Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 4
Aug 2019
Turn off MathJax
Article Contents
Junqian Li, Pengfei Zhang, Shuangfang Lu, Chen Chen, Haitao Xue, Siyuan Wang, Wenbiao Li. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 2019, 30(4): 823-833. doi: 10.1007/s12583-018-0835-z
Citation: Junqian Li, Pengfei Zhang, Shuangfang Lu, Chen Chen, Haitao Xue, Siyuan Wang, Wenbiao Li. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 2019, 30(4): 823-833. doi: 10.1007/s12583-018-0835-z

Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods

doi: 10.1007/s12583-018-0835-z
Funds:

the Research Project Funded by the SI-NOPEC Corp. P17027-3

the Fundamental Research Funds for the Central Universities of China 17CX06036

the National Natural Science Foundation of China 41572122

the Fundamental Research Funds for the Central Universities of China 15CX02086A

the National Natural Science Foundation of China 41672130

the National Natural Science Foundation of China 41602131

the National Natural Science Foundation of China 41330313

the Fundamental Research Funds for the Central Universities of China 17CX02074

More Information
  • Corresponding author: Shuangfang Lu
  • Received Date: 15 Apr 2017
  • Accepted Date: 09 Oct 2017
  • Publish Date: 01 Aug 2019
  • Due to heterogeneous pore distributions within shales, petrophysical properties of shales determined by scanning electron microscopy (SEM) and X-ray computed tomography (CT) methods strongly depend on the observed domain size (analysis scale). In this paper, the influence of the analysis scale on areal and bulk porosities and pore size distribution (PSD) for lacustrine shales from the Dongying sag of Bohai Bay Basin, China were investigated using broad ion beam (BIB)-SEM and X-ray CT methods. The BIB-SEM cross-sections with high imaging resolution (10 nm/pixel) and a large field of view (>1 mm2) mainly describe the 2D nanoscale pore system in the two shales (samples F41#-2 and Y556#-1), while CT-based 3D reconstructions with resolutions of 0.42 (F41#-1) and 0.5 μm/pixel (H172#-1) reflect the 3D sub-micron pore system. The results indicate that the areal (bulk) porosity exhibits a multiple power-law distribution with increasing analysis area (volume), which can be used to extrapolate the porosity of a given area (volume). Based on SEM and CT investigations, the sizes of the minimum representative elementary areas (REAs) and volumes (REVs) were determined respectively, which are closely associated with the heterogeneousness of the pore system. Minimum REAs are proposed to be 2.93×104 (F41#-2) and 0.91×104 μm2 (Y556#-1), and minimum REVs are 0.016 (F41#-1) and 0.027 mm3 (H172#-1). As the analyzed areas (volumes) are larger than the minimum REA (REV), obtained 2D (3D) PSDs are comparable to each other and can be considered to reflect the shale PSD. These results provide insights into the porosity and PSD characterization of shales by SEM and X-ray CT methods.

     

  • loading
  • Boruah, A., Ganapathi, S., 2015. Microstructure and Pore System Analysis of Barren Measures Shale of Raniganj Field, India. Journal of Natural Gas Science and Engineering, 26: 427-437. https://doi.org/10.1016/j.jngse.2015.05.042
    Cai, J. C., Yu, B. M., Zou, M. Q., et al., 2010. Fractal Characterization of Spontaneous Co-Current Imbibition in Porous Media. Energy & Fuels, 24(3): 1860-1867. https://doi.org/10.1021/ef901413p
    Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129(4): 173-181. https://doi.org/10.1016/j.fuel.2014.03.058
    Chen, L., Jiang, Z. X., Liu, K. Y., et al., 2017. Quantitative Characterization of Micropore Structure for Organic-Rich Lower Silurian Shale in the Upper Yangtze Platform, South China: Implications for Shale Gas Adsorption Capacity. Advances in Geo-Energy Research, 1(2): 111-121. https://doi.org/10.26804/ager.2017.02.07
    Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., et al., 2012a. Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging. AAPG Bulletin, 96(4): 665-677. https://doi.org/10.1306/08151110188
    Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012b. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103(23): 26-31. https://doi.org/10.1016/j.coal.2012.08.004
    Guo, X. J., Shen, Y. H., He, S. L., 2015. Quantitative Pore Characterization and the Relationship between Pore Distributions and Organic Matter in Shale Based on Nano-CT Image Analysis: A Case Study for a Lacustrine Shale Reservoir in the Triassic Chang 7 Member, Ordos Basin, China. Journal of Natural Gas Science and Engineering, 27(Suppl.): 1630-1640. https://doi.org/10.1016/j.jngse.2015.10.033
    Hao, Y., Chen, F., Zhu, J., et al., 2014. Reservoir Space of the Es33-Es14 Shale in Dongying Sag. International Journal of Mining Science and Technology, 24(4): 425-431. https://doi.org/10.3969/j.issn.2095-2686.2014.04.002
    Hinai, A. A., Rezaee, R., Esteban, L., et al., 2014. Comparisons of Pore Size Distribution: A Case from the Western Australian Gas Shale Formations. Journal of Unconventional Oil and Gas Resources, 8: 1-13. https://doi.org/10.1016/j.juogr.2014.06.002
    Houben, M. E., 2013. In situ Characterization of the Microstructure and Porosity of Opalinus Clay (Mont Terri Rock Laboratory, Switzerland). Publikationsserver der RWTH Aachen University, Aachen, Germany
    Houben, M. E., Barnhoorn, A., Lie-A-Fat, J., et al., 2016. Microstructural Characteristics of the Whitby Mudstone Formation (UK). Marine and Petroleum Geology, 70: 185-200. https://doi.org/10.1016/j.marpetgeo.2015.11.011
    Huang, C. Y., Zhang, J. C., Wang, H., et al., 2015. Lacustrine Shale Deposition and Variable Tectonic Accommodation in the Rift Basins of the Bohai Bay Basin in Eastern China. Journal of Earth Science, 26(5): 700-711. https://doi.org/10.1007/s12583-015-0602-3
    Josh, M., Esteban, L., Delle Piane, C., et al., 2012. Laboratory Characterisation of Shale Properties. Journal of Petroleum Science and Engineering, 88/89(2): 107-124. https://doi.org/10.1016/j.petrol.2012.01.023
    Kelly, S., El-Sobky, H., Torres-Verdín, C., et al., 2015. Assessing the Utility of FIB-SEM Images for Shale Digital Rock Physics. Advances in Water Resources, 95: 302-316. https://doi.org/10.1016/j.advwatres.2015.06.010
    Klaver, J., Desbois, G., Littke, R., et al., 2015. BIB-SEM Characterization of Pore Space Morphology and Distribution in Postmature to Overmature Samples from the Haynesville and Bossier Shales. Marine and Petroleum Geology, 59: 451-466. https://doi.org/10.1016/j.marpetgeo.2014.09.020
    Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB-SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158: 78-89. https://doi.org/10.1016/j.coal.2016.03.003
    Klaver, J., Desbois, G., Urai, J. L., et al., 2012. BIB-SEM Study of the Pore Space Morphology in Early Mature Posidonia Shale from the Hils Area, Germany. International Journal of Coal Geology, 103(23): 12-25. https://doi.org/10.1016/j.coal.2012.06.012
    Labani, M. M., Rezaee, R., Saeedi, A., et al., 2013. Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study from the Perth and Canning Basins, Western Australia. Journal of Petroleum Science and Engineering, 112(3): 7-16. https://doi.org/10.1016/j.petrol.2013.11.022
    Lee, S., Fischer, T. B., Stokes, M. R., et al., 2014. Dehydration Effect on the Pore Size, Porosity, and Fractal Parameters of Shale Rocks: Ultrasmall-Angle X-Ray Scattering Study. Energy & Fuels, 28(11): 6772-6779. https://doi.org/10.1021/ef501427d
    Lemmens, H. J., Butcher, R., Botha, P. W. S. K., 2011. FIB/SEM and SEM/EDX: A New Dawn for the SEM in the Core Lab? Petrophysics, 52(6): 452-456
    Li, J. Q., Lu, S. F., Xue, H. T., et al., 2015. Quantitative Evaluation on the Elastic Property of Oil-Bearing Mudstone/Shale from a Chinese Continental Basin. Energy Exploration & Exploitation, 33(6): 851-868. https://doi.org/10.1260/0144-5987.33.6.851
    Li, J. Q., Zhang, P. F., Lu, S. F., et al., 2017. Microstructural Characterization of the Clay-Rich Oil Shales by Nuclear Magnetic Resonance (NMR). Journal of Nanoscience and Nanotechnology, 17(9): 7026-7034. https://doi.org/10.1166/jnn.2017.14440
    Löhr, S. C., Baruch, E. T., Hall, P. A., et al., 2015. Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter?. Organic Geochemistry, 87(3): 119-132. https://doi.org/10.1016/j.orggeochem.2015.07.010
    Loucks, R. G., Reed, R. M., 2014. Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic Matter Pores Associated with Depositional Organic Matter versus Migrated Organic Matter in Mudrocks. Gulf Coast Association of Geological Societies Journal, 3: 51-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214853297
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
    Mayo, S., Josh, M., Nesterets, Y., et al., 2015. Quantitative Micro-Porosity Characterization Using Synchrotron Micro-CT and Xenon K-Edge Subtraction in Sandstones, Carbonates, Shales and Coal. Fuel, 154: 167-173. https://doi.org/10.1016/j.fuel.2015.03.046
    Metwally, Y. M., Chesnokov, E. M., 2012. Clay Mineral Transformation as a Major Source for Authigenic Quartz in Thermo-Mature Gas Shale. Applied Clay Science, 55: 138-150. https://doi.org/10.1016/j.clay.2011.11.007
    Münch, B., Holzer, L., 2008. Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion. Journal of the American Ceramic Society, 91(12): 4059-4067. https://doi.org/10.1111/j.1551-2916.2008.02736.x
    Peng, S., Hu, Q. H., Dultz, S., et al., 2012. Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Journal of Hydrology, 472/473: 254-261. https://doi.org/10.1016/j.jhydrol.2012.09.034
    Sun, M. D., Yu, B. S., Hu, Q. H., et al., 2016. Nanoscale Pore Characteristics of the Lower Cambrian Niutitang Formation Shale: A Case Study from Well Yuke #1 in the Southeast of Chongqing, China. International Journal of Coal Geology, 154/155: 16-29. https://doi.org/10.1016/j.coal.2015.11.015
    Tahmasebi, P., Javadpour, F., Sahimi, M., et al., 2016. Multiscale Study for Stochastic Characterization of Shale Samples. Advances in Water Resources, 89: 91-103. https://doi.org/10.1016/j.advwatres.2016.01.008
    Tang, X. L., Jiang, Z. X., Li, Z., et al., 2015. The Effect of the Variation in Material Composition on the Heterogeneous Pore Structure of High-Maturity Shale of the Silurian Longmaxi Formation in the Southeastern Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 23: 464-473 doi: 10.1016/j.jngse.2015.02.031
    Tian, H., Pan, L., Xiao, X. M., et al., 2013. A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods. Marine and Petroleum Geology, 48: 8-19. https://doi.org/10.1016/j.marpetgeo.2013.07.008
    Tiwari, P., Deo, M., Lin, C. L., et al., 2013. Characterization of Oil Shale Pore Structure before and after Pyrolysis by Using X-Ray Micro CT. Fuel, 107(9): 547-554. https://doi.org/10.1016/j.fuel.2013.01.006
    Wang, G. C., Ju, Y. W., 2015. Organic Shale Micropore and Mesopore Structure Characterization by Ultra-Low Pressure N2 Physisorption: Experimental Procedure and Interpretation Model. Journal of Natural Gas Science and Engineering, 27: 452-465. https://doi.org/10.1016/j.jngse.2015.08.003
    Wang, Y., Zhu, Y. M., Chen, S., et al., 2014. Characteristics of the Nanoscale Pore Structure in Northwestern Hunan Shale Gas Reservoirs Using Field Emission Scanning Electron Microscopy, High-Pressure Mercury Intrusion, and Gas Adsorption. Energy & Fuels, 28(2): 945-955. https://doi.org/10.1021/ef402159e
    Washburn, E. W., 1921. The Dynamics of Capillary Flow. Physical Review, 17(3): 273-283. https://doi.org/10.1103/physrev.17.273
    Wu, S. T., Zhu, R. K., Cui, J. G., et al., 2015. Characteristics of Lacustrine Shale Porosity Evolution, Triassic Chang 7 Member, Ordos Basin, NW China. Petroleum Exploration and Development, 42(2): 185-195. https://doi.org/10.1016/s1876-3804(15)30005-7
    Yao, Y. B., Liu, D. M., 2012. Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals. Fuel, 95: 152-158. https://doi.org/10.1016/j.fuel.2011.12.039
    Yao, Y. B., Liu, D. M., Cai, Y. D., et al., 2010. Advanced Characterization of Pores and Fractures in Coals by Nuclear Magnetic Resonance and X-Ray Computed Tomography. Science China Earth Sciences, 53(6): 854-862. https://doi.org/10.1007/s11430-010-0057-4
    Yao, Y. B., Liu, D. M., Che, Y., et al., 2009. Non-Destructive Characterization of Coal Samples from China Using Microfocus X-Ray Computed Tomography. International Journal of Coal Geology, 80(2): 113-123. https://doi.org/10.1016/j.coal.2009.08.001
    Zhang, L. Y., Bao, Y. S., Li, J. Y., et al., 2014. Movability of Lacustrine Shale Oil: A Case Study of Dongying Sag, Jiyang Depression, Bohai Bay Basin. Petroleum Exploration and Development, 41(6): 703-711. https://doi.org/10.1016/S1876-3804(14)60084-7
    Zhang, L. Y., Liu, Q., Zhu, R. F., et al., 2009. Source Rocks in Mesozoic-Cenozoic Continental Rift Basins, East China: A Case from Dongying Depression, Bohai Bay Basin. Organic Geochemistry, 40(2): 229-242. https://doi.org/10.1016/j.orggeochem.2008.10.013
    Zhang, N., He, M. C., Zhang, B., et al., 2016. Pore Structure Characteristics and Permeability of Deep Sedimentary Rocks Determined by Mercury Intrusion Porosimetry. Journal of Earth Science, 27(4): 670-676. https://doi.org/10.1007/s12583-016-0662-z
    Zhang, P. F., Lu, S. F., Li, J. Q., et al., 2017. Characterization of Shale Pore System: A Case Study of Paleogene Xin'gouzui Formation in the Jianghan Basin, China. Marine and Petroleum Geology, 79: 321-334. https://doi.org/10.1016/j.marpetgeo.2016.10.014
    Zhang, P. F., Lu, S. F., Li, J. Q., et al., 2018. Permeability Evaluation on Oil-Window Shale Based on Hydraulic Flow Unit: A New Approach. Advances in Geo-Energy Research, 2(1): 1-13. https://doi.org/10.26804/ager.2018.01.01
    Zhou, S. W., Yan, G., Xue, H. Q., et al., 2016. 2D and 3D Nanopore Characterization of Gas Shale in Longmaxi Formation Based on FIB-SEM. Marine and Petroleum Geology, 73: 174-180. https://doi.org/10.1016/j.marpetgeo.2016.02.033
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(360) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return