Ai, Y., 1994. A Revision of the Garnet-Clinopyroxene Fe2+-Mg Exchange Geothermometer. Contributions to Mineralogy and Petrology, 115(4):467-473. https://doi.org/10.1007/bf00320979 |
Ali, A., Yar, M., Khan, M. A., et al., 2016. Interrelationships between Deformation and Metamorphic Events across the Western Hinterland Zone, NW Pakistan. Journal of Earth Science, 27(4):584-598. https://doi.org/10.1007/s12583-016-0717-1 |
Ambrose, T. K., Larson, K. P., Guilmette, C., et al., 2015. Lateral Extrusion, Underplating, and Out-of-Sequence Thrusting within the Himalayan Metamorphic Core, Kanchenjunga, Nepal. Lithosphere, 7(4):441-464. https://doi.org/10.1130/l437.1 |
Anczkiewicz, R., Chakraborty, S., Dasgupta, S., et al., 2014. Timing, Duration and Inversion of Prograde Barrovian Metamorphism Constrained by High Resolution Lu-Hf Garnet Dating:A Case Study from the Sikkim Himalaya, NE India. Earth and Planetary Science Letters, 407:70-81. https://doi.org/10.1016/j.epsl.2014.09.035 |
Beaumont, C., Jamieson, R. A., Nguyen, M. H., et al., 2004. Crustal Channel Flows:1. Numerical Models with Applications to the Tectonics of the Himalayan-Tibetan Orogen. Journal of Geophysical Research:Solid Earth, 109(B6):B06406. https://doi.org/10.1029/2003jb002809 |
Beaumont, C., Jamieson, R., Nguyen, M., 2010. Models of Large, Hot Orogens Containing a Collage of Reworked and Accreted Terranes. Canadian Journal of Earth Sciences, 47(4):485-515. https://doi.org/10.1139/e10-002 |
Beaumont, C., Nguyen, M. H., Jamieson, R. A., et al., 2006. Crustal Flow Modes in Large Hot Orogens. Geological Society, London, Special Publications, 268(1):91-145. https://doi.org/10.1144/gsl.sp.2006.268.01.05 |
Booth, A. L., Chamberlain, C. P., Kidd, W. S. F., et al., 2009. Constraints on the Metamorphic Evolution of the Eastern Himalayan Syntaxis from Geochronologic and Petrologic Studies of Namche Barwa. Geological Society of America Bulletin, 121(3/4):385-407. https://doi.org/10.1130/b26041.1 |
Booth, A. L., Zeitler, P. K., Kidd, W. S. F., et al., 2004. U-Pb Zircon Constraints on the Tectonic Evolution of Southeastern Tibet, Namche Barwa Area. American Journal of Science, 304(10):889-929. https://doi.org/10.2475/ajs.304.10.889 |
Burg, J.-P., Nievergelt, P., Oberli, F., et al., 1998. The Namche Barwa Syntaxis:Evidence for Exhumation Related to Compressional Crustal Folding. Journal of Asian Earth Sciences, 16(2/3):239-252. https://doi.org/10.1016/s0743-9547(98)00002-6 |
Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53:469-500 doi: 10.2113/0530469 |
Cottle, J. M., Searle, M. P., Horstwood, M. S. A., et al., 2009. Timing of Midcrustal Metamorphism, Melting, and Deformation in the Mount Everest Region of Southern Tibet Revealed by U(-Th)-Pb Geochronology. The Journal of Geology, 117(6):643-664. https://doi.org/10.1086/605994 |
Dale, J., Holland, T. J. B., Powell, R., 2000. Hornblende-Garnet-Plagioclase Thermobarometry:A Natural Assemblage Calibration of the Thermodynamics of Hornblende. Contributions to Mineralogy and Petrology, 140(3):353-362. https://doi.org/10.1007/s004100000187 |
Ding, H. X., Zhang, Z. M., Dong, X., et al., 2016. Early Eocene (c. 50 Ma) Collision of the Indian and Asian Continents:Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet. Earth and Planetary Science Letters, 435:64-73 doi: 10.1016/j.epsl.2015.12.006 |
Ding, L., Zhong, D. L., Yin, A., et al., 2001. Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3):423-438. https://doi.org/10.1016/s0012-821x(01)00463-0 |
Eckert, J. O., Newton, R. C., Kleppa, O. J., 1991. The △H of Reaction and Recalibration of Garnet-Pyroxene-Plagioclase-Quartz Geobarometers in the CMAS System by Solution Calorimetry. American Mineralogist, 76:148-160 |
Gao, L. E., Zeng, L. S., 2014. Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet. Geochimica et Cosmochimica Acta, 130:136-155. https://doi.org/10.1016/j.gca.2014.01.003 |
Gao, L. E., Zeng, L. S., Asimow, P. D., 2017. Contrasting Geochemical Signatures of Fluid-Absent Versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites. Geology, 45(1):39-42. https://doi.org/10.1130/g38336.1 |
Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9):845-869. https://doi.org/10.1111/jmg.12211 |
Groppo, C., Rolfo, F., Indares, A., 2012. Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal:The Effect of Decompression and Implications for the 'Channel Flow' Model. Journal of Petrology, 53(5):1057-1088. https://doi.org/10.1093/petrology/egs009 |
Groppo, C., Rubatto, D., Rolfo, F., et al., 2010. Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley, Eastern Nepal Himalaya). Lithos, 118(3/4):287-301. https://doi.org/10.1016/j.lithos.2010.05.003 |
Guillot, S., Mahéo, G., de Sigoyer, J., et al., 2008. Tethyan and Indian Subduction Viewed from the Himalayan High-to Ultrahigh-Pressure Metamorphic Rocks. Tectonophysics, 451(1/2/3/4):225-241. https://doi.org/10.1016/j.tecto.2007.11.059 |
Guilmette, C., Indares, A., Hébert, R., 2011. High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications. Lithos, 124(1/2):66-81 http://www.sciencedirect.com/science/article/pii/S0024493710002549 |
Guo, Z. F., Wilson, M., 2012. The Himalayan Leucogranites:Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 22(2):360-376. https://doi.org/10.1016/j.gr.2011.07.027 |
Harris, N. B. W., Caddick, M., Kosler, J., et al., 2004. The Pressure-Temperature-Time Path of Migmatites from the Sikkim Himalaya. Journal of Metamorphic Geology, 22(3):249-264. https://doi.org/10.1111/j.1525-1314.2004.00511.x |
Harris, N. B. W., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites. Tectonics, 13(6):1537-1546. https://doi.org/10.1029/94tc01611 |
Holland, T. J. B., Blundy, J., 1994. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 116(4):433-447. https://doi.org/10.1007/bf00310910 |
Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3):333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x |
Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027 |
Hou, Z. Q., Zheng, Y. C., Zeng, L. S., et al., 2012. Eocene-Oligocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen. Earth and Planetary Science Letters, 349/350:38-52. https://doi.org/10.1016/j.epsl.2012.06.030 |
Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICP-MS Analysis:Application to Lead Isotope Analysis. Analytical Chemistry, 87(2):1152-1157. https://doi.org/10.1021/ac503749k |
Huangfu, P. P., Wang, Y. J., Li, Z. H., et al., 2016. Effects of Crustal Eclogitization on Plate Subduction/Collision Dynamics:Implications for India-Asia Collision. Journal of Earth Science, 27(5):727-739. https://doi.org/10.1007/s12583-016-0701-9 |
Iaccarino, S., Montomoli, C., Carosi, R., et al., 2015. Pressure-Temperature-Time-Deformation Path of Kyanite-Bearing Migmatitic Paragneiss in the Kali Gandaki Valley (Central Nepal):Investigation of Late Eocene-Early Oligocene Melting Processes. Lithos, 231:103-121. https://doi.org/10.1016/j.lithos.2015.06.005 |
Imayama, T., Takeshita, T., Yi, K., et al., 2012. Two-Stage Partial Melting and Contrasting Cooling History within the Higher Himalayan Crystalline Sequence in the Far-Eastern Nepal Himalaya. Lithos, 134/135:1-22. https://doi.org/10.1016/j.lithos.2011.12.004 |
Jamieson, R. A., Beaumont, C., Medvedev, S., et al., 2004. Crustal Channel Flows:2. Numerical Models with Implications for Metamorphism in the Himalayan-Tibetan Orogen. Journal of Geophysical Research:Solid Earth, 109(B6):B06407. https://doi.org/10.1029/2003jb002811 |
Kali, E., Leloup, P. H., Arnaud, N., et al., 2010. Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models. Tectonics, 29(2):TC2014. https://doi.org/10.1029/2009tc002551 |
Knesel, K. M., Davidson, J. P., 2002. Insights into Collisional Magmatism from Isotopic Fingerprints of Melting Reactions. Science, 296(5576):2206-2208. https://doi.org/10.1126/science.1070622 |
Kohn, M. J., 2014. Himalayan Metamorphism and Its Tectonic Implications. Annual Review of Earth and Planetary Sciences, 42(1):381-419. https://doi.org/10.1146/annurev-earth-060313-055005 |
Kohn, M. J., Corrie, S. L., 2011. Preserved Zr-Temperatures and U-Pb Ages in High-Grade Metamorphic Titanite:Evidence for a Static Hot Channel in the Himalayan Orogen. Earth and Planetary Science Letters, 311(1/2):136-143. https://doi.org/10.1016/j.epsl.2011.09.008 |
Liu, F. L., Zhang, L. F., 2014. High-Pressure Granulites from Eastern Himalayan Syntaxis:P-T Path, Zircon U-Pb Dating and Geological Implications. Acta Petrologica Sinica, 30(10):2808-2820 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410002 |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2):537-571. https://doi.org/10.1093/petrology/egp082 |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
Liu, Y., Yang, Z. Q., Wang, M., 2007. History of Zircon Growth in a High-Pressure Granulite within the Eastern Himalayan Syntaxis, and Tectonic Implications. International Geology Review, 49(9):861-872. https://doi.org/10.2747/0020-6814.49.9.861 |
Liu, Y., Zhong, D., 1997. Petrology of High-Pressure Granulites from the Eastern Himalayan Syntaxis. Journal of Metamorphic Geology, 15(4):451-466. https://doi.org/10.1111/j.1525-1314.1997.00033.x |
Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208/209:118-136 doi: 10.1016/j.lithos.2014.08.022 |
Ludwig, K. R., 2003. Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, Berkeley. 1-73 |
Najman, Y., Appel, E., Boudagher-Fadel, M., et al., 2010. Timing of India-Asia Collision:Geological, Biostratigraphic, and Palaeomagnetic Constraints. Journal of Geophysical Research, 115(B12):B12416. https://doi.org/10.1029/2010jb007673 |
Palin, R. M., White, R. W., Green, E. C. R., 2016. Partial Melting of Metabasic Rocks and the Generation of Tonalitic-Trondhjemitic-Granodioritic (TTG) Crust in the Archaean: Constraints from Phase Equilibrium Modelling. Precambrian Research, 287: 73-90. https: //doi.org/10.1016/j.precamres.2016.11.001 |
Powell, R., Holland, T. J. B., 1988. An Internally Consistent Dataset with Uncertainties and Correlations:3. Applications to Geobarometry, Worked Examples and a Computer Program. Journal of Metamorphic Geology, 6(2):173-204. https://doi.org/10.1111/j.1525-1314.1988.tb00415.x |
Rubatto, D., 2002. Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2):123-138. https://doi.org/10.1016/s0009-2541(01)00355-2 |
Rubatto, D., Chakraborty, S., Dasgupta, S., 2013. Timescales of Crustal Melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) Inferred from Trace Element-Constrained Monazite and Zircon Chronology. Contributions to Mineralogy and Petrology, 165(2):349-372. https://doi.org/10.1007/s00410-012-0812-y |
Rubatto, D., Hermann, J., 2007. Zircon Behaviour in Deeply Subducted Rocks. Elements, 3(1):31-35. https://doi.org/10.2113/gselements.3.1.31 |
Searle, M. P., Simpson, R. L., Law, R. D., et al., 2003. The Structural Geometry, Metamorphic and Magmatic Evolution of the Everest Massif, High Himalaya of Nepal-South Tibet. Journal of the Geological Society, 160(3): 345-366. https: //doi.org/10.1144/0016-764902-126 |
Spear, F. S., 1991. On the Interpretation of Peak Metamorphic Temperatures in Light of Garnet Diffusion during Cooling. Journal of Metamorphic Geology, 9(4):379-388. https://doi.org/10.1111/j.1525-1314.1991.tb00533.x |
Spear, F. S., Kohn, M. J., Florence, F. P., et al., 1990. A Model for Garnet and Plagioclase Growth in Pelitic Schists:Implications for Thermobarometry and P-T Path Determinations. Journal of Metamorphic Geology, 8(6):683-696. https://doi.org/10.1111/j.1525-1314.1990.tb00495.x |
Streule, M. J., Searle, M. P., Waters, D. J., et al., 2010. Metamorphism, Melting, and Channel Flow in the Greater Himalayan Sequence and Makalu Leucogranite:Constraints from Thermobarometry, Metamorphic Modeling, and U-Pb Geochronology. Tectonics, 29(5):TC5011. https://doi.org/10.1029/2009tc002533 |
Su, W., Zhang, M., Liu, X. H., et al., 2012. Exact Timing of Granulite Metamorphism in the Namche-Barwa, Eastern Himalayan Syntaxis:New Constrains from SIMS U-Pb Zircon Age. International Journal of Earth Sciences, 101(1):239-252. https://doi.org/10.1007/s00531-011-0656-0 |
Thompson, A. B., England, P. C., 1984. Pressure-Temperature-Time Paths of Regional Metamorphism Ⅱ. Their Inference and Interpretation Using Mineral Assemblages in Metamorphic Rocks. Journal of Petrology, 25(4):929-955. https://doi.org/10.1093/petrology/25.4.929 |
Tian, Z. L., Kang, D. Y., Mu, H. C., 2017. Metamorphic P-T-t Path of Garnet Amphibolite from the Eastern Himalaya Syntaxis:Phase Equilibria and Zircon Chronology. Acta Petrologica Sinica, 38:2467-2478 (in Chinese with English Abstract) |
Tian, Z. L., Zhang, Z. M., Dong, X., 2016. Metamorphism of High-P Metagreywacke from the Eastern Himalayan Syntaxis:Phase Equilibria and P-T Path. Journal of Metamorphic Geology, 34(7):697-718. https://doi.org/10.1111/jmg.12205 |
Viskupic, K., Hodges, K. V., Bowring, S. A., 2005. Timescales of Melt Generation and the Thermal Evolution of the Himalayan Metamorphic Core, Everest Region, Eastern Nepal. Contributions to Mineralogy and Petrology, 149(1):1-21. https://doi.org/10.1007/s00410-004-0628-5 |
Wang, J. M., Rubatto, D., Zhang, J. J., 2015. Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya):In-Sequence Thrusting and Its Implications. Journal of Petrology, 56(9):1677-1702. https://doi.org/10.1093/petrology/egv050 |
Wang, J. M., Wu, F. Y., Rubatto, D., et al., 2017. Monazite Behaviour during Isothermal Decompression in Pelitic Granulites:A Case Study from Dinggye, Tibetan Himalaya. Contributions to Mineralogy and Petrology, 172(10):81. https://doi.org/10.1007/s00410-017-1400-y |
Wang, J. M., Zhang, J. J., Liu, K., et al., 2016. Spatial and Temporal Evolution of Tectonometamorphic Discontinuities in the Central Himalaya:Constraints from P-T Paths and Geochronology. Tectonophysics, 679:41-60. https://doi.org/10.1016/j.tecto.2016.04.035 |
Wang, J. M., Zhang, J. J., Wang, X. X., 2013. Structural Kinematics, Metamorphic P-T Profiles and Zircon Geochronology across the Greater Himalayan Crystalline Complex in South-Central Tibet: Implication for a Revised Channel Flow. Journal of Metamorphic Geology, 31(6): 607-628. https: //doi.org/10.1111/jmg.12036 |
Weinberg, R. F., 2016. Himalayan Leucogranites and Migmatites:Nature, Timing and Duration of Anatexis. Journal of Metamorphic Geology, 34(8):821-843. https://doi.org/10.1111/jmg.12204 |
Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31:1-36 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001 |
Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122 |
Xiang, H., Zhang, Z. M., Dong, X., et al., 2013. High-Pressure Metamorphism and Anatexis during the Subduction of Indian Continent:Phase Equilibria Modeling of the Namche Barwa Complex, Eastern Himalayan Syntaxis. Acta Petrologica Sinica, 29:3792-3802 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311012 |
Xu, W. C., Zhang, H. F., Parrish, R., et al., 2010. Timing of Granulite-Facies Metamorphism in the Eastern Himalayan Syntaxis and Its Tectonic Implications. Tectonophysics, 485(1/2/3/4):231-244. https://doi.org/10.1016/j.tecto.2009.12.023 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Zeiger, K., Gordon, S. M., Long, S. P., et al., 2015. Timing and Conditions of Metamorphism and Melt Crystallization in Greater Himalayan Rocks, Eastern and Central Bhutan:Insight from U-Pb Zircon and Monazite Geochronology and Trace-Element Analyses. Contributions to Mineralogy and Petrology, 169(5):47. https://doi.org/10.1007/s00410-015-1143-6 |
Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33(5):1420-1444 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705004 |
Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3/4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005 |
Zhang, H. F., Harris, N. B. W., Parrish, R. R., et al., 2004. Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform. Earth and Planetary Science Letters, 228(1/2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031 |
Zhang, Z. M., Dong, X., Ding, H. X., et al., 2017a. Metamorphism and Partial Melting of the Himalayan Orogen. Acta Petrologica Sinica, 33(8):2313-2341 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505003 |
Zhang, Z. M., Xiang, H., Dong, X., et al., 2017b. Oligocene HP Metamorphism and Anatexis of the Higher Himalayan Crystalline Sequence in Yadong Region, East-Central Himalaya. Gondwana Research, 41:173-187. https://doi.org/10.1016/j.gr.2015.03.002 |
Zhang, Z. M., Xiang, H., Ding, H. X., et al., 2017c. Miocene Orbicular Diorite in East-Central Himalaya:Anatexis, Melt Mixing, and Fractional Crystallization of the Greater Himalayan Sequence. Geological Society of America Bulletin, 129(7/8):869-885. https://doi.org/10.1130/b31586.1 |
Zhang, Z. M., Dong, X., Santosh, M., et al., 2012. Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet:Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton. Gondwana Research, 21(1):123-137. https://doi.org/10.1016/j.gr.2011.02.002 |
Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1):82-98 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dqkx201801005 |
Zhang, Z. M., Xiang, H., Dong, X., et al., 2015. Long-Lived High-Temperature Granulite-Facies Metamorphism in the Eastern Himalayan Orogen, South Tibet. Lithos, 212-215:1-15. https://doi.org/10.1016/j.lithos.2014.10.009 |
Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010. Two Stages of Granulite Facies Metamorphism in the Eastern Himalayan Syntaxis, South Tibet:Petrology, Zircon Geochronology and Implications for the Subduction of Neo-Tethys and the Indian Continent beneath Asia. Journal of Metamorphic Geology, 28:719-733. https://doi.org/10.1111/j.1525-1314.2010.00885.x |
Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010 |