Boudreau, A. E., Kruger, F. J., 1990. Variation in the Composition of Apatite through the Merensky Cyclic Unit in the Western Bushveld Complex. Economic Geology, 85(4): 737-745. https://doi.org/10.2113/gsecongeo.85.4.737 |
Boudreau, A. E., McCallum, I. S., 1989. Investigations of the Stillwater Complex: Part Ⅴ. Apatites as Indicators of Evolving Fluid Composition. Contributions to Mineralogy and Petrology, 102(2): 138-153. https://doi.org/10.1007/bf00375336 |
Boyce, J. W., Hervig, R. L., 2008. Apatite as a Monitor of Late-Stage Magmatic Processes at Volcán Irazú, Costa Rica. Contributions to Mineralogy and Petrology, 157(2): 135-145. https://doi.org/10.1007/s00410-008-0325-x |
Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteoric Studies. Rare Earth Element Geochemistry, 2(2): 63-114 http://www.scirp.org/journal/PaperInformation.aspx?paperID=45047& |
Cai, B. J., 1980. The Relationship of Gypsum Beds with Endogenic Copper and Iron Ores in the Middle-Lower Yangtze Valley. Geocheimica, (2): 193-199 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX198002008.htm |
Casillas, R., Nagy, G., Pantos, G., et al., 1995. Occurrence of Th, U, Y, Zr, and REE-Bearing Accessory Minerals in Late-Variscan Granitic Rocks from the Sierra de Guadarrama (Spain). European Journal of Mineralogy, 7(4): 989-1006. https://doi.org/10.1127/ejm/7/4/0989 |
Chang, Y. F., Liu, X. P., Wu, Y. C., 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Geological Publishing House, Beijing (in Chinese with English Abstract) |
Chen, W., Simonetti, A., 2014. Evidence for the Multi-Stage Petrogenetic History of the Oka Carbonatite Complex (Québec, Canada) as Recorded by Perovskite and Apatite. Minerals, 4(2): 437-476. https://doi.org/10.3390/min4020437 |
Chen, W., Simonetti, A., Burns, P. C., 2013. A Combined Geochemical and Geochronological Investigation of Niocalite from the Oka Carbonatite Complex, Canada. The Canadian Mineralogist, 51(5): 785-800. https://doi.org/10.3749/canmin.51.5.785 |
Creaser, R. A., Gray, C. M., 1992. Preserved Initial 87Sr/86Sr in Apatite from Altered Felsic Igneous Rocks: A Case Study from the Middle Proterozoic of South Australia. Geochimica et Cosmochimica Acta, 56(7): 2789-2795. https://doi.org/10.1016/0016-7037(92)90359-q |
Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 |
Defant, M. J., Xu, J. F., Kepezhinskas, P., et al., 2002. Adakites: Some Variations on a Theme. Acta Petrologica Sinica, 18(2): 129-142 https://www.researchgate.net/publication/298585840_Adakites_Some_variations_on_a_theme |
Duan, D. F., Jiang, S. Y., 2017. In situ Major and Trace Element Analysis of Amphiboles in Quartz Monzodiorite Porphyry from the Tonglvshan Cu-Fe (Au) Deposit, Hubei Province, China: Insights into Magma Evolution and Related Mineralization. Contributions to Mineralogy and Petrology, 172(5): 36. https://doi.org/10.1007/s00410-017-1355-z |
Fan, H. Y., Li, W. D., Wang, W. B., 1995. On the Relationship between the Marine Deposits in the Middle-Lower Yangtze Area. Volcanology & Mineral Resources, (2): 32-41 (in Chinese with English Abstract) |
Harrison, T. M., Watson, E. B., 1984. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1467-1477. https://doi.org/10.1016/0016-7037(84)90403-4 |
Hofmann, A. W., 2014. 3.3—Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. Treatise on Geochemistry, 2: 67-101. https://https://doi.org/10.1016/B978-0-08-095975-7.00203-5 |
Hughes, J. M., Rakovan, J. F., 2015. Structurally Robust, Chemically Diverse: Apatite and Apatite Supergroup Minerals. Elements, 11(3): 165-170. https://doi.org/10.2113/gselements.11.3.165 |
Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1 |
Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. https://doi.org/10.1007/s00410-008-0341-x |
Li, W., Xie, G. Q., Yao, L., et al., 2014. Genesis of the Intrusive Rocks in the Chengchao Large Skarn Iron Deposit, Southeastern Hubei Province. Journal of Jilin University (Earth Science Edition), (6): 1827-1855 (in Chinese with English Abstract) https://www.researchgate.net/publication/287245911_Genesis_of_the_intrusive_rocks_in_the_Chengchao_large_skarn_iron_deposit_Southeastern_Hubei_Province |
Li, Y. H., Duan, C., Han, D., et al., 2014. Effect of Sulfate Evaporate Layer for Formation of Porphyry Type Iron Ore Deposits in the Middle-Lower Yangtze River Area. Acta Petrologica Sinica, 30(5): 1355-1368 (in Chinese with English Abstract) https://www.researchgate.net/publication/279692743_Effect_of_sulfate_evaporate_salt_layer_for_formation_of_porphyrite_iron_ores_in_the_Middle-Lower_Yangtze_River_area |
Li, Y. H., Xie, G. Q., Duan, C., et al., 2013. Effect of Sulfate Evaporate Layer over the Formation of Skarn-Type Iron Ore Deposits. Acta Geologica Sinica, 87(9): 1324-1334 (in Chinese with English Abstract) http://www.researchgate.net/publication/283464506_Effect_of_sulfate_evaporate_salt_layer_over_the_formation_of_skarn-type_iron_ores |
Liu, X. N., Kong, F. H., Yang, P., et al., 2009. Distribution and Basic Characteristics of Small Intrusions in Southeast Hubei. Resources Environment & Engineering, 23(4): 390-395 (in Chinese with English Abstract) https://www.researchgate.net/publication/285726614_Distribution_and_basic_characteristics_of_small_intrusions_in_Southeast_Hubei |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 |
Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 |
London, D., 1999. Experimental Silicate-Phosphate Equilibria in Peraluminous Granitic Magmas, with a Case Study of the Alburquerque Batholith at Tres Arroyos, Badajoz, Spain. Journal of Petrology, 40(1): 215-240. https://doi.org/10.1093/petrology/40.1.215 |
Miles, A. J., Graham, C. M., Hawkesworth, C. J., et al., 2014. Apatite: A New Redox Proxy for Silicic Magmas?. Geochimica et Cosmochimica Acta, 132: 101-119. https://doi.org/10.1016/j.gca.2014.01.040 |
Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2 |
Pan, L. C., Hu, R. Z., Wang, X. S., et al., 2016. Apatite Trace Element and Halogen Compositions as Petrogenetic-Metallogenic Indicators: Examples from Four Granite Plutons in the Sanjiang Region, SW China. Lithos, 254/255: 118-130. https://doi.org/10.13039/501100005231 |
Pan, Y. M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion-and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177-242. https://doi.org/10.1016/s0169-1368(99)00022-0 |
Pan, Y., Fleet, M. E., 2002. Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors. Reviews in Mineralogy and Geochemistry, 48(1): 13-49. https://doi.org/10.2138/rmg.2002.48.2 |
Paton, C., Woodhead, J. D., Hergt, J. M., et al., 2010. Strontium Isotope Analysis of Kimberlitic Groundmass Perovskite via LA-MC-ICP-MS. Geostandards & Geoanalytical Research, 31(4): 321-330. https://doi.org10.1111/j.1751-908X.2007.00131.x https://www.researchgate.net/publication/229985891_Strontium_isotope_analysis_of_kimberlitic_groundmass_perovskite_via_LA-MC-ICP-MS |
Piccoli, P. M., Candela, P. A., 2002. Apatite in Igneous Systems. Reviews in Mineralogy and Geochemistry, 48(1): 255-292. https://doi.org/10.2138/rmg.2002.48.6 |
Pichavant, M., Montel, J. M., Richard, L. R., 1992. Apatite Solubility in Peraluminous Liquids: Experimental Data and an Extension of the Harrison-Watson Model. Geochimica et Cosmochimica Acta, 56(10): 3855-3861. https://doi.org/10.1016/0016-7037(92)90178-l |
Prowatke, S., Klemme, S., 2006. Trace Element Partitioning between Apatite and Silicate Melts. Geochimica et Cosmochimica Acta, 70(17): 4513-4527. https://doi.org/10.1016/j.gca.2006.06.162 |
Ramos, F. C., Wolff, J. A., Tollstrup, D. L., 2004. Measuring 87Sr/86Sr Variations in Minerals and Groundmass from Basalts Using LA-MC-ICPMS. Chemical Geology, 211(1/2): 135-158. https://doi.org/10.1016/j.chemgeo.2004.06.025 |
Roeder, P. L., Macarthur, D., Ma, X. P., et al., 1987. Cathodoluminescence and Microprobe Study of Rare-Earth Elements in Apatite. American Mineralogist, 72(7): 801-811 https://www.researchgate.net/publication/279667456_Cathodoluminescence_and_microprobe_study_of_rare-earth_elements_in_apatite |
Ronsno, J. G., 1989. Coupled Substitutions Involving REEs and Na and Si in Apatites in Alkaline Rocks from the Ilimaussaq Intrusion, South Greenland, and the Petrological Implications. American Mineralogist, 74(7): 896-901 http://ammin.geoscienceworld.org/content/74/7-8/896.abstract |
Schisa, P., Boudreau, A., Djon, L., et al., 2015. The Lac des Iles Palladium Deposit, Ontario, Canada. Part Ⅱ. Halogen Variations in Apatite. Mineralium Deposita, 50(3): 339-355. https://doi.org/10.1007/s00126-014-0541-4 |
Sha, L. K., Chappell, B. W., 1999. Apatite Chemical Composition, Determined by Electron Microprobe and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry, as a Probe into Granite Petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861-3881. https://doi.org/10.1016/s0016-7037(99)00210-0 |
Shu, Q. A., Chen, P. L., Cheng, J. R., 1992. Geology of Iron-Copper Deposits in Eastern Hubei Province. Metallurgical Industry Publication House, Beijing (in Chinese with English Abstract) |
Tan, Q. M., 1991. Characteristics of Mineral Inclusions within Magmatites from Southeastern Hubei Area and Its Geological Significance. Resources Environment & Engineering, 5(1): 36-47 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HBDK199101003.htm |
Tang, M., Wang, X. L., Xu, X. S., et al., 2012. Neoproterozoic Subducted Materials in the Generation of Mesozoic Luzong Volcanic Rocks: Evidence from Apatite Geochemistry and Hf-Nd Isotopic Decoupling. Gondwana Research, 21(1): 266-280. https://doi.org/10.1016/j.gr.2011.05.009 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford |
Tsuboi, M., 2005. The Use of Apatite as a Record of Initial 87Sr/86Sr Ratios and Indicator of Magma Processes in the Inagawa Pluton, Ryoke Belt, Japan. Chemical Geology, 221(3/4): 157-169. https://doi.org/10.1016/j.chemgeo.2005.05.001 |
Watson, E. B., 1979. Apatite Saturation in Basic to Intermediate Magmas. Geophysical Research Letters, 6(12): 937-940. https://doi.org/10.1029/gl006i012p00937 |
Watson, E. B., 1980. Apatite and Phosphorus in Mantle Source Regions: An Experimental Study of Apatite/Melt Equilibria at Pressures to 25 Kbar. Earth and Planetary Science Letters, 51(2): 322-335. https://doi.org/10.1016/0012-821x(80)90214-9 |
Watson, E. B., Green, T. H., 1981. Apatite/liquid Partition Coefficients for the Rare Earth Elements and Strontium. Earth and Planetary Science Letters, 56: 405-421. https://doi.org/10.1016/0012-821x(81)90144-8 |
Webster, J. D., Piccoli, P. M., 2015. Magmatic Apatite: A Powerful, yet Deceptive, Mineral. Elements, 11(3): 177-182. https://doi.org/10.2113/gselements.11.3.177 |
Xie, G. Q., Mao, J. W., Li, R. L., et al., 2008. Geochemistry and Nd-Sr Isotopic Studies of Late Mesozoic Granitoids in the Southeastern Hubei Province, Middle-Lower Yangtze River Belt, Eastern China: Petrogenesis and Tectonic Setting. Lithos, 104(1/2/3/4): 216-230. https://doi.org/10.1016/j.lithos.2007.12.008 |
Xie, G. Q., Mao, J. W., Zhao, H. J., et al., 2012. Zircon U-Pb and Phlogopite 40Ar-39Ar Age of the Chengchao and Jinshandian Skarn Fe Deposits, Southeast Hubei Province, Middle-Lower Yangtze River Valley Metallogenic Belt, China. Mineralium Deposita, 47(6): 633-652. https://doi.org/10.1007/s00126-011-0367-2 |
Xie, G. Q., Zhu, Q. Q., Yao, L., et al., 2013. Discussion on Regional Metal Mineral Deposit Model of Late Mesozoic Cu-Fe-Au Polymetallic Deposits in the Southeast Hubei Province. Bulletin of Mineralogy, Petrology and Geochemisty, 32(4): 418-426 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201304006.htm |
Yan, J., Chen, J. F., Xu, X. S., 2008. Geochemistry of Cretaceous Mafic Rocks from the Lower Yangtze Region, Eastern China: Characteristics and Evolution of the Lithospheric Mantle. Journal of Asian Earth Sciences, 33(3/4): 177-193. https://doi.org/10.1016/j.jseaes.2007.11.002 |
Yue, Y. Z., 1983. Characteristics of the Apatites of the Volcanic Complex in Lujiang-Zhongyang. Journal of Mineralogy and Petrology, (4): 12-16 (in Chinese with English Abstract) https://www.researchgate.net/publication/230536209_Characteristics_of_Volcanic_Rocks_in_the_Shoshonite_Province_Eastern_China_and_Their_Metallogenesis |
Zeng, L. P., Zhao, X. F., Li, X. C., et al., 2016. In situ Elemental and Isotopic Analysis of Fluorapatite from the Taocun Magnetite-Apatite Deposit, Eastern China: Constraints on Fluid Metasomatism. American Mineralogist, 101(11): 2468-2483. https://doi.org/10.2138/am-2016-5743 |
Zhai, Y. S., Yao, S. Z., Lin, X. D., et al., 1992. Regularities of Metallogenesis for Copper (Gold) Deposits in the Middle and Lower Reaches of the Yangtze River Area. Geological Publishing House, Beijing. 1-120 (in Chinese) |
Zhao, H. J., Mao, J. W., Xiang, J. F., et al., 2010. Mineralogy and Sr-Nd-Pb Isotopic Compositions of Quartz Diorite in Tonglushan Deposit, Hubei Province. Acta Petrologica Sinica, 26(3): 768-784 (in Chinese with English Abstract) http://www.oalib.com/paper/1472338 |
Zhao, Z. H., 2010. Trace Element Geochemistry of Accesory Minerals and Its Applications in Petrogenesis and Metallogenesis. Earth Science Frontiers, 17(1): 267-286 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201001027.htm |