Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 5
Oct 2018
Turn off MathJax
Article Contents
Chun-Ming Wu. Metapelitic Garnet-Muscovite-Al2SiO5-Quartz (GMAQ) Geothermobarometry. Journal of Earth Science, 2018, 29(5): 977-988. doi: 10.1007/s12583-018-0851-z
Citation: Chun-Ming Wu. Metapelitic Garnet-Muscovite-Al2SiO5-Quartz (GMAQ) Geothermobarometry. Journal of Earth Science, 2018, 29(5): 977-988. doi: 10.1007/s12583-018-0851-z

Metapelitic Garnet-Muscovite-Al2SiO5-Quartz (GMAQ) Geothermobarometry

doi: 10.1007/s12583-018-0851-z
More Information
  • Corresponding author: Chun-Ming Wu
  • Received Date: 25 Apr 2018
  • Accepted Date: 15 Jul 2018
  • Publish Date: 01 Oct 2018
  • The garnet-muscovite geothermometer and garnet-muscovite-Al2SiO5-quartz (GMAQ) geobarometer have been empirically calibrated under P-T conditions of 1-12 kbar and 460-760℃ using natural metapelitic rocks. The chemical compositions of the calibrant muscovite are in the ranges of Fe=0.03-0.21 atoms, Mg=0.02-0.32 atoms and Al=1.62-1.96 atoms, respectively, on the 11-oxygen basis per formula unit. The garnet-muscovite thermometer yields similar temperature estimates to the well calibrated garnet-biotite thermometer within error of ±55℃, and successfully discriminates the systematic temperature change of the different zones of either the prograde or inverted metamorphic terranes or thermal contact aureoles. The six formulations of GMAQ barometry yield similar pressure estimates to the well calibrated GASP barometer within error of ±1.2 kbar, and plot the Al2SiO5-bearing metapelite into the correct stability field of the Al2SiO5 polymorphs. Moreover, the GMAQ thermobarometers show that the pressure is almost constant for every thermal contact aureole within limited geographic region, which reflects geological condition. The random errors are estimated to be of ca. ±60℃ and ±1.4 kbar for the geothermometer and geobarometer, respectively. A spreadsheet for applying GMAQ geothermobarometry is supplied in the Electronic Supplementary Materials.

     

  • loading
  • Ali, A., Yar, M., Khan, M. A., et al., 2016. Interrelationships between Deformation and Metamorphic Events across the Western Hinterland Zone, NW Pakistan. Journal of Earth Science, 27(4):584-598. https://doi.org/10.1007/s12583-016-0717-1
    Ashworth, J. R., Evirgen, M. M., 1985a. Plagioclase Relations in Pelites, Central Menderes Massif, Turkey. Ⅰ. the Peristerite Gap with Coexisting Kyanite. Journal of Metamorphic Geology, 3(3):207-218. https://doi.org/10.1111/j.1525-1314.1985.tb00317.x
    Ashworth, J. R., Evirgen, M. M., 1985b. Plagioclase Relations in Pelites, Central Menderes Massif, Turkey. Ⅱ. Perturbation of Garnet-Plagioclase Geobarometers. Journal of Metamorphic Geology, 3(3):219-229. https://doi.org/10.1111/j.1525-1314.1985.tb00318.x
    Bell, T. H., Johnson, S. E., Davis, B., et al., 1992. Porphyroblast Inclusion-Trail Orientation Data:Eppure Non Son Girate!. Journal of Metamorphic Geology, 10(3):295-307. https://doi.org/10.1111/j.1525-1314.1992.tb00084.x
    Bell, T. H., Mares, V. M., 1999. Correlating Deformation and Metamorphism around Orogenic Arcs. American Mineralogist, 84(11/12):1727-1740. https://doi.org/10.2138/am-1999-11-1203
    Berman, R. G., 1991. Thermobarometry Using Multi-Equilibrium Calculations:A New Technique, with Petrological Applications. Canadian Mineralogist, 29:833-855 https://pubs.geoscienceworld.org/canmin/article-abstract/29/4/833/12355/thermobarometry-using-multi-equilibrium
    Berman, R. G., Aranovich, L. Y., 1996. Optimized Standard State and Solution Properties of Minerals. Ⅰ. Calibration for Olivine, Orthopyroxene, Cordierite, Garnet, and Ilmenite in the System FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contributions to Mineralogy and Petrology, 126:1-24 doi: 10.1007/s004100050232
    Bohlen, S. R., Liotta, J. J., 1986. A Barometer for Garnet Amphibolites and Garnet Granulites. Journal of Petrology, 27(5):1025-1034. https://doi.org/10.1093/petrology/27.5.1025
    Bohlen, S. R., Wall, V. J., Boettcher, A. L., 1983. Experimental Investigations and Geological Applications of Equilibria in the System FeO-TiO2-Al2O3-SiO2-H2O. American Mineralogist, 68:1049-1058 http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=68/11-12/1049
    Chatterjee, N., 2016. Constraints from Monazite and Xenotime Growth Modelling in the MnCKFMASH-PYCe System on the P-T Path of a Metapelite from Shillong-Meghalaya Plateau:Implications for the Indian Shield Assembly. Journal of Metamorphic Geology, 35(4):393-412. https://doi.org/10.1111/jmg.12237
    Chen, N.-S., 1990. The P-T Paths of Qinling Group and Their Implications for the Evolution of Metamorphic Environment, Tectonism and Magmatism. Earth Science-Journal of China University of Geosciences, 15:145-155 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199002003.htm
    Chen, N.-S., Gong, S. L., Sun, M., et al., 2009. Precambrian Evolution of the Quanji Block, Northeastern Margin of Tibet:Insights from Zircon U-Pb and Lu-Hf Isotope Compositions. Journal of Asian Earth Sciences, 35(3/4):367-376. https://doi.org/10.1016/j.jseaes.2008.10.004
    Chen, N.-S., Sun, M., You, Z. D., et al., 1998. Well-Preserved Garnet Growth Zoning in Granulite from the Dabie Mountains, Central China. Journal of Metamorphic Geology, 16(2):213-222. https://doi.org/10.1111/j.1525-1314.1998.00074.x
    Cheng, S. H., Lai, X. Y., You, Z. D., 2009. P-T Paths Derived from Garnet Growth Zoning in Danba Domal Metamorphic Terrain, Sichuan Province, West China. Journal of Earth Science, 20(2):219-240. https://doi.org/10.1007/s12583-009-0022-3
    Ferry, J. M., Spear, F. S., 1978. Experimental Calibration of the Partitioning of Fe and Mg between Biotite and Garnet. Contributions to Mineralogy and Petrology, 66(2):113-117. https://doi.org/10.1007/bf00372150
    Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4):429-437. https://doi.org/10.1007/s00410-007-0201-0
    Ganguly, J., Cheng, W. J., Tirone, M., 1996. Thermodynamics of Aluminosilicate Garnet Solid Solution:New Experimental Data, an Optimized Model, and Thermometric Applications. Contributions to Mineralogy and Petrology, 126(1/2):137-151. https://doi.org/10.1007/s004100050240
    Green, T. H., Hellman, P. L., 1982. Fe-Mg Partitioning between Coexisting Garnet and Phengite at High Pressure, and Comments on a Garnet-Phengite Geothermometer. Lithos, 15(4):253-266. https://doi.org/10.1016/0024-4937(82)90017-2
    Hodges, K. V., Crowley, P. D., 1985. Error Estimation and Empirical Geothermobarometry for Pelitic Systems. American Mineralogist, 70(7/8):702-709 https://www.researchgate.net/publication/237089064_Error_estimation_and_empirical_geothermobarometry_for_pelitic_systems
    Holdaway, M. J., 2000. Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer. American Mineralogist, 85(7/8):881-892. https://doi.org/10.2138/am-2000-0701
    Holdaway, M. J., 2001. Recalibration of the GASP Geobarometer in Light of Recent Garnet and Plagioclase Activity Models and Versions of the Garnet-Biotite Geothermometer. American Mineralogist, 86(10):1117-1129. https://doi.org/10.2138/am-2001-1001
    Holdaway, M. J., Dutrow, B. L., Hinton, R. W., 1988. Devonian and Carboniferous Metamorphism in West-Central Maine:The Muscovite-Almandine Geobarometer and the Staurolite Problem Revised. American Mineralogist, 73:20-47
    Holdaway, M. J., Mukhopadhyay, B., 1993. A Re-evaluation of the Stability Relations of Andalusite:Thermochemical Data and Phase Diagram for the Alumino Silicates. American Mineralogist, 78:298-315 https://www.researchgate.net/publication/279902871_A_reevaluation_of_the_stability_relations_of_andalusite_Thermochemical_data_and_phase_diagram_for_the_aluminum_silicates
    Huang, M. H., Buick, I. S., Hou, L. W., 2003. Tectonometamorphic Evolution of the Eastern Tibet Plateau:Evidence from the Central Songpan-Garze Orogenic Belt, Western China. Journal of Petrology, 44(2):255-278. https://doi.org/10.1093/petrology/44.2.255
    Hynes, A., Forest, R. C., 1988. Empirical Garnet-Muscovite Geothermometry in Low-Grade Metapelites, Selwyn Range (Canadian Rockies). Journal of Metamorphic Geology, 6(3):297-309. https://doi.org/10.1111/j.1525-1314.1988.tb00422.x
    Johnson, S. E., 1999. Porphyroblast Microstructures:A Review of Current and Future Trends. American Mineralogist, 84(11/12):1711-1726. https://doi.org/10.2138/am-1999-11-1202
    Jones, K. A., 1994. Progressive Metamorphism in a Crustal-Scale Shear Zone:An Example from the Léon Region, North-West Brittany, France. Journal of Metamorphic Geology, 12(1):69-88. https://doi.org/10.1111/j.1525-1314.1994.tb00004.x
    Keller, L. M., de Capitani, C., Abart, R., 2005. A Quaternary Solution Model for White Micas Based on Natural Coexisting Phengite-Paragonite Pairs. Journal of Petrology, 46(10):2129-2144. https://doi.org/10.1093/petrology/egi050
    Kleemann, U., Reinhardt, J., 1994. Garnet-Biotite Thermometry Revisited:The Effect of Al and Ti in Biotite. European Journal of Mineralogy, 6(6):925-942. https://doi.org/10.1127/ejm/6/6/0925
    Kohn, M. J., Spear, F. S., 1991. Error Propagation for Barometers:2. Application to Rocks. American Mineralogist, 76:138-147 http://www.minsocam.org/ammin/AM76/AM76_138.pdf
    Koziol, A. M., Newton, R. C., 1988. Redetermination of the Anorthite-Breakdown Reaction and Improvement of the Plagioclase-Garnet-Al2SiO5-Quartz Geobarometer. American Mineralogist, 73:216-233 http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=73/3-4/216
    Krogh, E. J., Råheim, A., 1978. Temperature and Pressure Dependence of Fe-Mg Partitioning between Garnet and Phengite, with Particular Reference to Eclogites. Contributions to Mineralogy and Petrology, 66(1):75-80. https://doi.org/10.1007/bf00376087
    Lang, H. M., 1991. Quantitative Interpretation of Within-Outcrop Variation in Metamorphic Assemblages in Staurolite-Kyanite-Grade Metapelite, Baltimore, Maryland. Canadian Mineralogist, 29:655-671 https://www.researchgate.net/publication/240632071_Quantitative_interpretation_of_within-outcrop_variation_in_metamorphic_assemblages_in_staurolite-kyanite-grade_metapelites_Baltimore_Maryland
    Lang, H. M., Rice, J. M., 1985. Regression Modelling of Metamorphic Reactions in Metapelites, Snow Peak, Northern Idaho. Journal of Petrology, 26(4):857-887. https://doi.org/10.1093/petrology/26.4.857
    Li, S. Z., Zhao, G. C., Santosh, M., et al., 2011. Palaeoproterozoic Tectonothermal Evolution and Deep Crustal Processes in the Jiao-Liao-Ji Belt, North China Craton:A Review. Geological Journal, 46(6):525-543. https://doi.org/10.1002/gj.1282
    Li, S. Z., Zhao, G. C., Sun, M., et al., 2005. Deformation History of the Paleoproterozoic Liaohe Assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24(5):659-674. https://doi.org/10.1016/j.jseaes.2003.11.008
    Li, S. Z., Zhao, G. C., Wilde, S. A., et al., 2010. Deformation History of the Hengshan-Wutai-Fuping Complexes:Implications for the Evolution of the Trans-North China Orogen. Gondwana Research, 18(4):611-631. https://doi.org/10.1016/j.gr.2010.03.003
    Likhanov, I. I., Reverdatto, V. V., Sheplev, V. S., et al., 2001. Contact Metamorphism of Fe-and Al-Rich Graphitic Metapelites in the Transangarian Region of the Yenisei Ridge, Eastern Siberia, Russia. Lithos, 58(1/2):55-80. https://doi.org/10.1016/s0024-4937(01)00048-2
    Maldonado, R., Weber, B., Ortega-Gutiérrez, F., et al., 2018. High-Pressure Metamorphic Evolution of Eclogite and Associated Metapelite from the Chuacús Complex (Guatemala Suture Zone):Constraints from Phase Equilibria Modelling Coupled with Lu-Hf and U-Pb Geochronology. Journal of Metamorphic Geology, 36(1):95-124. https://doi.org/10.1111/jmg.12285
    Massonne, H.-J., Szpurka, Z., 1997. Thermodynamic Properties of White Micas on the Basis of High-Pressure Experiments in the Systems K2O-MgO-A12O3-SiO2-H2O and K2O-FeO-A12O3-SiO2-H2O. Lithos, 41(1/2/3):229-250. https://doi.org/10.1016/s0024-4937(97)82014-2
    Mukhopadhyay, B., Basu, S., Holdaway, M. J., 1993. A Discussion of Margules-Type Formulations for Multicomponent Solutions with a Generalized Approach. Geochimica et Cosmochimica Acta, 57(2):277-283. https://doi.org/10.1016/0016-7037(93)90430-5
    Mukhopadhyay, B., Holdaway, M. J., Koziol, A. M., 1997. A Statistical Model of Thermodynamic Mixing Properties of Ca-Mg-Fe2+ Garnets. American Mineralogist, 82(1/2):165-181. https://doi.org/10.2138/am-1997-1-219
    Novak, J. M., Holdaway, M. J., 1981. Metamorphic Petrology, Mineral Equilibria, and Polymetamorphism in the Augusta Quadrangle, South-Central Maine. American Mineralogist, 66:51-69
    Parra, T., Vidal, O., Agard, P., 2003. A Thermodynamic Model for Fe-Mg Dioctahedral K White Micas Using Data from Phase-Equilibrium Experiments and Natural Pelitic Assemblages. Contributions to Mineralogy and Petrology, 143(6):706-732. https://doi.org/10.1007/s00410-002-0373-6
    Pattison, D. R. M., 1992. Stability of Andalusite and Sillimanite and the Al2SiO5 Triple Point:Constraints from the Ballachulish Aureole, Scotland. The Journal of Geology, 100(4):423-446. https://doi.org/10.1086/629596
    Perchuk, L. L., Lavrent'eva, I. V., 1983. Experimental Investigation of Exchange Equilibria in the System Cordierite-Garnet-Biotite. In: Saxena, S. K., ed., Kinetics and Equilibrium in Mineral Reactions. Springer-Verlag, New York. 199-239
    Powell, R., Holland, T. J. B., Worley, B., 1998. Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations, with Examples Using THERMOCALC. Journal of Metamorphic Geology, 16(4):577-588. https://doi.org/10.1111/j.1525-1314.1998.00157.x
    Ríos, C., García, C., Takasu, A., 2003. Tectono-Metamorphic Evolution of the Silgará Formation Metamorphic Rocks in the Southwestern Santander Massif, Colombian Andes. Journal of South American Earth Sciences, 16(2):133-154. https://doi.org/10.1016/s0895-9811(03)00025-7
    Şengün, F., Zack, T., 2016. Trace Element Composition of Rutile and Zr-in-Rutile Thermometry in Meta-Ophiolitic Rocks from the Kazdağ Massif, NW Turkey. Mineralogy and Petrology, 110(4):547-560 doi: 10.1007/s00710-016-0433-7
    Spear, F. S., Selverstone, J., Hickmott, D., et al., 1984. P-T Paths from Garnet Zoning:A New Technique for Deciphering Tectonic Processes in Crystalline Terranes. Geology, 12(2):87-90. https://doi.org/10.1130/0091-7613(1984)12<87:ppfgza>2.0.co;2 doi: 10.1130/0091-7613(1984)12<87:ppfgza>2.0.co;2
    Stephenson, B. J., Waters, D. J., Searle, M. P., 2000. Inverted Metamorphism and the Main Central Thrust:Field Relations and Thermobarometric Constraints from the Kishtwar Window, NW Indian Himalaya. Journal of Metamorphic Geology, 18(5):571-590. https://doi.org/10.1046/j.1525-1314.2000.00277.x
    Tomkins, H. S., Powell, R., Ellis, D. J., 2007. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 25(6):703-713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
    Vannay, J.-C., Grasemann, B., 1998. Inverted Metamorphism in the High Himalaya of Himachal Pradesh (NW India):Phase Equilibria versus Thermometry. Schweizerische Mineralogische und Petrographische Mitteilungen, 78:107-132
    Weller, O. M., St-Onge, M. R., Waters, D. J., et al., 2013. Quantifying Barrovian Metamorphism in the Danba Structural Culmination of Eastern Tibet. Journal of Metamorphic Geology, 31(9):909-935. https://doi.org/10.1111/jmg.12050
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
    Whitney, D. L., Mechum, T. A., Kuehner, S. M., et al., 1996. Progressive Metamorphism of Pelitic Rocks from Protolith to Granulite Facies, Dutchess County, New York, USA:Constraints on the Timing of Fluid Infiltration during Regional Metamorphism. Journal of Metamorphic Geology, 14(2):163-181. https://doi.org/10.1046/j.1525-1314.1996.05836.x
    Wu, C.-M., 2015. Revised Empirical Garnet-Biotite-Muscovite-Plagioclase Geobarometer in Metapelites. Journal of Metamorphic Geology, 33(2):167-176. https://doi.org/10.1111/jmg.12115
    Wu, C.-M., 2017. Calibration of the Garnet-Biotite-Al2SiO5-Quartz Geobarometer for Metapelites. Journal of Metamorphic Geology, 35(9):983-998 doi: 10.1111/jmg.2017.35.issue-9
    Wu, C.-M., Cheng, B. H., 2006. Valid Garnet-Biotite (GB) Geothermometry and Garnet-Aluminum Silicate-Plagioclase-Quartz (GASP) Geobarometry in Metapelitic Rocks. Lithos, 89(1/2):1-23. https://doi.org/10.1016/j.lithos.2005.09.002
    Wu, C.-M., Wang, X. S., Yang, C. H., et al., 2002. Empirical Garnet-Muscovite Geothermometry in Metapelites. Lithos, 62(1/2):1-13. https://doi.org/10.1016/s0024-4937(02)00096-8
    Wu, C.-M., Zhao, G. C., 2006a. Recalibration of the Garnet-Muscovite (GM) Geothermometer and the Garnet-Muscovite-Plagioclase-Quartz (GMPQ) Geobarometer for Metapelitic Assemblages. Journal of Petrology, 47(12):2357-2368. https://doi.org/10.1093/petrology/egl047
    Wu, C.-M., Zhao, G. C., 2006b. The Applicability of the GRIPS Geobarometry in Metapelitic Assemblages. Journal of Metamorphic Geology, 24(4):297-307. https://doi.org/10.1111/j.1525-1314.2006.00638.x
    You, Z. D., Han, Y. J., Suo, S. T., et al., 1993. Metamorphic History and Tectonic Evolution of the Qinling Complex, Eastern Qinling Mountains, China. Journal of Metamorphic Geology, 11(4):549-560. https://doi.org/10.1111/j.1525-1314.1993.tb00171.x
    Zhang, J., Zhao, G. C., Li, S. Z., et al., 2009. Polyphase Deformation of the Fuping Complex, Trans-North China Orogen:Structures, SHRIMP U-Pb Zircon Ages and Tectonic Implications. Journal of Structural Geology, 31(2):177-193. https://doi.org/10.1016/j.jsg.2008.11.008
    Zhang, J., Zhao, G. C., Li, S. Z., et al., 2012. Structural Pattern of the Wutai Complex and Its Constraints on the Tectonic Framework of the Trans-North China Orogen. Precambrian Research, 222/223:212-229. https://doi.org/10.1016/j.precamres.2011.08.009
    Zwart, H. J., 1962. On the Determination of Polymetamorphic Mineral Associations, and Its Application to the Bosost Area (Central Pyrenees). Geologische Rundschau, 52(1):38-65. https://doi.org/10.1007/bf01840064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(777) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return