Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Shengxuan Huang, Shan Qin, Xiang Wu. Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth's Lowermost Mantle. Journal of Earth Science, 2019, 30(6): 1293-1301. doi: 10.1007/s12583-018-0836-y
Citation: Shengxuan Huang, Shan Qin, Xiang Wu. Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth's Lowermost Mantle. Journal of Earth Science, 2019, 30(6): 1293-1301. doi: 10.1007/s12583-018-0836-y

Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth's Lowermost Mantle

doi: 10.1007/s12583-018-0836-y
Funds:  Xiang Wu and Shan Qin acknowledge financial support from the National Natural Science Foundation of China (Nos. 41473056 and 41472037)
More Information
  • Corresponding author: Xiang Wu
  • Received Date: 10 Dec 2017
  • Accepted Date: 20 Apr 2018
  • Publish Date: 01 Dec 2019
  • The pyrite-type FeO2H-FeO2 system has been experimentally confirmed to be stable in Earth's lowermost mantle but there is limited information about its physical properties at high pressures constraining our understanding of its potential geophysical implications for the deep Earth. Here,static calculations demonstrate that the pyrite-type FeO2H-FeO2 system has a high density and Poisson's ratio and ultra-low seismic velocities at conditions of Earth's lowermost mantle. It provides a plausible mechanism for the origin of ultra-low velocity zones at Earth's D″ layer. The incorporation of hydrogen in the pyrite-type FeO2H-FeO2 system tends to decrease the S wave velocity (VS) but increase the bulk sound velocity (VΦ),and can potentially explain the observed anti-correlation of VS and VΦ in the lowermost mantle. Additionally,FeO2H exhibits nearly isotropic whereas FeO2 is highly anisotropic,which may help understand some seismic anisotropies at the core-mantle boundary.

     

  • loading
  • Andrault, D., Pesce, G., Bouhifd, M. A., et al., 2014. Melting of Subducted Basalt at the Core-Mantle Boundary. Science, 344(6186): 892–895. https://doi.org/10.1126/science.1250466
    Bindi, L., Nishi, M., Tsuchiya, J., et al., 2014. Crystal Chemistry of Dense Hydrous Magnesium Silicates: The Structure of Phase H, MgSiH2O4, Synthesized at 45 GPa and 1 000 ℃. American Mineralogist, 99(8/9): 1802–1805. https://doi.org/10.2138/am.2014.4994
    Birch, F., 1947. Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11): 809–824. https://doi.org/10.1103/physrev.71.809
    Birch, F., 1952. Elasticity and Constitution of the Earth's Interior. Journal of Geophysical Research, 57(2): 227–286. https://doi.org/10.1029/jz057i002p00227
    Blöchl, P. E., 1994. Projector Augmented-Wave Method. Physical Review B, 50(24): 17953–17979. https://doi.org/10.1103/physrevb.50.17953
    Born, M., Huang, K., 1954. Dynamical Theory of Crystal Lattices. Oxford University Press, Oxford
    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., et al., 1998. Electron-Energy- Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Physical Review B, 57(3): 1505–1509. https://doi.org/10.1103/physrevb.57.1505
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
    Garnero, E. J., 2000. Heterogeneity of the Lowermost Mantle. Annual Review of Earth and Planetary Sciences, 28(1): 509–537. https://doi.org/10.1146/annurev.earth.28.1.509
    Garnero, E. J., Helmberger, D. V., 1996. Seismic Detection of a Thin Laterally Varying Boundary Layer at the Base of the Mantle beneath the Central-Pacific. Geophysical Research Letters, 23(9): 977–980. https://doi.org/10.1029/95gl03603
    Garnero, E. J., McNamara, A. K., Shim, S. H., 2016. Continent-Sized Anomalous Zones with Low Seismic Velocity at the Base of Earthʼs Mantle. Nature Geoscience, 9(7): 481–489. https://doi.org/10.1038/ngeo2733
    Gleason, A. E., Quiroga, C. E., Suzuki, A., et al., 2013. Symmetrization Driven Spin Transition in ε-FeOOH at High Pressure. Earth and Planetary Science Letters, 379: 49–55. https://doi.org/10.1016/j.epsl.2013.08.012
    Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower-Mantle Conditions and Earth's Oxygen-Hydrogen Cycles. Nature, 534(7606): 241–244. https://doi.org/10.1038/nature18018
    Hu, Q. Y., Kim, D. Y., Liu, J., et al., 2017. Dehydrogenation of Goethite in Earth's Deep Lower Mantle. Proceedings of the National Academy of Sciences, 114(7): 1498–1501. https://doi.org/10.1073/pnas.1620644114
    Hill, R., 1952. The Elastic Behavior of a Crystalline Aggregate. Proceedings of the Physical Society of London Section A, 65(389): 349–355. https://doi.org/10.1088/0370-1298/65/5/307
    Iitaka, T., Hirose, K., Kawamura, K., et al., 2004. The Elasticity of the MgSiO3 Post-Perovskite Phase in the Earthʼs Lowermost Mantle. Nature, 430(6998): 442–445. https://doi.org/10.1038/nature02702
    Jang, B. G., Kim, D. Y., Shim, J. H., 2017. Metal-Insulator Transition and the Role of Electron Correlation in FeO2. Physical Review B, 95(7): 075144. https://doi.org/10.1103/physrevb.95.075144
    Karki, B. B., Stixrude, L., Wentzcovitch, R. M., 2001. High-Pressure Elastic Properties of Major Materials of Earthʼs Mantle from First Principles. Reviews of Geophysics, 39(4): 507–534. https://doi.org/10.1029/2000rg000088
    Kresse, G., Furthmüller, J., 1996. Efficient Iterative Schemes for ab initio Total- Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54(16): 11169–11186. https://doi.org/10.1103/physrevb.54.11169
    Kresse, G., Joubert, D., 1999. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 59(3): 1758–1775. https://doi.org/10.1103/physrevb.59.1758
    Lay, T., Williams, Q., Garnero, E. J., 1998. The Core-Mantle Boundary Layer and Deep Earth Dynamics. Nature, 392(6675): 461–468. https://doi.org/10.1038/33083
    Li, X. Y., Mao, Z., Sun, N., et al., 2016. Elasticity of Single-Crystal Superhydrous Phase B at Simultaneous High Pressure-Temperature Conditions. Geophysical Research Letters, 43(16): 8458–8465. https://doi.org/10.1002/2016gl070027
    Li, M. M., McNamara, A. K., Garnero, E. J., et al., 2017. Compositionally-Distinct Ultra-Low Velocity Zones on Earth's Core-Mantle Boundary. Nature Communications, 8(1): 177. https://doi.org/10.1038/s41467-017-00219-x
    Liu, J., Hu, Q. Y., Kim, D. Y., et al., 2017. Hydrogen-Bearing Iron Peroxide and the Origin of Ultralow-Velocity Zones. Nature, 551(7681): 494–497. https://doi.org/10.1038/nature24461
    Mainprice, D., 1990. A FORTRAN Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals. Computers & Geosciences, 16(3): 385–393. https://doi.org/10.1016/0098-3004(90)90072-2
    Mainprice, D., Barruol, G., Ismail, W. B., 2000. The Seismic Anisotropy of the Earth's Mantle: From Single Crystal to Polycrystal. In: Karato, S. I., Forte, A., Liebermann, R., et al., eds., Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. American Geophysical Union, Washington DC. 237–264
    Mao, W. L., Mao, H. K., Sturhahn, W., et al., 2006. Iron-Rich Post- Perovskite and the Origin of Ultralow-Velocity Zones. Science, 312(5773): 564–565. https://doi.org/10.1126/science.1123442
    Mao, H. K., Hu, Q. Y., Yang, L. X., et al., 2017. When Water Meets Iron at Earthʼs Core-Mantle Boundary. National Science Review, 4(6): 870–878. https://doi.org/10.1093/nsr/nwx109
    Mashino, I., Murakami, M., Ohtani, E., et al., 2016. Sound Velocities of δ-AlOOH up to Core-Mantle Boundary Pressures with Implications for the Seismic Anomalies in the Deep Mantle. Journal of Geophysical Research: Solid Earth, 121(2): 595–609. https://doi.org/10.1002/2015jb012477
    Masters, G., Laske, G., Bolton, H., et al., 2000. The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure. In: Karato, S. I., Forte, A., Liebermann, R., et al., eds., Earthʼs Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. American Geophysical Union, Washington DC. 63–87
    McNamara, A. K., Garnero, E. J., Rost, S., 2010. Tracking Deep Mantle Reservoirs with Ultra-Low Velocity Zones. Earth and Planetary Science Letters, 299(1/2): 1–9. https://doi.org/10.1016/j.epsl.2010.07.042
    Murnaghan, F. D., 1944. The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences of the United States of America, 30(9): 244–247. https://doi.org/10.1073/pnas.30.9.244
    Nakagawa, T., 2017. On the Numerical Modeling of the Deep Mantle Water Cycle in Global-Scale Mantle Dynamics: The Effects of the Water Solubility Limit of Lower Mantle Minerals. Journal of Earth Science, 28(4): 563–577. https://doi.org/10.1007/s12583-017-0755-3
    Nishi, M., Irifune, T., Tsuchiya, J., et al., 2014. Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 7(3): 224–227. https://doi.org/10.1038/ngeo2074
    Nishi, M., Kuwayama, Y., Tsuchiya, J., et al., 2017. The Pyrite-Type High-Pressure Form of FeOOH. Nature, 547(7662): 205–208. https://doi.org/10.1038/nature22823
    Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post-Perovskite Phase of MgSiO3 in Earthʼs D″ Layer. Nature, 430(6998): 445–448. https://doi.org/10.1038/nature02701
    Ohira, I., Ohtani, E., Sakai, T., et al., 2014. Stability of a Hydrous δ-Phase, AlOOH-MgSiO2(OH)2, and a Mechanism for Water Transport into the Base of Lower Mantle. Earth and Planetary Science Letters, 401: 12–17. https://doi.org/10.1016/j.epsl.2014.05.059
    Ohtani, E., 2015. Hydrous Minerals and the Storage of Water in the Deep Mantle. Chemical Geology, 418: 6–15. https://doi.org/10.13039/501100003443
    Ohtani, E., Toma, M., Kubo, T., et al., 2003. In situ X-Ray Observation of Decomposition of Superhydrous Phase B at High Pressure and Temperature. Geophysical Research Letters, 30(2): 1029. https://doi.org/10.1029/2002gl015549
    Ohtani, E., Amaike, Y., Kamada, S., et al., 2014. Stability of Hydrous Phase H MgSiO4H2 under Lower Mantle Conditions. Geophysical Research Letters, 41(23): 8283–8287. https://doi.org/10.1002/2014gl061690
    Pamato, M. G., Myhill, R., Boffa Ballaran, T., et al., 2015. Lower-Mantle Water Reservoir Implied by the Extreme Stability of a Hydrous Aluminosilicate. Nature Geoscience, 8(1): 75–79. https://doi.org/10.1038/ngeo2306
    Panero, W. R., Caracas, R., 2017. Stability of Phase H in the MgSiO4H2-AlOOH-SiO2 System. Earth and Planetary Science Letters, 463: 171–177. https://doi.org/10.1016/j.epsl.2017.01.033
    Perdew, J. P., Burke, K., Ernzerhof, M., 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18): 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
    Stacey, F. D., Loper, D. E., 1983. The Thermal Boundary-Layer Interpretation of D″ and Its Role as a Plume Source. Physics of the Earth and Planetary Interiors, 33(1): 45–55. https://doi.org/10.1016/0031-9201(83)90006-7
    Thompson, E. C., Campbell, A. J., Tsuchiya, J., 2017. Elasticity of ε-FeOOH: Seismic Implications for Earthʼs Lower Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 5038–5047. https://doi.org/10.1002/2017JB014168
    Trønnes, R. G., 2010. Structure, Mineralogy and Dynamics of the Lowermost Mantle. Mineralogy and Petrology, 99(3/4): 243–261. https://doi.org/10.1007/s00710-009-0068-z
    Tsuchiya, J., 2013. First Principles Prediction of a New High-Pressure Phase of Dense Hydrous Magnesium Silicates in the Lower Mantle. Geophysical Research Letters, 40(17): 4570–4573. https://doi.org/10.1002/grl.50875
    Tsuchiya, J., Mookherjee, M., 2015. Crystal Structure, Equation of State and Elasticity of Phase H (MgSiO4H2) at Earth's Lower Mantle Pressures. Scientific Reports, 5(1): 15534. https://doi.org/10.1038/srep15534
    Tsuchiya, J., Tsuchiya, T., 2009. Elastic Properties of δ-AlOOH under Pressure: First Principles Investigation. Physics of the Earth and Planetary Interiors, 174(1/2/3/4): 122–127. https://doi.org/10.1016/j.pepi.2009.01.008
    Walter, M. J., Thomson, A. R., Wang, W., et al., 2015. The Stability of Hydrous Silicates in Earthʼs Lower Mantle: Experimental Constraints from the Systems MgO-SiO2-H2O and MgO-Al2O3-SiO2-H2O. Chemical Geology, 418: 16–29. https://doi.org/10.1016/j.chemgeo.2015.05.001
    Wicks, J. K., Jackson, J. M., Sturhahn, W., 2010. Very Low Sound Velocities in Iron-Rich (Mg, Fe)O: Implications for the Core-Mantle Boundary Region. Geophysical Research Letters, 37(15): L15304. https://doi.org/10.1029/2010gl043689
    Wicks, J. K., Jackson, J. M., Sturhahn, W., et al., 2017. Sound Velocity and Density of Magnesiowüstites: Implications for Ultralow-Velocity Zone Topography. Geophysical Research Letters, 44(5): 2148–2158. https://doi.org/10.1002/2016gl071225
    Williams, Q., Garnero, E. J., 1996. Seismic Evidence for Partial Melt at the Base of Earthʼs Mantle. Science, 273(5281): 1528–1530. https://doi.org/10.1126/science.273.5281.1528
    Williams, Q., Revenaugh, J., Garnero, E., 1998. A Correlation between Ultra-Low Basal Velocities in the Mantle and Hot Spots. Science, 281(5376): 546–549. https://doi.org/10.1126/science.281.5376.546
    Wu, X., Wu, Y., Lin, J. F., 2016. Two-Stage Spin Transition of Iron in FeAl-Bearing Phase D at Lower Mantle. Journal of Geophysical Research: Solid Earth, 121(9): 6411–6420. https://doi.org/10.1002/2016JB013209
    Wu, X., Lin, J. F., Kaercher, P., et al., 2017. Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post-Perovskite. Nature Communications, 8: 14669. https://doi.org/10.1038/ncomms14669
    Yang, D. P., Wang, W. Z., Wu, Z., 2017. Elasticity of Superhydrous Phase B at the Mantle Temperatures and Pressures: Implications for 800 km Discontinuity and Water Flow into the Lower Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 5026–5037. https://doi.org/10.1002/2017JB014319
    Zhang, X. L., Niu, Z. W., Tang, M., et al., 2017. First-Principles Thermoelasticity and Stability of Pyrite-Type FeO2 under High Pressure and Temperature. Journal of Alloys and Compounds, 719: 42–46. https://doi.org/10.1016/j.jallcom.2017.05.143
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(748) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return