Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 2
Mar 2018
Turn off MathJax
Article Contents
Zhenghan Li, Dengfei Duan, Shaoyong Jiang, Ying Ma, Hongwei Yuan. In situ Analysis of Major Elements, Trace Elements and Sr Isotopic Compositions of Apatite from the Granite in the Chengchao Skarn-Type Fe Deposit, Edong Ore District: Implications for Petrogenesis and Mineralization. Journal of Earth Science, 2018, 29(2): 295-306. doi: 10.1007/s12583-018-0837-x
Citation: Zhenghan Li, Dengfei Duan, Shaoyong Jiang, Ying Ma, Hongwei Yuan. In situ Analysis of Major Elements, Trace Elements and Sr Isotopic Compositions of Apatite from the Granite in the Chengchao Skarn-Type Fe Deposit, Edong Ore District: Implications for Petrogenesis and Mineralization. Journal of Earth Science, 2018, 29(2): 295-306. doi: 10.1007/s12583-018-0837-x

In situ Analysis of Major Elements, Trace Elements and Sr Isotopic Compositions of Apatite from the Granite in the Chengchao Skarn-Type Fe Deposit, Edong Ore District: Implications for Petrogenesis and Mineralization

doi: 10.1007/s12583-018-0837-x
More Information
  • Corresponding author: Shaoyong Jiang, shyjiang@nju.edu.cn
  • Received Date: 02 Apr 2017
  • Accepted Date: 05 Sep 2017
  • Publish Date: 01 Apr 2018
  • Major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit of Edong ore district of Middle–Lower Yangtze River metallogenic belt were measured using EMPA (electron microprobe), LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) and LA-MC (multicollector)-ICP-MS methods in order to reveal the petrogenetic and metallogenic significance of the skarn-type iron deposits. The results show that the apatite in Chengchao granite is fluorapatite, which displays slight variation in major elements. The REE distribution pattern of the apatite is similar to that of the whole rocks, with strong negative Eu anomaly and low Sr/Y ratio. The concentration of Mn in apatite is low (140 ppm–591 ppm) and the Sr isotopic composition shows a limited variation from 0.706 9 to 0.708 2. The high oxygen fugacity of the Chengchao granite, implied by the low Mn content in apatite, is possibly attributed to contamination of the gypsum from sedimentary rock strata, which has long been thought to be an important factor that controls the Fe mineralization in the Middle–Lower Yangtze River metallogenic belt. This study also proves that the Eu/Eu* value and Sr/Y ratio in apatite can be effectively used to identify the adakitic affinity. The in situ Sr isotope analysis of apatite is in consistent with the bulk rock analysis, which indicates that the apatite Sr isotope can represent the initial Sr isotopic compositions of the magma. The Sr isotope and negative Eu anomaly in apatite imply that the Chengchao granite is likely sourced from crust-mantle mixed materials.

     

  • loading
  • Boudreau, A. E., Kruger, F. J., 1990. Variation in the Composition of Apatite through the Merensky Cyclic Unit in the Western Bushveld Complex. Economic Geology, 85(4): 737-745. https://doi.org/10.2113/gsecongeo.85.4.737
    Boudreau, A. E., McCallum, I. S., 1989. Investigations of the Stillwater Complex: Part Ⅴ. Apatites as Indicators of Evolving Fluid Composition. Contributions to Mineralogy and Petrology, 102(2): 138-153. https://doi.org/10.1007/bf00375336
    Boyce, J. W., Hervig, R. L., 2008. Apatite as a Monitor of Late-Stage Magmatic Processes at Volcán Irazú, Costa Rica. Contributions to Mineralogy and Petrology, 157(2): 135-145. https://doi.org/10.1007/s00410-008-0325-x
    Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteoric Studies. Rare Earth Element Geochemistry, 2(2): 63-114 http://www.scirp.org/journal/PaperInformation.aspx?paperID=45047&
    Cai, B. J., 1980. The Relationship of Gypsum Beds with Endogenic Copper and Iron Ores in the Middle-Lower Yangtze Valley. Geocheimica, (2): 193-199 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX198002008.htm
    Casillas, R., Nagy, G., Pantos, G., et al., 1995. Occurrence of Th, U, Y, Zr, and REE-Bearing Accessory Minerals in Late-Variscan Granitic Rocks from the Sierra de Guadarrama (Spain). European Journal of Mineralogy, 7(4): 989-1006. https://doi.org/10.1127/ejm/7/4/0989
    Chang, Y. F., Liu, X. P., Wu, Y. C., 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Geological Publishing House, Beijing (in Chinese with English Abstract)
    Chen, W., Simonetti, A., 2014. Evidence for the Multi-Stage Petrogenetic History of the Oka Carbonatite Complex (Québec, Canada) as Recorded by Perovskite and Apatite. Minerals, 4(2): 437-476. https://doi.org/10.3390/min4020437
    Chen, W., Simonetti, A., Burns, P. C., 2013. A Combined Geochemical and Geochronological Investigation of Niocalite from the Oka Carbonatite Complex, Canada. The Canadian Mineralogist, 51(5): 785-800. https://doi.org/10.3749/canmin.51.5.785
    Creaser, R. A., Gray, C. M., 1992. Preserved Initial 87Sr/86Sr in Apatite from Altered Felsic Igneous Rocks: A Case Study from the Middle Proterozoic of South Australia. Geochimica et Cosmochimica Acta, 56(7): 2789-2795. https://doi.org/10.1016/0016-7037(92)90359-q
    Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
    Defant, M. J., Xu, J. F., Kepezhinskas, P., et al., 2002. Adakites: Some Variations on a Theme. Acta Petrologica Sinica, 18(2): 129-142 https://www.researchgate.net/publication/298585840_Adakites_Some_variations_on_a_theme
    Duan, D. F., Jiang, S. Y., 2017. In situ Major and Trace Element Analysis of Amphiboles in Quartz Monzodiorite Porphyry from the Tonglvshan Cu-Fe (Au) Deposit, Hubei Province, China: Insights into Magma Evolution and Related Mineralization. Contributions to Mineralogy and Petrology, 172(5): 36. https://doi.org/10.1007/s00410-017-1355-z
    Fan, H. Y., Li, W. D., Wang, W. B., 1995. On the Relationship between the Marine Deposits in the Middle-Lower Yangtze Area. Volcanology & Mineral Resources, (2): 32-41 (in Chinese with English Abstract)
    Harrison, T. M., Watson, E. B., 1984. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1467-1477. https://doi.org/10.1016/0016-7037(84)90403-4
    Hofmann, A. W., 2014. 3.3—Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. Treatise on Geochemistry, 2: 67-101. https://https://doi.org/10.1016/B978-0-08-095975-7.00203-5
    Hughes, J. M., Rakovan, J. F., 2015. Structurally Robust, Chemically Diverse: Apatite and Apatite Supergroup Minerals. Elements, 11(3): 165-170. https://doi.org/10.2113/gselements.11.3.165
    Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1
    Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. https://doi.org/10.1007/s00410-008-0341-x
    Li, W., Xie, G. Q., Yao, L., et al., 2014. Genesis of the Intrusive Rocks in the Chengchao Large Skarn Iron Deposit, Southeastern Hubei Province. Journal of Jilin University (Earth Science Edition), (6): 1827-1855 (in Chinese with English Abstract) https://www.researchgate.net/publication/287245911_Genesis_of_the_intrusive_rocks_in_the_Chengchao_large_skarn_iron_deposit_Southeastern_Hubei_Province
    Li, Y. H., Duan, C., Han, D., et al., 2014. Effect of Sulfate Evaporate Layer for Formation of Porphyry Type Iron Ore Deposits in the Middle-Lower Yangtze River Area. Acta Petrologica Sinica, 30(5): 1355-1368 (in Chinese with English Abstract) https://www.researchgate.net/publication/279692743_Effect_of_sulfate_evaporate_salt_layer_for_formation_of_porphyrite_iron_ores_in_the_Middle-Lower_Yangtze_River_area
    Li, Y. H., Xie, G. Q., Duan, C., et al., 2013. Effect of Sulfate Evaporate Layer over the Formation of Skarn-Type Iron Ore Deposits. Acta Geologica Sinica, 87(9): 1324-1334 (in Chinese with English Abstract) http://www.researchgate.net/publication/283464506_Effect_of_sulfate_evaporate_salt_layer_over_the_formation_of_skarn-type_iron_ores
    Liu, X. N., Kong, F. H., Yang, P., et al., 2009. Distribution and Basic Characteristics of Small Intrusions in Southeast Hubei. Resources Environment & Engineering, 23(4): 390-395 (in Chinese with English Abstract) https://www.researchgate.net/publication/285726614_Distribution_and_basic_characteristics_of_small_intrusions_in_Southeast_Hubei
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
    London, D., 1999. Experimental Silicate-Phosphate Equilibria in Peraluminous Granitic Magmas, with a Case Study of the Alburquerque Batholith at Tres Arroyos, Badajoz, Spain. Journal of Petrology, 40(1): 215-240. https://doi.org/10.1093/petrology/40.1.215
    Miles, A. J., Graham, C. M., Hawkesworth, C. J., et al., 2014. Apatite: A New Redox Proxy for Silicic Magmas?. Geochimica et Cosmochimica Acta, 132: 101-119. https://doi.org/10.1016/j.gca.2014.01.040
    Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2
    Pan, L. C., Hu, R. Z., Wang, X. S., et al., 2016. Apatite Trace Element and Halogen Compositions as Petrogenetic-Metallogenic Indicators: Examples from Four Granite Plutons in the Sanjiang Region, SW China. Lithos, 254/255: 118-130. https://doi.org/10.13039/501100005231
    Pan, Y. M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion-and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177-242. https://doi.org/10.1016/s0169-1368(99)00022-0
    Pan, Y., Fleet, M. E., 2002. Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors. Reviews in Mineralogy and Geochemistry, 48(1): 13-49. https://doi.org/10.2138/rmg.2002.48.2
    Paton, C., Woodhead, J. D., Hergt, J. M., et al., 2010. Strontium Isotope Analysis of Kimberlitic Groundmass Perovskite via LA-MC-ICP-MS. Geostandards & Geoanalytical Research, 31(4): 321-330. https://doi.org10.1111/j.1751-908X.2007.00131.x https://www.researchgate.net/publication/229985891_Strontium_isotope_analysis_of_kimberlitic_groundmass_perovskite_via_LA-MC-ICP-MS
    Piccoli, P. M., Candela, P. A., 2002. Apatite in Igneous Systems. Reviews in Mineralogy and Geochemistry, 48(1): 255-292. https://doi.org/10.2138/rmg.2002.48.6
    Pichavant, M., Montel, J. M., Richard, L. R., 1992. Apatite Solubility in Peraluminous Liquids: Experimental Data and an Extension of the Harrison-Watson Model. Geochimica et Cosmochimica Acta, 56(10): 3855-3861. https://doi.org/10.1016/0016-7037(92)90178-l
    Prowatke, S., Klemme, S., 2006. Trace Element Partitioning between Apatite and Silicate Melts. Geochimica et Cosmochimica Acta, 70(17): 4513-4527. https://doi.org/10.1016/j.gca.2006.06.162
    Ramos, F. C., Wolff, J. A., Tollstrup, D. L., 2004. Measuring 87Sr/86Sr Variations in Minerals and Groundmass from Basalts Using LA-MC-ICPMS. Chemical Geology, 211(1/2): 135-158. https://doi.org/10.1016/j.chemgeo.2004.06.025
    Roeder, P. L., Macarthur, D., Ma, X. P., et al., 1987. Cathodoluminescence and Microprobe Study of Rare-Earth Elements in Apatite. American Mineralogist, 72(7): 801-811 https://www.researchgate.net/publication/279667456_Cathodoluminescence_and_microprobe_study_of_rare-earth_elements_in_apatite
    Ronsno, J. G., 1989. Coupled Substitutions Involving REEs and Na and Si in Apatites in Alkaline Rocks from the Ilimaussaq Intrusion, South Greenland, and the Petrological Implications. American Mineralogist, 74(7): 896-901 http://ammin.geoscienceworld.org/content/74/7-8/896.abstract
    Schisa, P., Boudreau, A., Djon, L., et al., 2015. The Lac des Iles Palladium Deposit, Ontario, Canada. Part Ⅱ. Halogen Variations in Apatite. Mineralium Deposita, 50(3): 339-355. https://doi.org/10.1007/s00126-014-0541-4
    Sha, L. K., Chappell, B. W., 1999. Apatite Chemical Composition, Determined by Electron Microprobe and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry, as a Probe into Granite Petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861-3881. https://doi.org/10.1016/s0016-7037(99)00210-0
    Shu, Q. A., Chen, P. L., Cheng, J. R., 1992. Geology of Iron-Copper Deposits in Eastern Hubei Province. Metallurgical Industry Publication House, Beijing (in Chinese with English Abstract)
    Tan, Q. M., 1991. Characteristics of Mineral Inclusions within Magmatites from Southeastern Hubei Area and Its Geological Significance. Resources Environment & Engineering, 5(1): 36-47 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HBDK199101003.htm
    Tang, M., Wang, X. L., Xu, X. S., et al., 2012. Neoproterozoic Subducted Materials in the Generation of Mesozoic Luzong Volcanic Rocks: Evidence from Apatite Geochemistry and Hf-Nd Isotopic Decoupling. Gondwana Research, 21(1): 266-280. https://doi.org/10.1016/j.gr.2011.05.009
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford
    Tsuboi, M., 2005. The Use of Apatite as a Record of Initial 87Sr/86Sr Ratios and Indicator of Magma Processes in the Inagawa Pluton, Ryoke Belt, Japan. Chemical Geology, 221(3/4): 157-169. https://doi.org/10.1016/j.chemgeo.2005.05.001
    Watson, E. B., 1979. Apatite Saturation in Basic to Intermediate Magmas. Geophysical Research Letters, 6(12): 937-940. https://doi.org/10.1029/gl006i012p00937
    Watson, E. B., 1980. Apatite and Phosphorus in Mantle Source Regions: An Experimental Study of Apatite/Melt Equilibria at Pressures to 25 Kbar. Earth and Planetary Science Letters, 51(2): 322-335. https://doi.org/10.1016/0012-821x(80)90214-9
    Watson, E. B., Green, T. H., 1981. Apatite/liquid Partition Coefficients for the Rare Earth Elements and Strontium. Earth and Planetary Science Letters, 56: 405-421. https://doi.org/10.1016/0012-821x(81)90144-8
    Webster, J. D., Piccoli, P. M., 2015. Magmatic Apatite: A Powerful, yet Deceptive, Mineral. Elements, 11(3): 177-182. https://doi.org/10.2113/gselements.11.3.177
    Xie, G. Q., Mao, J. W., Li, R. L., et al., 2008. Geochemistry and Nd-Sr Isotopic Studies of Late Mesozoic Granitoids in the Southeastern Hubei Province, Middle-Lower Yangtze River Belt, Eastern China: Petrogenesis and Tectonic Setting. Lithos, 104(1/2/3/4): 216-230. https://doi.org/10.1016/j.lithos.2007.12.008
    Xie, G. Q., Mao, J. W., Zhao, H. J., et al., 2012. Zircon U-Pb and Phlogopite 40Ar-39Ar Age of the Chengchao and Jinshandian Skarn Fe Deposits, Southeast Hubei Province, Middle-Lower Yangtze River Valley Metallogenic Belt, China. Mineralium Deposita, 47(6): 633-652. https://doi.org/10.1007/s00126-011-0367-2
    Xie, G. Q., Zhu, Q. Q., Yao, L., et al., 2013. Discussion on Regional Metal Mineral Deposit Model of Late Mesozoic Cu-Fe-Au Polymetallic Deposits in the Southeast Hubei Province. Bulletin of Mineralogy, Petrology and Geochemisty, 32(4): 418-426 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201304006.htm
    Yan, J., Chen, J. F., Xu, X. S., 2008. Geochemistry of Cretaceous Mafic Rocks from the Lower Yangtze Region, Eastern China: Characteristics and Evolution of the Lithospheric Mantle. Journal of Asian Earth Sciences, 33(3/4): 177-193. https://doi.org/10.1016/j.jseaes.2007.11.002
    Yue, Y. Z., 1983. Characteristics of the Apatites of the Volcanic Complex in Lujiang-Zhongyang. Journal of Mineralogy and Petrology, (4): 12-16 (in Chinese with English Abstract) https://www.researchgate.net/publication/230536209_Characteristics_of_Volcanic_Rocks_in_the_Shoshonite_Province_Eastern_China_and_Their_Metallogenesis
    Zeng, L. P., Zhao, X. F., Li, X. C., et al., 2016. In situ Elemental and Isotopic Analysis of Fluorapatite from the Taocun Magnetite-Apatite Deposit, Eastern China: Constraints on Fluid Metasomatism. American Mineralogist, 101(11): 2468-2483. https://doi.org/10.2138/am-2016-5743
    Zhai, Y. S., Yao, S. Z., Lin, X. D., et al., 1992. Regularities of Metallogenesis for Copper (Gold) Deposits in the Middle and Lower Reaches of the Yangtze River Area. Geological Publishing House, Beijing. 1-120 (in Chinese)
    Zhao, H. J., Mao, J. W., Xiang, J. F., et al., 2010. Mineralogy and Sr-Nd-Pb Isotopic Compositions of Quartz Diorite in Tonglushan Deposit, Hubei Province. Acta Petrologica Sinica, 26(3): 768-784 (in Chinese with English Abstract) http://www.oalib.com/paper/1472338
    Zhao, Z. H., 2010. Trace Element Geochemistry of Accesory Minerals and Its Applications in Petrogenesis and Metallogenesis. Earth Science Frontiers, 17(1): 267-286 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201001027.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(1017) PDF downloads(166) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return