variation with Temperature of the Energy of Recoil-Free Gamma Rays from Solids. Physical Review Letters, 4(6): 274-275. https://doi.org/10.1103/physrevlett.4.274 |
Pound, R. V., Snider, J. L., 1965. Effect of Gravity on Gamma Radiation. Physical Review, 140(3B): B788-B803. https://doi.org/10.1103/physrev.140.b788 |
Predehl, K., Grosche, G., Raupach, S. M. F., et al., 2012. A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place. Science, 336(6080): 441-444. https://doi.org/10.1126/science.1218442 |
Primas, L. E., Lutes, G. F., Sydnor, R. L., 1988. Fiber Optic Frequency Transfer Link. Proceedings of 42nd Annual Symposium on Frequency Control, June 1-3, 1988, Baltimore, MD. 478-484 |
Raupach, S. M. F., Grosche, G., 2013. Chirped Frequency Transfer with an Accuracy of 10-18 and Its Application to the Remote Synchronization of Timescales. arXiv: 1308.6725v2 [physics.optics] (2013-9-30) |
Raupach, S. M. F., Koczwara, A., Grosche, G., 2014. Optical Frequency Transfer via a 660 km Underground Fiber Link Using a Remote Brillouin Amplifier. Optics Express, 22(22): 26537-26547. https://doi.org/10.1364/oe.22.026537 |
Rosenband, T., Hume, D. B., Schmidt, P. O., et al., 2008. Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks, Metrology at the 17th Decimal Place. Science, 319(5871): 1808-1812. https://doi.org/10.1126/science.1154622 |
Shen, W.-B., 1998. Relativistic Physical Geodesy: [Dissertation]. Graz Technical University, Graz |
Shen, W.-B., 2013a. Orthometric Height Determination Based upon Optical Clocks and Fiber Frequency Transfer Technique. 2013 Saudi International Electronics, Communications and Photonics Conference (SIECPC), April 27-30, 2013, Riyadh, Saudi Arabia. https://doi.org/ 10.1109/SIECPC.2013.6550987 |
Shen, W.-B., 2013b. Orthometric Height Determination Using Optical Clocks. EGU General Assembly Conference Abstracts, 15: 5214 http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0213491052/ |
Shen, W.-B., Chao, D., Jin, B., 1993. On Relativistic Geoid. Bollettino di Geodesia e Scienze Affini, 52(3): 207-216 http://cn.bing.com/academic/profile?id=bcfca793b03c39df5683c0703303a92c&encoded=0&v=paper_preview&mkt=zh-cn |
Shen, W.-B., Ning, J. S., Chao, D. B., et al., 2009. A Proposal on the Test of General Relativity by Clock Transportation Experiments. Advances in Space Research, 43(1): 164-166. https://doi.org/10.1016/j.asr.2008.04.001 |
Shen, W.-B., Ning, J. S., Liu, J. N., et al., 2011. Determination of the Geopotential and Orthometric Height Based on Frequency Shift Equation. Natural Science, 3(5): 388-396. https://doi.org/10.4236/ns.2011.35052 |
Shen, W.-B., Peng, Z., 2012. Gravity Potential Determination Using Remote Optical Fiber. International Symposium on Gravity, Geoid and Height Systems GGHS 2012. Dec. 3, 2012, Venice, Italy |
Shen, Z. Y., Shen, W.-B., Zhang, S. X., 2016. Formulation of Geopotential Difference Determination Using Optical-Atomic Clocks Onboard Satellites and on Ground Based on Doppler Cancellation System. Geophysical Journal International, 206(2): 1162-1168. https://doi.org/10.1093/gji/ggw198 |
Shen, Z. Y., Shen, W.-B., Zhang, S. X., 2017. Determination of Gravitational Potential at Ground Using Optical-Atomic Clocks on Board Satellites and on Ground Stations and Relevant Simulation Experiments. Surveys in Geophysics, 38(4): 757-780. https://doi.org/10.1007/s10712-017-9414-6 |
Snider, J. L., 1972. New Measurement of the Solar Gravitational Red Shift. Physical Review Letters, 28(13): 853-856. https://doi.org/10.1103/physrevlett.28.853 |
Soffel, M., Herold, H., Ruder, H., et al., 1988a. Relativistic Geodesy: The Concept of Asymptotically Fixed Reference Frames. Manuscr. Geod., 13(3): 139-142 http://cn.bing.com/academic/profile?id=9f8f967bbd064688f04fbffad02583ad&encoded=0&v=paper_preview&mkt=zh-cn |
Soffel, M., Herold, H., Ruder, H., et al., 1988b. Relativistic Theory of Gravimetric Measurements and Definition of the Geoid. Manuscr. Geod., 13: 143-146 https://www.researchgate.net/publication/252669988_Relativistic_theory_of_gravimetric_measurements_and_definition_of_thegeoid |
Takano, T., Takamoto, M., Ushijima, I., et al., 2016. Geopotential Measurements with Synchronously Linked Optical Lattice Clocks. Nature Photonics, 10(10): 662-666. https://doi.org/10.1038/nphoton.2016.159 |
Tenzer, R., Bagherbandi, M., 2016. Theoretical Deficiencies of Isostatic Schemes in Modeling the Crustal Thickness along the Convergent Continental Tectonic Plate Boundaries. Journal of Earth Science, 27(6): 1045-1053. https://doi.org/10.1007/s12583-015-0608-x |
Turneaure, J. P., Will, C. M., Farrell, B. F., et al., 1983. Test of the Principle of Equivalence by a Null Gravitational Red-Shift Experiment. Physical Review D, 27(8): 1705-1714. https://doi.org/10.1103/physrevd.27.1705 |
Ushijima, I., Takamoto, M., Das, M., et al., 2015. Cryogenic Optical Lattice Clocks. Nature Photonics, 9(3): 185-189. https://doi.org/10.1038/nphoton.2015.5 |
Vessot, R. F. C., Levine, M. W., 1979. A Test of the Equivalence Principle Using a Space-Borne Clock. General Relativity and Gravitation, 10(3): 181-204. https://doi.org/10.1007/bf00759854 |
Vessot, R. F. C., Levine, M. W., Mattison, E. M., et al., 1980. Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser. Physical Review Letters, 45(26): 2081-2084. https://doi.org/10.1103/physrevlett.45.2081 |
Wada, M., Watabe, K.-I., Okubo, S., et al., 2015. A Precise Frequency Comparison System Using an Optical Carrier. Electronics and Communications in Japan, 98: 19-27 doi: 10.1002/ecj.2015.98.issue-11 |
Weinberg, S., 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York |
Ye, J., Peng, J.-L., Jones, R. J., et al., 2003. Delivery of High-Stability Optical and Microwave Frequency Standards over an Optical Fiber Network. Journal of the Optical Society of America B, 20(7): 1459. https://doi.org/10.1364/josab.20.001459 |