Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 2
Apr 2019
Turn off MathJax
Article Contents
Ziyu Shen, Wen-Bin Shen, Zhao Peng, Tao Liu, Shougang Zhang, Dingbo Chao. Formulation of Determining the Gravity Potential Difference Using Ultra-High Precise Clocks via Optical Fiber Frequency Transfer Technique. Journal of Earth Science, 2019, 30(2): 422-428. doi: 10.1007/s12583-018-0834-0
Citation: Ziyu Shen, Wen-Bin Shen, Zhao Peng, Tao Liu, Shougang Zhang, Dingbo Chao. Formulation of Determining the Gravity Potential Difference Using Ultra-High Precise Clocks via Optical Fiber Frequency Transfer Technique. Journal of Earth Science, 2019, 30(2): 422-428. doi: 10.1007/s12583-018-0834-0

Formulation of Determining the Gravity Potential Difference Using Ultra-High Precise Clocks via Optical Fiber Frequency Transfer Technique

doi: 10.1007/s12583-018-0834-0
More Information
  • Corresponding author: Wen-Bin Shen
  • Received Date: 05 Feb 2017
  • Accepted Date: 20 Aug 2017
  • Publish Date: 01 Apr 2019
  • Based on gravity frequency shift effect predicted by general relativity theory, this study discusses an approach for determining the gravity potential (geopotential) difference between arbitrary two points P and Q by remote comparison of two precise optical clocks via optical fiber frequency transfer. After synchronization, by measuring the signal's frequency shift based upon the comparison of bidirectional frequency signals from P and Q oscillators connected with two optical atomic clocks via remote optical fiber frequency transfer technique, the geopotential difference between the two points could be determined, and its accuracy depends on the stabilities of the optical clocks and the frequency transfer comparison technique. Due to the fact that the present stability of optical clocks achieves 1.6×10-18 and the present frequency transfer comparison via optical fiber provides stabilities as high as 10-19 level, this approach is prospective to determine geopotential difference with an equivalent accuracy of 1.5 cm. In addition, since points P and Q are quite arbitrary, this approach may provide an alternative way to determine the geopotential over a continent, and prospective potential to unify a regional height datum system.

     

  • loading
  • Akatsuka, T., Takamoto, M., Katori, H., 2008. Optical Lattice Clocks with Non-Interacting Bosons and Fermions. Nature Physics, 4(12): 954-959. https://doi.org/10.1038/nphys1108
    Bjerhammar, A., 1985. On a Relativistic Geodesy. Bulletin Géodésique, 59(3): 207-220. https://doi.org/10.1007/bf02520327
    Bloom, B. J., Nicholson, T. L., Williams, J. R., et al., 2014. An Optical Lattice Clock with Accuracy and Stability at the 10-18 Level. Nature, 506(7486): 71-75. https://doi.org/10.1038/nature12941
    Chou, C. W., Hume, D. B., Koelemeij, J., et al., 2010a. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks. Physical Review Letters, 104(7): 070802. https://doi.org/10.1103/physrevlett.104.070802
    Chou, C. W., Hume, D. B., Rosenband, T., et al., 2010b. Optical Clocks and Relativity. Science, 329(5999): 1630-1633. https://doi.org/10.1126/science.1192720
    Diddams, S. A., Bergquist, J. C., Jefferts, S. R., et al., 2004. Standards of Time and Frequency at the Outset of the 21st Century. Science, 306(5700): 1318-1324. https://doi.org/10.1126/science.1102330
    Diddams, S. A., Udem, T., Bergquist, J. C., et al., 2001. An Optical Clock Based on a Single Trapped 199Hg+ Ion. Science, 293(5531): 825-828. https://doi.org/10.1126/science.1061171
    Droste, S., Ozimek, F., Udem, T., et al., 2013. Optical-Frequency Transfer over a Single-Span 1 840 km Fiber Link. Physical Review Letters, 111(11): 110801. https://doi.org/10.1103/physrevlett.111.110801
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356. https://doi.org/10.1016/0031-9201(81)90046-7
    Flury, J., 2016. Relativistic Geodesy. Journal of Physics Conference Series, 723(1): 012051 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230556294/
    Grosche, G., Terra, O., Predehl, K., et al., 2009. Optical Frequency Transfer via 146 km Fiber Link with 10-19 Relative Accuracy. Optics Letters, 34(15): 2270-2272. https://doi.org/10.13039/501100000844
    Grotti, J., Koller, S., Vogt, S., et al., 2018. Geodesy and Metrology with a Transportable Optical Clock. Nature Physics, 14(5): 437-441. https://doi.org/10.1038/s41567-017-0042-3
    Guena, J., Abgrall, M., Rovera, D., et al., 2012. Progress in Atomic Fountains at LNE-SYRTE. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 59(3): 391-409. https://doi.org/10.1109/tuffc.2012.2208
    Heiskanen, W. A., Moritz, H., 1967. Physical Geodesy. Freeman and Company, San Francisco
    Hinkley, N., Sherman, J. A., Phillips, N. B., et al., 2013. An Atomic Clock with 10-18 Instability. Science, 341(6151): 1215-1218. https://doi.org/10.1126/science.1240420
    Hofmann-Wellenhof, B., Moritz, H., 2006. Physical Geodesy. Springer
    Huntemann, N., Okhapkin, M., Lipphardt, B., et al., 2012. High-Accuracy Optical Clock Based on the Octupole Transition in 171Yb+. Physical Review Letters, 108(9): 090801. https://doi.org/10.1103/physrevlett.108.090801
    Jiang, H., Kéfélian, F., Crane, S., et al., 2008. Long-Distance Frequency Transfer over an Urban Fiber Link Using Optical Phase Stabilization. Journal of the Optical Society of America B, 25(12): 2029-2035. https://doi.org/10.13039/501100001665
    Katila, T., Riski, K. J., 1981. Measurement of the Interaction between Electromagnetic Radiation and Gravitational Field Using 67Zn Mössbauer Spectroscopy. Physics Letters A, 83(2): 51-54. https://doi.org/10.1016/0375-9601(81)90062-1
    Katori, H., 2011. Optical Lattice Clocks and Quantum Metrology. Nature Photonics, 5(4): 203-210. https://doi.org/10.1038/nphoton.2011.45
    Kéfélian, F., Lopez, O., Jiang, H. F., et al., 2009. High-Resolution Optical Frequency Dissemination on a Telecommunications Network with Data Traffic. Optics Letters, 34(10): 1573-1575. https://doi.org/10.13039/501100001665
    Li, W. Y., Liu, Y. X., Li, B., et al., 2016. Hydrocarbon Exploration in the South Yellow Sea Based on Airborne Gravity, China. Journal of Earth Science, 27(4): 686-698. https://doi.org/10.1007/s12583-015-0607-y
    Lion, G. I., Panet, I., Wolf, P., et al., 2017. Determination of a High Spatial Resolution Geopotential Model Using Atomic Clock Comparisons. Journal of Geodesy, 91(6): 597-611. https://doi.org/10.13039/501100000781
    Lisdat, C., Grosche, G., Quintin, N., et al., 2016. A Clock Network for Geodesy and Fundamental Science. Nature Communications, 7: 12443. https://doi.org/10.1038/ncomms12443
    Lopez, O., Haboucha, A., Chanteau, B., et al., 2012. Ultra-Stable Long Distance Optical Frequency Distribution Using the Internet Fiber Network. Optics Express, 20(21): 23518. https://doi.org/10.1364/oe.20.023518
    Lopez, O., Kanj, A., Pottie, P. E., et al., 2013. Simultaneous Remote Transfer of Accurate Timing and Optical Frequency over a Public Fiber Network. Applied Physics B, 110(1): 3-6. https://doi.org/10.1007/s00340-012-5241-0
    Ludlow, A. D., Zelevinsky, T., Campbell, G. K., et al., 2008. Sr Lattice Clock at 1×10-16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock. Science, 319(5871): 1805-1808. https://doi.org/10.1126/science.1153341
    Ma, L. S., Bartels, A., Robertsson, L., et al., 2004. Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level. Science, 303(5665): 1843-1845. https://doi.org/10.1126/science.1095092
    Ma, L. S., Jungner, P., Ye, J., et al., 1994. Delivering the Same Optical Frequency at Two Places: Accurate Cancellation of Phase Noise Introduced by an Optical Fiber or other Time-Varying Path. Optics Letters, 19(21): 1777-1779. https://doi.org/10.1364/ol.19.001777
    Madej, A. A., Dubé, P., Zhou, Z. C., et al., 2012. 88Sr+ 445-THz Single-Ion Reference at the 10-17 Level via Control and Cancellation of Systematic Uncertainties and Its Measurement against the SI Second. Physical Review Letters, 109(20): 203002. https://doi.org/10.1103/physrevlett.109.203002
    Mai, E., 2013. Time, Atomic Clocks, and Relativistic Geodesy. Deutsche Geodätische Kommission, Reihe A, Theoretische Geodäsie, Heft Nr. 124, Verlag der Bayerischen Akademie der Wissenschaften, München
    Marra, G., Slavík, R., Margolis, H. S., et al., 2011. High-Resolution Microwave Frequency Transfer over an 86-km-Long Optical Fiber Network Using a Mode-Locked Laser. Optics Letters, 36(4): 511. https://doi.org/10.13039/501100000821
    Müller, H., Peters, A., Chu, S., 2010. A Precision Measurement of the Gravitational Redshift by the Interference of Matter Waves. Nature, 463(7283): 926-929. https://doi.org/10.1038/nature08776
    Newbury, N. R., Swann, W. C., Coddington, I., et al., 2007a. Fiber Laser- Based Frequency Combs with High Relative Frequency Stability. Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International. 980-983. https://doi.org/ 10.1109/FREQ.2007.4319226
    Newbury, N. R., Williams, P. A., Swann, W. C., 2007b. Coherent Transfer of an Optical Carrier over 251 km. Optics Letters, 32(21): 3056-3058. https://doi.org/10.1364/ol.32.003056
    Pound, R. V., Rebka, G. A. Jr., 1959. Gravitational Red-Shift in Nuclear Resonance. Physical Review Letters, 3(9): 439-441. https://doi.org/10.1103/physrevlett.3.439
    Pound, R. V., Rebka, G. A. Jr., 1960a. Attempts to Detect Resonance Scattering InZn67; The Effect of Zero-Point Vibrations. Physical Review Letters, 4(8): 397-399. https://doi.org/10.1103/physrevlett.4.397
    Pound, R. V., Rebka, G. A. Jr., 1960b. Variation with Temperature of the Energy of Recoil-Free Gamma Rays from Solids. Physical Review Letters, 4(6): 274-275. https://doi.org/10.1103/physrevlett.4.274
    Pound, R. V., Snider, J. L., 1965. Effect of Gravity on Gamma Radiation. Physical Review, 140(3B): B788-B803. https://doi.org/10.1103/physrev.140.b788
    Predehl, K., Grosche, G., Raupach, S. M. F., et al., 2012. A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place. Science, 336(6080): 441-444. https://doi.org/10.1126/science.1218442
    Primas, L. E., Lutes, G. F., Sydnor, R. L., 1988. Fiber Optic Frequency Transfer Link. Proceedings of 42nd Annual Symposium on Frequency Control, June 1-3, 1988, Baltimore, MD. 478-484
    Raupach, S. M. F., Grosche, G., 2013. Chirped Frequency Transfer with an Accuracy of 10-18 and Its Application to the Remote Synchronization of Timescales. arXiv: 1308.6725v2 [physics.optics] (2013-9-30)
    Raupach, S. M. F., Koczwara, A., Grosche, G., 2014. Optical Frequency Transfer via a 660 km Underground Fiber Link Using a Remote Brillouin Amplifier. Optics Express, 22(22): 26537-26547. https://doi.org/10.1364/oe.22.026537
    Rosenband, T., Hume, D. B., Schmidt, P. O., et al., 2008. Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks, Metrology at the 17th Decimal Place. Science, 319(5871): 1808-1812. https://doi.org/10.1126/science.1154622
    Shen, W.-B., 1998. Relativistic Physical Geodesy: [Dissertation]. Graz Technical University, Graz
    Shen, W.-B., 2013a. Orthometric Height Determination Based upon Optical Clocks and Fiber Frequency Transfer Technique. 2013 Saudi International Electronics, Communications and Photonics Conference (SIECPC), April 27-30, 2013, Riyadh, Saudi Arabia. https://doi.org/ 10.1109/SIECPC.2013.6550987
    Shen, W.-B., 2013b. Orthometric Height Determination Using Optical Clocks. EGU General Assembly Conference Abstracts, 15: 5214 http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0213491052/
    Shen, W.-B., Chao, D., Jin, B., 1993. On Relativistic Geoid. Bollettino di Geodesia e Scienze Affini, 52(3): 207-216 http://cn.bing.com/academic/profile?id=bcfca793b03c39df5683c0703303a92c&encoded=0&v=paper_preview&mkt=zh-cn
    Shen, W.-B., Ning, J. S., Chao, D. B., et al., 2009. A Proposal on the Test of General Relativity by Clock Transportation Experiments. Advances in Space Research, 43(1): 164-166. https://doi.org/10.1016/j.asr.2008.04.001
    Shen, W.-B., Ning, J. S., Liu, J. N., et al., 2011. Determination of the Geopotential and Orthometric Height Based on Frequency Shift Equation. Natural Science, 3(5): 388-396. https://doi.org/10.4236/ns.2011.35052
    Shen, W.-B., Peng, Z., 2012. Gravity Potential Determination Using Remote Optical Fiber. International Symposium on Gravity, Geoid and Height Systems GGHS 2012. Dec. 3, 2012, Venice, Italy
    Shen, Z. Y., Shen, W.-B., Zhang, S. X., 2016. Formulation of Geopotential Difference Determination Using Optical-Atomic Clocks Onboard Satellites and on Ground Based on Doppler Cancellation System. Geophysical Journal International, 206(2): 1162-1168. https://doi.org/10.1093/gji/ggw198
    Shen, Z. Y., Shen, W.-B., Zhang, S. X., 2017. Determination of Gravitational Potential at Ground Using Optical-Atomic Clocks on Board Satellites and on Ground Stations and Relevant Simulation Experiments. Surveys in Geophysics, 38(4): 757-780. https://doi.org/10.1007/s10712-017-9414-6
    Snider, J. L., 1972. New Measurement of the Solar Gravitational Red Shift. Physical Review Letters, 28(13): 853-856. https://doi.org/10.1103/physrevlett.28.853
    Soffel, M., Herold, H., Ruder, H., et al., 1988a. Relativistic Geodesy: The Concept of Asymptotically Fixed Reference Frames. Manuscr. Geod., 13(3): 139-142 http://cn.bing.com/academic/profile?id=9f8f967bbd064688f04fbffad02583ad&encoded=0&v=paper_preview&mkt=zh-cn
    Soffel, M., Herold, H., Ruder, H., et al., 1988b. Relativistic Theory of Gravimetric Measurements and Definition of the Geoid. Manuscr. Geod., 13: 143-146 https://www.researchgate.net/publication/252669988_Relativistic_theory_of_gravimetric_measurements_and_definition_of_thegeoid
    Takano, T., Takamoto, M., Ushijima, I., et al., 2016. Geopotential Measurements with Synchronously Linked Optical Lattice Clocks. Nature Photonics, 10(10): 662-666. https://doi.org/10.1038/nphoton.2016.159
    Tenzer, R., Bagherbandi, M., 2016. Theoretical Deficiencies of Isostatic Schemes in Modeling the Crustal Thickness along the Convergent Continental Tectonic Plate Boundaries. Journal of Earth Science, 27(6): 1045-1053. https://doi.org/10.1007/s12583-015-0608-x
    Turneaure, J. P., Will, C. M., Farrell, B. F., et al., 1983. Test of the Principle of Equivalence by a Null Gravitational Red-Shift Experiment. Physical Review D, 27(8): 1705-1714. https://doi.org/10.1103/physrevd.27.1705
    Ushijima, I., Takamoto, M., Das, M., et al., 2015. Cryogenic Optical Lattice Clocks. Nature Photonics, 9(3): 185-189. https://doi.org/10.1038/nphoton.2015.5
    Vessot, R. F. C., Levine, M. W., 1979. A Test of the Equivalence Principle Using a Space-Borne Clock. General Relativity and Gravitation, 10(3): 181-204. https://doi.org/10.1007/bf00759854
    Vessot, R. F. C., Levine, M. W., Mattison, E. M., et al., 1980. Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser. Physical Review Letters, 45(26): 2081-2084. https://doi.org/10.1103/physrevlett.45.2081
    Wada, M., Watabe, K.-I., Okubo, S., et al., 2015. A Precise Frequency Comparison System Using an Optical Carrier. Electronics and Communications in Japan, 98: 19-27 doi: 10.1002/ecj.2015.98.issue-11
    Weinberg, S., 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York
    Ye, J., Peng, J.-L., Jones, R. J., et al., 2003. Delivery of High-Stability Optical and Microwave Frequency Standards over an Optical Fiber Network. Journal of the Optical Society of America B, 20(7): 1459. https://doi.org/10.1364/josab.20.001459
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views(314) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return