Agee, C. B., Walker, D., 1990. Aluminum Partitioning between Olivine and Ultrabasic Silicate Liquid to 6 GPa. Contributions to Mineralogy and Petrology, 105(3): 243-254. https://doi.org/10.1007/bf00306537 |
Anderson, D. L., Sammis, C., 1970. Partial Melting in the Upper Mantle. Physics of the Earth and Planetary Interiors, 3: 41-50. https://doi.org/10.1016/0031-9201(70)90042-7 |
Asimow, P. D., Ghiorso, M. S., 1998. Algorithmic Modifications Extending MELTS to Calculate Subsolidus Phase Relations. American Mineralogist, 83(9/10): 1127-1132. https://doi.org/10.2138/am-1998-9-1022 |
Dasgupta, R., Hirschmann, M. M., Smith, N. D., 2007. Partial Melting Experiments of Peridotite+CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. Journal of Petrology, 48(11): 2093-2124. https://doi.org/10.1093/petrology/egm053 |
Davis, F. A., Hirschmann, M. M., Humayun, M., 2011. The Composition of the Incipient Partial Melt of Garnet Peridotite at 3 GPa and the Origin of OIB. Earth and Planetary Science Letters, 308(3/4): 380-390. https://doi.org/10.1016/j.epsl.2011.06.008 |
Davis, F. A., Tangeman, J. A., Tenner, T. J., et al., 2009. The Composition of KLB-1 Peridotite. American Mineralogist, 94(1): 176-180. https://doi.org/10.2138/am.2009.2984 |
Donovan, J. J., 2012. Probe for EPMA: Acquisition, Automation and Analysis. Enterprise Edition Probe Software Inc., Eugene |
Du, W., Li, L., Weidner, D. J., 2014. Experimental Observation on Grain Boundaries Affected by Partial Melting and Garnet Forming Phase Transition in KLB-1 Peridotite. Physics of the Earth and Planetary Interiors, 228: 287-293. https://doi.org/10.1016/j.pepi.2013.11.011 |
Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., et al., 2002. The pMELTS: A Revision of MELTS for Improved Calculation of Phase Relations and Major Element Partitioning Related to Partial Melting of the Mantle to 3 GPa. Geochemistry, Geophysics, Geosystems, 3(5): 1-35. https://doi.org/10.1029/2001gc000217 |
Ghiorso, M. S., Sack, R. O., 1995. Chemical Mass Transfer in Magmatic Processes Ⅳ. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 119(2/3): 197-212. https://doi.org/10.1007/s004100050036 |
Harmon, N., Forsyth, D. W., Weeraratne, D. S., 2009. Thickening of Young Pacific Lithosphere from High-Resolution Rayleigh Wave Tomography: A Test of the Conductive Cooling Model. Earth and Planetary Science Letters, 278(1/2): 96-106. https://doi.org/10.1016/j.epsl.2008.11.025 |
Herzberg, C., Gasparik, T., Sawamoto, H., 1990. Origin of Mantle Peridotite: Constraints from Melting Experiments to 16.5 GPa. Journal of Geophysical Research, 95(B10): 15779-15803. https://doi.org/10.1029/jb095ib10p15779 |
Herzberg, C., Raterron, P., Zhang, J. Z., 2000. New Experimental Observations on the Anhydrous Solidus for Peridotite KLB-1. Geochemistry, Geophysics, Geosystems, 1(11): 1-15. https://doi.org/10.1029/2000gc000089 |
Herzberg, C., Zhang, J. Z., 1996. Melting Experiments on Anhydrous Peridotite KLB-1: Compositions of Magmas in the Upper Mantle and Transition Zone. Journal of Geophysical Research: Solid Earth, 101(B4): 8271-8295. https://doi.org/10.1029/96jb00170 |
Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology, 25(1): 42-44. https://doi.org/10.1130/0091-7613(1997)025<0042:meolku>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0042:meolku>2.3.co;2 |
Hirose, K., Fei, Y. W., 2002. Subsolidus and Melting Phase Relations of Basaltic Composition in the Uppermost Lower Mantle. Geochimica et Cosmochimica Acta, 66(12): 2099-2108. https://doi.org/10.1016/s0016-7037(02)00847-5 |
Hirose, K., Kushiro, I., 1993. Partial Melting of Dry Peridotites at High Pressures: Determination of Compositions of Melts Segregated from Peridotite Using Aggregates of Diamond. Earth and Planetary Science Letters, 114(4): 477-489. https://doi.org/10.1016/0012-821X(93)90077-M |
Hirschmann, M. M., 2000. Mantle Solidus: Experimental Constraints and the Effects of Peridotite Composition. Geochemistry, Geophysics, Geosystems, 1(10): 1042. https://doi.org/10.1029/2000gc000070 |
Hirschmann, M. M., 2010. Partial Melt in the Oceanic Low Velocity Zone. Physics of the Earth and Planetary Interiors, 179(1/2): 60-71. https://doi.org/10.1016/j.pepi.2009.12.003 |
Hirschmann, M. M., Ghiorso, M. S., Wasylenki, L. E., et al., 1998. Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts. I. Review of Methods and Comparison with Experiments. Journal of Petrology, 39(6): 1091-1115. https://doi.org/10.1093/petroj/39.6.1091 |
Ito, K., Kennedy, G. C., 1967. Melting and Phase Relations in a Natural Peridotite to 40 Kilobars. American Journal of Science, 265(6): 519-538. https://doi.org/10.2475/ajs.265.6.519 |
Kato, T., Ringwood, A. E., Irifune, T., 1988. Constraints on Element Partition Coefficients between MgSiO3 Perovskite and Liquid Determined by Direct Measurements. Earth and Planetary Science Letters, 90(1): 65-68 doi: 10.1016/0012-821X(88)90111-2 |
Lesher, C. E., Pickering-Witter, J., Baxter, G., et al., 2003. Melting of Garnet Peridotite: Effects of Capsules and Thermocouples, and Implications for the High-Pressure Mantle Solidus. American Mineralogist, 88(8/9): 1181-1189. https://doi.org/10.2138/am-2003-8-901 |
Lesher, C. E., Walker, D., 1988. Cumulate Maturation and Melt Migration in a Temperature Gradient. Journal of Geophysical Research: Solid Earth, 93(B9): 10295-10311. https://doi.org/10.1029/jb093ib09p10295 |
Li, L., 2009. Studies of Mineral Properties at Mantle Condition Using Deformation Multi-Anvil Apparatus. Progress in Natural Science, 19(11): 1467-1475. https://doi.org/10.1016/j.pnsc.2009.06.001 |
Li, L., Weidner, D. J., 2013. Effect of Dynamic Melting on Acoustic Velocities in a Partially Molten Peridotite. Physics of the Earth and Planetary Interiors, 222: 1-7. https://doi.org/10.1016/j.pepi.2013.06.009 |
Li, L., Weidner, D. J., 2014. Detection of Melting by X-Ray Imaging at High Pressure. Review of Scientific Instruments, 85(6): 065104. https://doi.org/10.13039/100000001 |
Munro, R. G., 1997. Evaluated Material Properties for a Sintered Alpha-Alumina. Journal of the American Ceramic Society, 80(8): 1919-1928. https://doi.org/10.1111/j.1151-2916.1997.tb03074.x |
Ohtani, E., 1979. Melting Relation of Fe2SiO4 up to about 200 Kbar. Journal of Physics of the Earth, 27(3): 189-208. https://doi.org/10.4294/jpe1952.27.189 |
Raterron, P., Merkel, S., Holyoke, C. W. III, 2013. Axial Temperature Gradient and Stress Measurements in the Deformation-DIA Cell Using Alumina Pistons. Review of Scientific Instruments, 84(4): 043906. https://doi.org/10.13039/100000015 |
Smith, P. M., Asimow, P. D., 2005. Adiabat_1ph: A New Public Front-End to the MELTS, PMELTS, and PHMELTS Models. Geochemistry, Geophysics, Geosystems, 6(2): 1-8. https://doi.org/10.1029/2004gc000816 |
Takahashi, E., 1986. Melting of a Dry Peridotite KLB-1 up to 14 GPa: Implications on the Origin of Peridotitic Upper Mantle. Journal of Geophysical Research, 91(B9): 9367-9382. https://doi.org/10.1029/jb091ib09p09367 |
Takahashi, E., Shimazaki, T., Tsuzaki, Y., et al., 1993. Melting Study of a Peridotite KLB-1 to 6.5 GPa, and the Origin of Basaltic Magmas. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 342(1663): 105-120. https://doi.org/10.1098/rsta.1993.0008 |
Walker, D., DeLong, S. E., 1982. Soret Separation of Mid-Ocean Ridge Basalt Magma. Contributions to Mineralogy and Petrology, 79(3): 231-240. https://doi.org/10.1007/bf00371514 |
Walter, M., 1998. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. Journal of Petrology, 39(1): 29-60. https://doi.org/10.1093/petrology/39.1.29 |
Weidner, D. J., Li, L., 2015. Kinetics of Melting in Peridotite from Volume Strain Measurements. Physics of the Earth and Planetary Interiors, 246: 25-30. https://doi.org/10.13039/100000015 |
Yoshino, T., Takei, Y., Wark, D. A., et al., 2005. Grain Boundary Wetness of Texturally Equilibrated Rocks, with Implications for Seismic Properties of the Upper Mantle. Journal of Geophysical Research, 110(B8): 1-16. https://doi.org/10.1029/2004jb003544 |
Zhang, J. Z., Herzberg, C., 1994. Melting Experiments on Anhydrous Peridotite KLB-1 from 5.0 to 22.5 GPa. Journal of Geophysical Research: Solid Earth, 99(B9): 17729-17742. https://doi.org/10.1029/94jb01406 |
Zhu, W., Gaetani, G. A., Fusseis, F., et al., 2011. Microtomography of Partially Molten Rocks: Three-Dimensional Melt Distribution in Mantle Peridotite. Science, 332(6025): 88-91. https://doi.org/10.13039/100006151 |