Adjerid, Z., Godard, G., Ouzegane, K., et al., 2013. Multistage Progressive Evolution of Rare Osumilite-Bearing Assemblages Preserved in Ultrahigh-Temperature Granulites from In Ouzzal (Hoggar, Algeria). Journal of Metamorphic Geology, 31(5):505-524. http://doi.org/10.1111/jmg.12031 |
Arima, M., Gower, C. F., 1991. Osumilite-Bearing Granulites in the Eastern Grenville Province, Eastern Labrador, Canada:Mineral Parageneses and Metamorphic Conditions. Journal of Petrology, 32(1):29-61. http://doi.org/10.1093/petrology/32.1.29 |
Baba, S., Hokada, T., Kaiden, H., et al., 2010. SHRIMP Zircon U-Pb Dating of Sapphirine-Bearing Granulite and Biotite-Hornblende Gneiss in the Schirmacher Hills, East Antarctica:Implications for Neoproterozoic Ultrahigh-Temperature Metamorphism Predating the Assembly of Gondwana. The Journal of Geology, 118(6):621-639. http://doi.org/10.1086/656384 |
Baba, S., Owada, M., Grew, E. S., et al., 2006. Sapphirine Granulite from Schirmacher Hills, Central Dronning Maud Land. In: Fütterer, D. K., Damaske, D., Kleinschmidt, G., et al., eds., Antarctic Contributions to Global Earth Science. Springer, Berlin. 37-44 |
Baldwin, J. A., Brown, M., 2008. Age and Duration of Ultrahigh-Temperature Metamorphism in the Anápolis-Itauçu Complex, Southern Brasília Belt, Central Brazil-Constraints from U-Pb Geochronology, Mineral Rare Earth Element Chemistry and Trace-Element Thermometry. Journal of Metamorphic Geology, 26(2):213-233. http://doi.org/10.1111/j.1525-1314.2007.00759.x |
Baldwin, J. A., Brown, M., Schmitz, M. D., 2007. First Application of Titanium-in-Zircon Thermometry to Ultrahigh-Temperature Metamorphism. Geology, 35(4):295-298. http://doi.org/10.1130/g23285a.1 |
Barbosa, J., Nicollet, C., Leite, C., et al., 2006. Hercynite-Quartz-Bearing Granulites from Brej es Dome Area, Jequié Block, Bahia, Brazil:Influence of Charnockite Intrusion on Granulite Facies Metamorphism. Lithos, 92(3/4):537-556. http://doi.org/10.1016/j.lithos.2006.03.064 |
Barnicoat, A. C., O'Hara, M. J., 1979. High-Temperature Pyroxenes from an Ironstone at Scourie, Sutherland. Mineralogical Magazine, 43(327):371-375. http://doi.org/10.1180/minmag.1979.043.327.09 |
Berman, R. G., 1988. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2):445-522 doi: 10.1093/petrology/29.2.445 |
Bertrand, P., Ouzegane, K., Kienast, J. R., 1992. P-T-X Relationships in the Precambrian Al-Mg-Rich Granulites from in Ouzzal, Hoggar, Algeria. Journal of Metamorphic Geology, 10(1):17-31. http://doi.org/10.1111/j.1525-1314.1992.tb00069.x |
Bhadra, S., 2016. Timing and Duration of Ultra-High Temperature Metamorphism in Sapphirine-Bearing Metapelite Granulite from Kodaikanal, Madurai Block, South India:Constraints from Mineral Chemistry and U-Th-Total Pb EPMA Age of Monazite. Journal of Applied Geochemistry, 18(1):22 |
Bhowmik, S. K., Wilde, S. A., Bhandari, A., et al., 2014. Zoned Monazite and Zircon as Monitors for the Thermal History of Granulite Terranes:An Example from the Central Indian Tectonic Zone. Journal of Petrology, 55(3):585-621. http://doi.org/10.1093/petrology/egt078 |
Bradley, D., Kusky, T. M., Haeussler, P., et al., 2003. Geological Signature of Early Tertiary Ridge Subduction in Alaska. In: Sisson, V. B., Roseske, S. M., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacifica Margin. Geological Society of America Special Paper, 371: 19-49 |
Brandt, S., Klemd, R., Okrusch, M., 2003. Ultrahigh-Temperature Metamorphism and Multistage Evolution of Garnet-Orthopyroxene Granulites from the Proterozoic Epupa Complex, NW Namibia. Journal of Petrology, 44(6):1121-1144. http://doi.org/10.1093/petrology/44.6.1121 |
Brown, M., 2006. Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean. Geology, 34(11):961-964. http://doi.org/10.1130/g22853a.1 |
Brown, M., 2007a. Metamorphic Conditions in Orogenic Belts:A Record of Secular Change. International Geology Review, 49(3):193-234. http://doi.org/10.2747/0020-6814.49.3.193 |
Brown, M., 2007b. Metamorphism, Plate Tectonics, and the Supercontinent Cycle. Earth Science Frontiers, 14(1):1-18. http://doi.org/10.1016/s1872-5791(07)60001-3 |
Brown, M., 2009. Metamorphic Patterns in Orogenic Systems and the Geological Record. Geological Society, London, Special Publications, 318(1):37-74. http://doi.org/10.1144/sp318.2 |
Brown, M., 2014. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 5(4):553-569. http://doi.org/10.1016/j.gsf.2014.02.005 |
Burg, J. P., Gerya, T. V., 2005. The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens:Thermomechanical Models and Application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23(2):75-95. http://doi.org/10.1111/j.1525-1314.2005.00563.x |
Bushmin, S. A., Dolivo-Dobrovolsky, D. V., Lebedeva, Y. M., 2007. Infiltration Metasomatism under High-Pressure Granulite-Facies Conditions Based on Orthopyroxene-Sillimanite Rocks in Shear Zones of the Lapland Granulite Belt. Doklady Earth Sciences, 412(1):106-109. http://doi.org/10.1134/s1028334x07010242 |
Carrington, D. P., Harley, S. L., 1995. Partial Melting and Phase Relations in High-Grade Metapelites:An Experimental Petrogenetic Grid in the KFMASH System. Contributions to Mineralogy and Petrology, 120(3/4):270-291. http://doi.org/10.1007/s004100050075 |
Chen, Z. Y., Zhang, L. F., Du, J. X., et al., 2013. Zr-in-Rutile Thermometry in Eclogite and Vein from Southwestern Tianshan, China. Journal of Asian Earth Sciences, 63:70-80. http://doi.org/10.1016/j.jseaes.2012.09.033 |
Clark, C., Fitzsimons, I. C. W., Healy, D., et al., 2011. How does the Continental Crust Get Really Hot?. Elements, 7(4):235-240. http://doi.org/10.2113/gselements.7.4.235 |
Collins, W. J., 2002a. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geology, 30(6):535. http://doi.org/10.1130/0091-7613(2002)030<0535:hotsac>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0535:hotsac>2.0.co;2 |
Collins, W. J., 2002b. Nature of Extensional Accretionary Orogens. Tectonics, 21(4):6-1-6-12. http://doi.org/10.1029/2000tc001272 |
Dallwitz, W. B., 1968. Co-Existing Sapphirine and Quartz in Granulite from Enderby Land, Antarctica. Nature, 219(5153):476-477. http://doi.org/10.1038/219476a0 |
Dasgupta, S., Pal, S., 2005. Origin of Grandite Garnet in Calc-Silicate Granulites:Mineral-Fluid Equilibria and Petrogenetic Grids. Journal of Petrology, 46(5):1045-1076. http://doi.org/10.1093/petrology/egi010 |
Dasgupta, S., Sengupta, P., Ehl, J., et al., 1995. Reaction Textures in a Suite of Spinel Granulites from the Eastern Ghats Belt, India:Evidence for Polymetamorphism, a Partial Petrogenetic Grid in the System KFMASH and the Roles of ZnO and Fe2O3. Journal of Petrology, 36(2):435-461. http://doi.org/10.1093/petrology/36.2.435 |
Degeling, H. S., 2003. Zr Equilibria in Metamorphic Rocks: [Dissertation]. Australian National University, Melbourne. 231 |
Diener, J. F. A., Powell, R., 2012. Revised Activity-Composition Models for Clinopyroxene and Amphibole. Journal of Metamorphic Geology, 30(2):131-142. http://doi.org/10.1111/j.1525-1314.2011.00959.x |
Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6):631-656. http://doi.org/10.1111/j.1525-1314.2007.00720.x |
Ellis, D. J., 1980. Osumilite-Sapphirine-Quartz Granulites from Enderby Land, Antarctica:P-T Conditions of Metamorphism, Implications for Garnet-Cordierite Equilibria and the Evolution of the Deep Crust. Contributions to Mineralogy and Petrology, 74(2):201-210. http://doi.org/10.1007/bf01132005 |
Ewing, T. A., Hermann, J., Rubatto, D., 2013. The Robustness of the Zr-in-Rutile and Ti-in-Zircon Thermometers during High-Temperature Metamorphism (Ivrea-Verbano Zone, Northern Italy). Contributions to Mineralogy and Petrology, 165(4):757-779. http://doi.org/10.1007/s00410-012-0834-5 |
Ferrero, S., Axler, J., Ague, J. J., et al., 2017. Preserved Anatectic Melt in Ultrahigh-Temperature (or High Pressure?) Felsic Granulites, Connecticut, US. EGU General Assembly Conference Abstracts, 19:9692 http://adsabs.harvard.edu/abs/2017EGUGA..19.9692F |
Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4):429-437. http://doi.org/10.1007/s00410-007-0201-0 |
Fitzsimons, I. C. W., Harley, S. L., 1994. Garnet Coronas in Scapolite-Wollastonite Calc-Silicates from East Antarctica:The Application and Limitations of Activity-Corrected Grids. Journal of Metamorphic Geology, 12(6):761-777. http://doi.org/10.1111/j.1525-1314.1994.tb00058.x |
Frost, B. R., Chacko, T., 1989. The Granulite Uncertainty Principle:Limitations on Thermobarometry in Granulites. The Journal of Geology, 97(4):435-450. http://doi.org/10.1086/629321 |
Ganguly, P., Bose, S., Das, K., et al., 2018. Origin of Spinel+Quartz Assemblage in a Si-Undersaturated Ultrahigh-Temperature Aluminous Granulite and Its Implication for the P-T-Fluid History of the Phulbani Domain, Eastern Ghats Belt, India. Journal of Petrology, 58(10):1941-1974. http://doi.org/10.1093/petrology/egx078 |
Gorczyk, W., Smithies, H., Korhonen, F., et al., 2016. Ultra-Hot Mesoproterozoic Evolution of Intracontinental Central Australia. Geoscience Frontiers, 6(1):23-37. http://doi.org/10.1016/j.gsf.2014.03.001 |
Gou, L. L., Zhang, C. L., Wang, Q., 2015. Petrological Evidence for Isobaric Cooling of Ultrahigh-Temperature Pelitic Granulites from the Khondalite Belt, North China Craton. Science Bulletin, 60(17):1535-1542 doi: 10.1007/s11434-015-0872-2 |
Green, E. C. R., Holland, T. J. B., Powell, R., 2007. An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks. American Mineralogist, 92(7):1181-1189. http://doi.org/10.2138/am.2007.2401 |
Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9):845-869 doi: 10.1111/jmg.2016.34.issue-9 |
Grew, E. S., 1982. Osumilite in the Sapphirine-Quartz Terrane of Enderby Land, Antarctica:Implications for Osumilite Petrogenesis in the Granulite Facies. American Mineralogist, 67:762-787 |
Groppo, C., Lombardo, B., Rolfo, F., et al., 2007. Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range (Eastern Himalayas). Journal of Metamorphic Geology, 25(1):51-75. http://doi.org/10.1111/j.1525-1314.2006.00678.x |
Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93-1.92 Ga Caused by Gabbronorite Intrusions:Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222/223:124-142. http://doi.org/10.1016/j.precamres.2011.07.020 |
Hacker, B. R., Gnos, L., Grove, M., et al., 2000. Hot and Dry Xenoliths from the Lower Crust of Tibet. Science, 287:2463-2466 doi: 10.1126/science.287.5462.2463 |
Haissen, F., Garcia-Casco, A., Torres-Roldan, R., et al., 2004. Decompression Reactions and P-T Conditions in High-Pressure Granulites from Casares-Los Reales Units of the Betic-Rif Belt (S Spain and N Morocco). Journal of African Earth Sciences, 39(3/4/5):375-383. http://doi.org/10.1016/j.jafrearsci.2004.07.030 |
Harley, S. L., 1987. A Pyroxene-Bearing Meta-Ironstone and Other Pyroxene-Granulites from Tonagh Island, Enderby Land, Antarctica:Further Evidence for very High Temperature (>980℃) Archaean Regional Metamorphism in the Napier Complex. Journal of Metamorphic Geology, 5(3):341-356. http://doi.org/10.1111/j.1525-1314.1987.tb00389.x |
Harley, S. L., 1989. The Origins of Granulites:A Metamorphic Perspective. Geological Magazine, 126(3):215-247. http://doi.org/10.1017/s0016756800022330 |
Harley, S. L., 1998a. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 138(1):81-107. http://doi.org/10.1144/gsl.sp.1996.138.01.06 |
Harley, S. L., 1998b. An Appraisal of Peak Temperatures and Thermal Histories in Ultrahigh-Temperature (UHT) Crustal Metamorphism: The Significance of Aluminous Orthopyroxene. In: Motoyoshi, Y., Shiraishi, K., eds., Origin and Evolution of Continents. Memoir National Institute Polar Research, Tokyo. 53: 49-73 |
Harley, S. L., 1998c. Ultrahigh Temperature Granulite Metamorphism (1 050 ℃, 12 kbar) and Decompression in Garnet (Mg70)-Orthopyroxene-Sillimanite Gneisses from the Rauer Group, East Antarctica. Journal of Metamorphic Geology, 16(4):541-562. http://doi.org/10.1111/j.1525-1314.1998.00155.x |
Harley, S. L., 2004. Extending Our Understanding of Ultrahigh Temperature Crustal Metamorphism. Journal of Mineralogical and Petrological Sciences, 99(4):140-158. http://doi.org/10.2465/jmps.99.140 |
Harley, S. L., 2008. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 26(2):125-154. http://doi.org/10.1111/j.1525-1314.2008.00765.x |
Harley, S. L., 2016. A Matter of Time:The Importance of the Duration of UHT Metamorphism. Journal of Mineralogical and Petrological Sciences, 111(2):50-72. http://doi.org/10.2465/jmps.160128 |
Harley, S. L., Hensen, B. J., Sheraton, J. W., 1990. Two-Stage Decompression in Orthopyroxene-Sillimanite Granulites from Forefinger Point, Enderby Land, Antarctica:Implications for the Evolution of the Archaean Napier Complex. Journal of Metamorphic Geology, 8(6):591-613. http://doi.org/10.1111/j.1525-1314.1990.tb00490.x |
Hensen, B. J., Harley, S. L., 1990. Graphical Analysis of p-T-x Relations in Granulite Facies Metapelites. In: Ashworth, J. R., Brown, M., eds., High Temperature Metamorphism and Crustal Anatexis. Unwin Hyman, London. 19-56 |
Hokada, T., 2001. Feldspar Thermometry in Ultrahigh-Temperature Metamorphic Rocks:Evidence of Crustal Metamorphism Attaining~1 100℃ in the Archean Napier Complex, East Antarctica. American Mineralogist, 86(7/8):932-938. http://doi.org/10.2138/am-2001-0718 |
Hokada, T., Suzuki, S., 2006. Feldspar in Felsic Orthogneiss as Indicator for UHT Crustal Processes. Journal of Mineralogical and Petrological Sciences, 101(5):260-264. http://doi.org/10.2465/jmps.101.260 |
Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3):309-343. http://doi.org/10.1111/j.1525-1314.1998.00140.x |
Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3):333-383. http://doi.org/10.1111/j.1525-1314.2010.00923.x |
Hyndman, R. D., Currie, C. A., Mazzotti, S. P., 2005. Subduction Zone Backarcs, Mobile Belts, and Orogenic Heat. GSA Today, 15(2):4-10. http://doi.org/10.1130/1052-5173(2005)15<4:szbmba>2.0.co;2 doi: 10.1130/1052-5173(2005)15<4:szbmba>2.0.co;2 |
Ishii, S., Tsunogae, T., Santosh, M., 2006. Ultrahigh-Temperature Metamorphism in the Achankovil Zone:Implications for the Correlation of Crustal Blocks in Southern India. Gondwana Research, 10(1/2):99-114. http://doi.org/10.1016/j.gr.2005.11.019 |
Jagoutz, O., Müntener, O., Ulmer, P., et al., 2007. Petrology and Mineral Chemistry of Lower Crustal Intrusions:The Chilas Complex, Kohistan (NW Pakistan). Journal of Petrology, 48(10):1895-1953. http://doi.org/10.1093/petrology/egm044 |
Jamieson, R. A., Beaumont, C., 2013. On the Origin of Orogens. Geological Society of America Bulletin, 125(11/12):1671-1702. http://doi.org/10.1130/b30855.1 |
Jiao, S. J., Guo, J. H., Mao, Q., et al., 2011. Application of Zr-in-Rutile Thermometry:A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton. Contributions to Mineralogy and Petrology, 162(2):379-393. http://doi.org/10.1007/s00410-010-0602-3 |
Kelly, N. M., Harley, S. L., 2004. Orthopyroxene-Corundum in Mg-Al-Rich Granulites from the Oygarden Islands, East Antarctica. Journal of Petrology, 45(7):1481-1512. http://doi.org/10.1093/petrology/egh023 |
Kelsey, D. E., 2008. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 13(1):1-29. http://doi.org/10.1016/j.gr.2007.06.001 |
Kelsey, D. E., Clark, C., Hand, M., et al., 2006. Comment on "First Report of Garnet-Corundum Rocks from Southern India:Implications for Prograde High-Pressure (Eclogite-Facies?) Metamorphism". Earth and Planetary Science Letters, 249(3/4):529-534. http://doi.org/10.1016/j.epsl.2006.07.048 |
Kelsey, D. E., Hand, M., 2015. On Ultrahigh Temperature Crustal Metamorphism:Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 6(3):311-356. http://doi.org/10.1016/j.gsf.2014.09.006 |
Kelsey, D. E., White, R. W., Powell, R., 2003a. Orthopyroxene-Sillimanite-Quartz Assemblages:Distribution, Petrology, Quantitative P-T-X Constraints and P-T Paths. Journal of Metamorphic Geology, 21(5):439-453. http://doi.org/10.1046/j.1525-1314.2003.00456.x |
Kelsey, D. E., White, R. W., Powell, R., et al., 2003b. New Constraints on Metamorphism in the Rauer Group, Prydz Bay, East Antarctica. Journal of Metamorphic Geology, 21(8):739-759. http://doi.org/10.1046/j.1525-1314.2003.00476.x |
Kemp, A. I. S., Shimura, T., Hawkesworth, C. J., et al., 2007. Linking Granulites, Silicic Magmatism, and Crustal Growth in Arcs:Ion Microprobe (Zircon) U-Pb Ages from the Hidaka Metamorphic Belt, Japan. Geology, 35(9):807-810. http://doi.org/10.1130/g23586a.1 |
Kihle, J., Bucher-Nurminen, K., 1992. Orthopyroxene-Sillimanite-Sapphirine Granulites from the Bamble Granulite Terrane, Southern Norway. Journal of Metamorphic Geology, 10(5):671-693. http://doi.org/10.1111/j.1525-1314.1992.tb00114.x |
Kincaid, C., Silver, P., 1996. The Role of Viscous Dissipation in the Orogenic Process. Earth and Planetary Science Letters, 142(3/4):271-288. http://doi.org/10.1016/0012-821x(96)00116-1 |
Kooijman, E., Smit, M. A., Mezger, K., et al., 2012. Trace Element Systematics in Granulite Facies Rutile:Implications for Zr Geothermometry and Provenance Studies. Journal of Metamorphic Geology, 30(4):397-412. http://doi.org/10.1111/j.1525-1314.2012.00972.x |
Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4):383-397. http://doi.org/10.1016/s1367-9120(03)00071-3 |
Lebedeva, Y. M., Glebovitskii, V. A., Bushmin, S. A., et al., 2010. The Age of High-Pressure Metasomatism in Shear Zones during Collision-Related Metamorphism in the Lapland Granulite Belt:The Sm-Nd Method of Dating the Paragenesises from Sillimanite-Orthopyroxene Rocks of Por'ya Guba Nappe. Doklady Earth Sciences, 432(1):602-605. http://doi.org/10.1134/s1028334x10050119 |
Lee, B. C., Oh, C. W., Kim, T. S., et al., 2016. The Metamorphic Evolution from Ultrahigh-Temperature to Amphibolite Facies Metamorphism in the Odaesan Area after the Collision between the North and South China Cratons in the Korean Peninsula. Lithos, 256/257:109-131. http://doi.org/10.1016/j.lithos.2016.03.019 |
Lei, H. C., Xiang, H., Zhang, Z. M., et al., 2014. Paleoproterozoic UHT Granulite in the Sulu Orogen and Its Tectonic Implications. Acta Petrologica Sinica, 30:2435-2445 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408023 |
Li, Z. L., Chen, H. L., Santosh, M., et al., 2004. Discovery of Ultrahigh-T Spinel-Garnet Granulite with Pure CO2 Fluid Inclusions from the Altay Orogenic Belt, NW China. Journal of Zhejiang University-Science A, 5(10):1180-1182. http://doi.org/10.1631/jzus.2004.1180 |
Li, Z. L., Yang, X. Q., Li, Y. Q., et al., 2014. Late Paleozoic Tectono-Metamorphic Evolution of the Altai Segment of the Central Asian Orogenic Belt:Constraints from Metamorphic P-T Pseudosection and Zircon U-Pb Dating of Ultra-High-Temperature Granulite. Lithos, 204:83-96. http://doi.org/10.1016/j.lithos.2014.05.022 |
Liu, S. J., Li, J. H., 2007. Review of Ultrahigh-Temperature (UHT) Metamorphism Study:A Case from North China Craton. Earth Science Frontiers, 14(3):131-137 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200703016.htm |
Liu, S. J., Li, J. H., Santosh, M., 2010. First Application of the Revised Ti-in-Zircon Geothermometer to Paleoproterozoic Ultrahigh-Temperature Granulites of Tuguiwula, Inner Mongolia, North China Craton. Contributions to Mineralogy and Petrology, 159(2):225-235. http://doi.org/10.1007/s00410-009-0425-2 |
Liu, S. J., Tsunogae, T., Li, W. S., et al., 2012. Paleoproterozoic Granulites from Heling'er:Implications for Regional Ultrahigh-Temperature Metamorphism in the North China Craton. Lithos, 148(1):54-70. http://doi.org/10.1016/j.lithos.2012.05.024 |
Liu, Y. C., Deng, L. P., Gu, X. F., et al., 2015. Application of Ti-in-Zircon and Zr-in-Rutile Thermometers to Constrain High-Temperature Metamorphism in Eclogites from the Dabie Orogen, Central China. Gondwana Research, 27(1):410-423. http://doi.org/10.1016/j.gr.2013.10.011 |
Maidment, D. W., Hand, M., Williams, I. S., 2013. High Grade Metamorphism of Sedimentary Rocks during Palaeozoic Rift Basin Formation in Central Australia. Gondwana Research, 24(3/4):865-885. http://doi.org/10.1016/j.gr.2012.12.020 |
McFarlane, C. R. M., Carlson, W. D., Connelly, J. N., 2003. Prograde, Peak, and Retrograde P-T Paths from Aluminium in Orthopyroxene:High-Temperature Contact Metamorphism in the Aureole of the Makhavinekh Lake Pluton, Nain Plutonic Suite, Labrador. Journal of Metamorphic Geology, 21(5):405-423. http://doi.org/10.1046/j.1525-1314.2003.00446.x |
McKenzie, D., Priestley, K., 2008. The Influence of Lithospheric Thickness Variations on Continental Evolution. Lithos, 102(1/2):1-11. http://doi.org/10.1016/j.lithos.2007.05.005 |
Meyer, M., John, T., Brandt, S., et al., 2011. Trace Element Composition of Rutile and the Application of Zr-in-Rutile Thermometry to UHT Metamorphism (Epupa Complex, NW Namibia). Lithos, 126(3/4):388-401. http://doi.org/10.1016/j.lithos.2011.07.013 |
Mitchell, R. J., Harley, S. L., 2017. Zr-in-Rutile Resetting in Aluminosilicate Bearing Ultra-High Temperature Granulites:Refining the Record of Cooling and Hydration in the Napier Complex, Antarctica. Lithos, 272/273:128-146. http://doi.org/10.1016/j.lithos.2016.11.027 |
Nabelek, P. I., Liu, M., 2004. Petrologic and Thermal Constraints on the Origin of Leucogranites in Collisional Orogens. Transactions of the Royal Society of Edinburgh:Earth Sciences, 95(1/2):73-85. http://doi.org/10.1017/s0263593300000936 |
Nabelek, P. I., Whittington, A. G., Hofmeister, A. M., 2010. Strain Heating as a Mechanism for Partial Melting and Ultrahigh Temperature Metamorphism in Convergent Orogens:Implications of Temperature-Dependent Thermal Diffusivity and Rheology. Journal of Geophysical Research, 115(B12). http://doi.org/10.1029/2010jb007727 |
Nakano, N., Osanai, Y., Owada, M., et al., 2004. Decompression Process of Mafic Granulite from Eclogite to Granulite Facies under Ultrahigh-Temperature Condition in the Kontum Massif, Central Vietnam. Journal of Mineralogical and Petrological Sciences, 99(4):242-256. http://doi.org/10.2465/jmps.99.242 |
Nicoli, G., Stevens, G., Buick, I., et al., 2014. A Comment on Ultrahigh-Temperature Metamorphism from an Unusual Corundum+ Orthopyroxene Intergrowth Bearing Al-Mg Granulite from the Southern Marginal Zone, Limpopo Complex, South Africa, by Belyanin et al.. Contributions to Mineralogy and Petrology, 167(6):1022. http://doi.org/10.1007/s00410-014-1022-6 |
O'Brien, P. J., Rötzler, J., 2003. High-Pressure Granulites:Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 21(1):3-20. http://doi.org/10.1046/j.1525-1314.2003.00420.x |
Pape, J., Mezger, K., Robyr, M., 2016. A Systematic Evaluation of the Zr-in-Rutile Thermometer in Ultra-High Temperature (UHT) Rocks. Contributions to Mineralogy and Petrology, 171(5):44. http://doi.org/10.1007/s00410-016-1254-8 |
Pattison, D. R. M., Chacko, T., Farquhar, J., et al., 2003. Temperatures of Granulite-Facies Metamorphism:Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange. Journal of Petrology, 44(5):867-900. http://doi.org/10.1093/petrology/44.5.867 |
Peng, P., Guo, J. H., Zhai, M. G., et al., 2010. Paleoproterozoic Gabbronoritic and Granitic Magmatism in the Northern Margin of the North China Craton:Evidence of Crust-Mantle Interaction. Precambrian Research, 183(3):635-659. http://doi.org/10.1016/j.precamres.2010.08.015 |
Peng, S. B., Jin, Z. M., Fu, J., M., 2006. Ultra-High Temperature Granulite Enclaves in the Darongshan-Shiwandashan Granites in South China and Implications. National Symposium on Petrology and Geodynamics, Nanjing (in Chinese) |
Perchuk, L., Gerya, T., Nozhkin, A., 1989. Petrology and Retrograde P-T Path in Granulites of the Kanskaya Formation, Yenisey Range, Eastern Siberia. Journal of Metamorphic Geology, 7(6):599-617. http://doi.org/10.1111/j.1525-1314.1989.tb00621.x |
Prakash, D., Arima, M., Mohan, A., 2006. Ultrahigh-Temperature Metamorphism in the Palni Hills, South India:Insights from Feldspar Thermometry and Phase Equilibria. International Geology Review, 48(7):619-638. http://doi.org/10.2747/0020-6814.48.7.619 |
Royden, L. H., 1993. The Steady State Thermal Structure of Eroding Orogenic Belts and Accretionary Prisms. Journal of Geophysical Research:Solid Earth, 98(B3):4487-4507. http://doi.org/10.1029/92jb01954 |
Rötzler, J., Romer, R. L., 2001. P-T-t Evolution of Ultrahigh-Temperature Granulites from the Saxon Granulite Massif, Germany. Part I:Petrology. Journal of Petrology, 42(11):1995-2013. http://doi.org/10.1093/petrology/42.11.1995 |
Rubatto, D., 2002. Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2):123-138. http://doi.org/10.1016/s0009-2541(01)00355-2 |
Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences. Springer, Berlin. 373-400 |
Rubatto, D., Hermann, J., 2007. Experimental Zircon/Melt and Zircon/Garnet Trace Element Partitioning and Implications for the Geochronology of Crustal Rocks. Chemical Geology, 241(1/2):38-61. http://doi.org/10.1016/j.chemgeo.2007.01.027 |
Rubatto, D., Williams, I. S., Buick, I. S., 2001. Zircon and Monazite Response to Prograde Metamorphism in the Reynolds Range, Central Australia. Contributions to Mineralogy and Petrology, 140(4):458-468. http://doi.org/10.1007/pl00007673 |
Sajeev, K., Osanai, Y., 2004. Ultrahigh-Temperature Metamorphism (1 150℃, 12 kbar) and Multistage Evolution of Mg-, Al-Rich Granulites from the Central Highland Complex, Sri Lanka. Journal of Petrology, 45(9):1821-1844. http://doi.org/10.1093/petrology/egh035 |
Sajeev, K., Osanai, Y., Santosh, M., 2004. Ultrahigh-Temperature Metamorphism Followed by Two-Stage Decompression of Garnet-Orthopyroxene-Sillimanite Granulites from Ganguvarpatti, Madurai Block, Southern India. Contributions to Mineralogy and Petrology, 148(1):29-46. http://doi.org/10.1007/s00410-004-0592-0 |
Sandiford, M., McLaren, S., 2006. Thermo-Mechanical Controls on Heat Production Distributions and the Long-Term Evolution of the Continents. In: Brown, M., Rushmer, T., eds., Evolution and Differentiation of the Continental Crust. Cambridge University Press, Cambridge. 67-91 |
Sandiford, M., Powell, R., 1986. Pyroxene Exsolution in Granulites from Fyfe Hills, Enderby Land, Antarctica:Evidence for 1 000℃ Metamorphic Temperatures in Archean Continental Crust. American Mineralogist, 71(7/8):946-954 http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=71/7-8/946 |
Santosh, M., Kusky, T. M., 2010. Origin of Paired High Pressure-Ultrahigh-Temperature Orogens:A Ridge Subduction and Slab Window Model. Terra Nova, 22(1):35-42. http://doi.org/10.1111/j.1365-3121.2009.00914.x |
Santosh, M., Liu, S. J., Tsunogae, T., et al., 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton:Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222/223:77-106. http://doi.org/10.1016/j.precamres.2011.05.003 |
Santosh, M., Omori, S., 2008a. CO2 Flushing:A Plate Tectonic Perspective. Gondwana Research, 13(1):86-102. http://doi.org/10.1016/j.gr.2007.07.003 |
Santosh, M., Omori, S., 2008b. CO2 Windows from Mantle to Atmosphere:Models on Ultrahigh-Temperature Metamorphism and Speculations on the Link with Melting of Snowball Earth. Gondwana Research, 14(1/2):82-96. http://doi.org/10.1016/j.gr.2007.11.001 |
Santosh, M., Sajeev, K., 2006. Anticlockwise Evolution of Ultrahigh-Temperature Granulites within Continental Collision Zone in Southern India. Lithos, 92(3/4):447-464. http://doi.org/10.1016/j.lithos.2006.03.063 |
Santosh, M., Sajeev, K., Li, J. H., 2006. Extreme Crustal Metamorphism during Columbia Supercontinent Assembly:Evidence from North China Craton. Gondwana Research, 10(3/4):256-266. http://doi.org/10.1016/j.gr.2006.06.005 |
Santosh, M., Tsunogae, T., Li, J. H., et al., 2007a. Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton:Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3):263-285. http://doi.org/10.1016/j.gr.2006.10.009 |
Santosh, M., Wilde, S., Li, J. H., 2007b. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton:Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 159(3/4):178-196. http://doi.org/10.1016/j.precamres.2007.06.006 |
Scrimgeour, I. R., Kinny, P. D., Close, D. F., et al., 2005. High-T Granulites and Polymetamorphism in the Southern Arunta Region, Central Australia:Evidence for a 1.64 Ga Accretional Event. Precambrian Research, 142(1/2):1-27. http://doi.org/10.1016/j.precamres.2005.08.005 |
Sengupta, P., Raith, M. M., 2002. Garnet Composition as a Petrogenetic Indicator:An Example from a Marble-Calc-Silicate Granulite Interface at Kondapalle, Eastern Ghats Belt, India. American Journal of Science, 302(8):686-725. http://doi.org/10.2475/ajs.302.8.686 |
Shimpo, M., Tsunogae, T., Santosh, M., 2006. First Report of Garnet-Corundum Rocks from Southern India:Implications for Prograde High-Pressure (Eclogite-Facies?) Metamorphism. Earth and Planetary Science Letters, 242(1/2):111-129. http://doi.org/10.1016/j.epsl.2005.11.042 |
Sisson, V. B., Poole, A. R., Harris, N. R., et al., 2003. Geochemical and Geochronologic Constraints for Genesis of a Tonalite-Trondhjemite Suite and Associated Mafic Intrusive Rocks in the Eastern Chugach Mountains, Alaska: A Record of Ridge Transform Subduction. In: Sisson, V. B., Roeske, S. M., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper, 371: 293-326 |
Sizova, E., Gerya, T., Brown, M., 2014. Contrasting Styles of Phanerozoic and Precambrian Continental Collision. Gondwana Research, 25(2):522-545. http://doi.org/10.1016/j.gr.2012.12.011 |
Stüwe, K., 1998. Heat Sources of Cretaceous Metamorphism in the Eastern Alps-A Discussion. Tectonophysics, 287(1/2/3/4):251-269. http://doi.org/10.1016/s0040-1951(98)80072-3 |
Stüwe, K., 2007. Geodynamics of the Lithosphere: Quantitative Description of Geological Problems, 2nd Edition. Springer-Verlag, Berlin, Heidelberg, Dordrecht. 493 |
Taylor-Jones, K., Powell, R., 2015. Interpreting Zirconium-in-Rutile Thermometric Results. Journal of Metamorphic Geology, 33(2):115-122. http://doi.org/10.1111/jmg.12109 |
Thompson, A. B., Connolly, J. A. D., 1995. Melting of the Continental Crust:Some Thermal and Petrological Constraints on Anatexis in Continental Collision Zones and Other Tectonic Settings. Journal of Geophysical Research:Solid Earth, 100(B8):15565-15579. http://doi.org/10.1029/95jb00191 |
Tomkins, H. S., Powell, R., Ellis, D. J., 2007. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 25(6):703-713. http://doi.org/10.1111/j.1525-1314.2007.00724.x |
Tong, L. X., Chen, Y. B., Xu, Y. G., et al., 2013. Zircon U-Pb Ages of the Ultrahigh-Temperature Metapelitic Granulite from the Altai Orogen, NW China, and Geological Implications. Acta Petrologica Sinica, 29(10):3435-3445 (in Chinese with English Abstract) |
Tong, L. X., Xu, Y. G., Cawood, P. A., et al., 2014. Anticlockwise P-T Evolution at~280 Ma Recorded from Ultrahigh-Temperature Metapelitic Granulite in the Chinese Altai Orogenic Belt, a Possible Link with the Tarim Mantle Plume?. Journal of Asian Earth Sciences, 94:1-11. http://doi.org/10.1016/j.jseaes.2014.07.043 |
Tsunogae, T., Santosh, M., 2006. Spinel-Sapphirine-Quartz Bearing Composite Inclusion within Garnet from an Ultrahigh-Temperature Pelitic Granulite:Implications for Metamorphic History and P-T Path. Lithos, 92(3/4):524-536. http://doi.org/10.1016/j.lithos.2006.03.060 |
Tsunogae, T., Santosh, M., 2011. Sapphirine+Quartz Assemblage from the Southern Granulite Terrane, India:Diagnostic Evidence for Ultrahigh-Temperature Metamorphism within the Gondwana Collisional Orogen. Geological Journal, 46(2/3):183-197. http://doi.org/10.1002/gj.1244 |
Tsunogae, T., Santosh, M., Ohyama, H., et al., 2008. High-Pressure and Ultrahigh-Temperature Metamorphism at Komateri, Northern Madurai Block, Southern India. Journal of Asian Earth Sciences, 33(5/6):395-413. http://doi.org/10.1016/j.jseaes.2008.02.004 |
Vilà, M., Fernández, M., Jiménez-Munt, I., 2010. Radiogenic Heat Production Variability of Some Common Lithological Groups and Its Significance to Lithospheric Thermal Modeling. Tectonophysics, 490(3/4):152-164. http://doi.org/10.1016/j.tecto.2010.05.003 |
Wan, Y. S., Xu, Z. Y., Dong, C. Y., et al., 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and~1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton:SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 224:71-93. http://doi.org/10.1016/j.precamres.2012.09.014 |
Wang, W., Wei, C. J., Wang, T., et al., 2009. Confirmation of Pelitic Granulite in the Altai Orogen and Its Geological Significance. Chinese Science Bulletin, 54(14):2543-2548. http://doi.org/10.1007/s11434-009-0041-6 |
Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4):413-433. http://doi.org/10.1007/s00410-006-0068-5 |
Wei, C. J., 2012. Advance of Metamorphic Petrology during the First Decade of the 21st Century. Bulletin of Mineralogy, Petrology and Geochemistry, 31:415-427 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201205001 |
Wei, C. J., 2016. Granulite Facies Metamorphism and Petrogenesis of Granite (Ⅱ):Quantitative Modeling of the HT-UHT Phase Equilibria for Metapelites and the Petrogenesis of S-Type Granite. Acta Petrologica Sinica, 32(6):1625-1643 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201606004.htm |
Wei, C. J., Guan, X. J., Dong, J., 2017. HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGs. Acta Petrologica Sinica, 33:1381-1404 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201705002.htm |
Wei, C. J., Powell, R., Clarke, G. L., 2004. Calculated Phase Equilibria for Low-and Medium-Pressure Metapelites in the KFMASH and KMnFMASH Systems. Journal of Metamorphic Geology, 22(5):495-508. http://doi.org/10.1111/j.1525-1314.2004.00530.x |
Wei, C. J., Zhou, X. W., 2003. Progress in the Study Of Metamorphic Phase Equilibrium. Earth Science Frontiers, 10:341-351 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200304003.htm |
Wei, C. J., Zhu, W. P., 2016. Granulite Facies Metamorphism and Petrogenesis of Granite (I):Metamorphic Phase Equilibria for HT-UHT Metapelites/Greywackes. Acta Petrologica Sinica, 32(6):1611-1624 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201606004.htm |
White, R. W., Powell, R., 2010. Retrograde Melt-Residue Interaction and the Formation of Near-Anhydrous Leucosomes in Migmatites. Journal of Metamorphic Geology, 28(6):579-597. http://doi.org/10.1111/j.1525-1314.2010.00881.x |
White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2):139-153. http://doi.org/10.1046/j.0263-4929.2000.00303.x |
White, R. W., Powell, R., Holland, T. J. B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5):511-527. http://doi.org/10.1111/j.1525-1314.2007.00711.x |
Whittington, A. G., Hofmeister, A. M., Nabelek, P. I., 2009. Temperature-Dependent Thermal Diffusivity of the Earth's Crust and Implications for Magmatism. Nature, 458(7236):319-321. http://doi.org/10.1038/nature07818 |
Xiang, H., Zhang, Z. M., Lei, H. C., et al., 2014a. Paleoproterozoic Ultrahigh-Temperature Pelitic Granulites in the Northern Sulu Orogen:Constraints from Petrology and Geochronology. Precambrian Research, 254:273-289. http://doi.org/10.1016/j.precamres.2014.09.004 |
Xiang, H., Zhong, Z. Q., Li, Y., et al., 2014b. Sapphirine-Bearing Granulites from the Tongbai Orogen, China:Petrology, Phase Equilibria, Zircon U-Pb Geochronology and Implications for Paleozoic Ultrahigh Temperature Metamorphism. Lithos, 208/209:446-461. http://doi.org/10.1016/j.lithos.2014.08.017 |
Yang, C., Wei, C. J., 2017. Ultrahigh Temperature (UHT) Mafic Granulites in the East Hebei, North China Craton:Constraints from a Comparison between Temperatures Derived from REE-Based Thermometers and Major Element-Based Thermometers. Gondwana Research, 46:156-169. http://doi.org/10.1016/j.gr.2017.02.017 |
Yang, Q. Y., Santosh, M., Tsunogae, T., 2014. Ultrahigh-Temperature Metamorphism under Isobaric Heating:New Evidence from the North China Craton. Journal of Asian Earth Sciences, 95:2-16. http://doi.org/10.1016/j.jseaes.2014.01.018 |
Yang, X. Q., Li, Z. L., 2013. Fluid Characteristics of Late Paleozoic Ultrahigh-Temperature Granulites from the Altay Orogenic Belt, Northwestern China and Its Significance. Acta Petrologica Sinica, 29(10):3446-3456 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201310010 |
Yoshino, T., Okudaira, T., 2004. Crustal Growth by Magmatic Accretion Constrained by Metamorphic P-T Paths and Thermal Models of the Kohistan Arc, NW Himalayas. Journal of Petrology, 45(11):2287-2302. http://doi.org/10.1093/petrology/egh056 |
Yu, S. Y., Zhang, J. X., Gong, J. H., 2011. Zr-in-Rutile Thermometry in HP/UHT Granulite in the Bashiwake Area of the South Altun and Its Geological Implications. Earth Science Frontiers, 18(2):140-150 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201102016.htm |
Zack, T., Moraes, R., Kronz, A., 2004. Temperature Dependence of Zr in Rutile:Empirical Calibration of a Rutile Thermometer. Contributions to Mineralogy and Petrology, 148(4):471-488. http://doi.org/10.1007/s00410-004-0617-8 |
Zhai, M. G., Liu, W. J., 2001. The Formation of Granulite and Its Contribution to Evolution of the Continental Crust. Acta Petrologica Sinica, 17(1):28-38 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200101005 |
Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2010. Zr-in-Rutile Thermometry in HP/UHP Eclogites from Western China. Contributions to Mineralogy and Petrology, 160(3):427-439. http://doi.org/10.1007/s00410-009-0486-2 |
Zhang, J. X., Meng, F. C., 2005. Sapphirine-Bearing High Pressure Mafic Granulite and Its Implications in the South Altyn Tagh. Chinese Science Bulletin, 50(3):265-269. http://doi.org/10.1007/bf02897537 |
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2000. Petrology and P-T Path of the Fuping Mafic Granulites:Implications for Tectonic Evolution of the Central Zone of the North China Craton. Journal of Metamorphic Geology, 18(4):375-391. http://doi.org/10.1046/j.1525-1314.2000.00264.x |
Zhao, L., Guo, F., Fan, W. M., et al., 2011. Late Paleozoic Ultrahigh-Temperature Metamorphism in South China:A Case Study of Granulite Enclaves in the Shiwandashan Granites. Acta Petrologica Sinica, 27(6):1707-1720 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201106012 |