Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 5
Oct 2018
Turn off MathJax
Article Contents
Li Zhang, Yu Ye, Shan Qin, Zhenmin Jin. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 2018, 29(5): 1040-1048. doi: 10.1007/s12583-018-0880-7
Citation: Li Zhang, Yu Ye, Shan Qin, Zhenmin Jin. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 2018, 29(5): 1040-1048. doi: 10.1007/s12583-018-0880-7

Water in the Thickened Lower Crust of the Eastern Himalayan Orogen

doi: 10.1007/s12583-018-0880-7
More Information
  • Corresponding author: Li Zhang
  • Received Date: 08 Aug 2018
  • Accepted Date: 28 Aug 2018
  • Publish Date: 01 Oct 2018
  • Water content in nominally anhydrous minerals (NAMs) of the high-pressure (HP) metamorphic rocks controls the thermal structure, rheology and partial melting of orogenic belts. This paper conducts a systematic analysis of water in NAMs of the HP granulites from the Greater Himalayan Sequence (GHS), representing the thickened lower crust of the eastern Himalayan Orogen. The present result shows that the garnet, clinopyroxene, feldspar, quartz and kyanite contain 188 ppm-432 ppm, 193 ppm-547 ppm, 335 ppm-1 053 ppm, 125 ppm-185 ppm and 89 ppm H2O, respectively, and indicates that the thickened lower crust of the Himalayan Orogen is relatively wet rather than dry. The considerable concentrations of water in the HP granulites are expected to promote the rheological weakening of the metamorphic core of the Himalayan Orogen, providing a favorable evidence for the channel flow model of the exhumation of thickened lower crust.

     

  • loading
  • Beaumont, C., Jamieson, R. A., Nguyen, M. H., et al., 2004. Crustal Channel Flows:1. Numerical Models with Applications to the Tectonics of the Himalayan-Tibetan Orogen. Journal of Geophysical Research:Solid Earth, 109(B6):B06406. https://doi.org/10.1029/2003jb002809
    Bell, D. R., Rossman, G. R., Maldener, J., et al., 2004. Hydroxide in Kyanite:A Quantitative Determination of the Absolute Amount and Calibration of the IR Spectrum. American Mineralogist, 89(7):998-1003. https://doi.org/10.2138/am-2004-0710
    Bell, D. R., Ihinger, P. D., Rossman, G. R., 1995. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 80(5/6):465-474. https://doi.org/10.2138/am-1995-5-607
    Beran, A., Gotzinger, M. A., 1987. The Quantitative IR Spectroscopic Determination of Structural OH Groups in Kyanites. Mineralogy and Petrology, 36(1):41-49. https://doi.org/10.1007/bf01164368
    Booth, A. L., Chamberlain, C. P., Kidd, W. S. F., et al., 2009. Constraints on the Metamorphic Evolution of the Eastern Himalayan Syntaxis from Geochronologic and Petrologic Studies of Namche Barwa. Geological Society of America Bulletin, 121(3/4):385-407. https://doi.org/10.1130/b26041.1
    Booth, A. L., Zeitler, P. K., Kidd, W. S. F., et al., 2004. U-Pb Zircon Constraints on the Tectonic Evolution of Southeastern Tibet, Namche Barwa Area. American Journal of Science, 304(10):889-929. https://doi.org/10.2475/ajs.304.10.889
    Burg, J.-P., Nievergelt, P., Oberli, F., et al., 1998. The Namche Barwa Syntaxis:Evidence for Exhumation Related to Compressional Crustal Folding. Journal of Asian Earth Sciences, 16(2/3):239-252. https://doi.org/10.1016/s0743-9547(98)00002-6
    Ding, L., Zhong, D. L., Yin, A., et al., 2001. Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3):423-438. https://doi.org/10.1029/2004tc001729
    Geng, Q. R., Pan, G. T., Zheng, L. L., et al., 2006. The Eastern Himalayan Syntaxis:Major Tectonic Domains, Ophiolitic Mélanges and Geologic Evolution. Journal of Asian Earth Sciences, 27(3):265-285. https://doi.org/10.1016/j.jseaes.2005.03.009
    Gong, B., Zheng, Y. F., Chen, R. X., 2007. TC/EA-MS Online Determination of Hydrogen Isotope Composition and Water Concentration in Eclogitic Garnet. Physics and Chemistry of Minerals, 34(10):687-698. https://doi.org/10.1007/s00269-007-0184-4
    Griggs, D., 1974. A Model of Hydrolytic Weakening in Quartz. Journal of Geophysical Research, 79(11):1653-1661. https://doi.org/10.1029/jb079i011p01653
    Groppo, C., Rolfo, F., Indares, A., 2012. Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal:The Effect of Decompression and Implications for the 'Channel Flow' Model. Journal of Petrology, 53(5):1057-1088. https://doi.org/10.1093/petrology/egs009
    Guilmette, C., Indares, A., Hébert, R., 2011. High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications. Lithos, 124(1/2):66-81. https://doi.org/10.1016/j.lithos.2010.09.003
    Handy, M. R., Mulch, A., Rosenau, M., et al., 2001. The Role of Fault Zones and Melts as Agents of Weakening, Hardening and Differentiation of the Continental Crust:A Synthesis. Geological Society, London, Special Publications, 186(1):305-332. https://doi.org/10.1144/gsl.sp.2001.186.01.18
    Jamieson, R. A., Beaumont, C., Medvedev, S., et al., 2004. Crustal Channel Flows:2. Numerical Models with Implications for Metamorphism in the Himalayan-Tibetan Orogen. Journal of Geophysical Research:Solid Earth, 109(B6):407 http://d.old.wanfangdata.com.cn/Periodical/dxqy200803010
    Jamieson, R. A., Beaumont, C., Nguyen, M. H., et al., 2006. Provenance of the Greater Himalayan Sequence and Associated Rocks:Predictions of Channel Flow Models. Geological Society, London, Special Publications, 268(1):165-182. https://doi.org/10.1144/gsl.sp.2006.268.01.07
    Johnson, E. A., 2006. Water in Nominally Anhydrous Crustal Minerals:Speciation, Concentration, and Geologic Significance. Reviews in Mineralogy and Geochemistry, 62(1):117-154. https://doi.org/10.2138/rmg.2006.62.6
    Johnson, E. A., Rossman, G. R., 2003. The Concentration and Speciation of Hydrogen in Feldspars Using FTIR And1H MAS NMR Spectroscopy. American Mineralogist, 88(5/6):901-911. https://doi.org/10.2138/am-2003-5-620
    Johnson, E. A., Rossman, G. R., 2004. A Survey of Hydrous Species and Concentrations in Igneous Feldspars. American Mineralogist, 89(4):586-600. https://doi.org/10.2138/am-2004-0413
    Johnson, E. A., Rossman, G. R., Dyar, M. D., et al., 2002. Correlation between OH Concentration and Oxygen Isotope Diffusion Rate in Diopsides from the Adirondack Mountains, New York. American Mineralogist, 87(7):899-908. https://doi.org/10.2138/am-2002-0713
    Katayama, I., Nakashima, S., Yurimoto, H., 2006. Water Content in Natural Eclogite and Implication for Water Transport into the Deep Upper Mantle. Lithos, 86(3/4):245-259. https://doi.org/10.1016/j.lithos.2005.06.006
    Kohlstedt, D. L., 2006. The Role of Water in High-Temperature Rock Deformation. Reviews in Mineralogy and Geochemistry, 62(1):377-396. https://doi.org/10.2138/rmg.2006.62.16
    Kohn, M. J., 2008. P-T-t Data from Central Nepal Support Critical Taper and Repudiate Large-Scale Channel Flow of the Greater Himalayan Sequence. Geological Society of America Bulletin, 120(3/4):259-273. https://doi.org/10.1130/b26252.1
    Kohn, M. J., 2014. Himalayan Metamorphism and Its Tectonic Implications. Annual Review of Earth and Planetary Sciences, 42(1):381-419. https://doi.org/10.1146/annurev-earth-060313-055005
    Kovács, I. J., Németh, B., Török, K., et al., 2015. Very Dry Lower Crust beneath the Central Part of the Carpathian-Pannonian Region: The Role of Miocene Extension Induced Melting. Goldschmidt Conference 2015, August 16-21, Prague
    Kronenberg, A. K., 1994. Hydrogen Speciation and Chemical Weakening of Quartz. Reviews in Mineralogy and Geochemistry, 29:123-176 doi: 10.1007/BF00308135
    Kronenberg, A. K., Wolf, G. H., 1990. Fourier Transform Infrared Spectroscopy Determinations of Intragranular Water Content in Quartz-Bearing Rocks:Implications for Hydrolytic Weakening in the Laboratory and within the Earth. Tectonophysics, 172(3/4):255-271. https://doi.org/10.1016/0040-1951(90)90034-6
    Langer, K., Robarick, E., Sobolev, N. V., et al., 1993. Single-Crystal Spectra of Garnets from Diamondiferous High-Pressure Metamorphic Rocks from Kazakhstan:Indications for OH-, H2O, and FeTi Charge Transfer. European Journal of Mineralogy, 5(6):1091-1100 doi: 10.1127/ejm/5/6/1091
    Leech, M. L., Singh, S., Jain, A. K., et al., 2005. The Onset of India-Asia Continental Collision:Early, Steep Subduction Required by the Timing of UHP Metamorphism in the Western Himalaya. Earth and Planetary Science Letters, 234(1/2):83-97. https://doi.org/10.1016/j.epsl.2005.02.038
    Li, W., Jin, Z. M., Li, H. M., et al., 2017. High Water Content in Primitive Mid-Ocean Ridge Basalt from Southwest Indian Ridge (51.56°E):Implications for Recycled Hydrous Component in the Mantle. Journal of Earth Science, 28(3):411-421. https://doi.org/10.1007/s12583-017-0731-y
    Liu, F. L., Zhang, L. F., 2014. High-Pressure Granulites from Eastern Himalayan Syntaxis:P-T Path, Zircon U-Pb Dating and Geological Implications. Acta Petrologica Sinica, 30(10):2808-2820 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410002
    Liu, Y., Yang, Z. Q., Wang, M., 2007. History of Zircon Growth in a High-Pressure Granulite within the Eastern Himalayan Syntaxis, and Tectonic Implications. International Geology Review, 49(9):861-872. https://doi.org/10.2747/0020-6814.49.9.861
    Liu, Y., Zhong, D., 1997. Petrology of High-Pressure Granulites from the Eastern Himalayan Syntaxis. Journal of Metamorphic Geology, 15(4):451-466. https://doi.org/10.1111/j.1525-1314.1997.00033.x
    Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2):265-282. https://doi.org/10.1007/s12583-016-0925-8
    Nakashima, S., Matayoshi, H., Yuko, T., et al., 1995. Infrared Microspectroscopy Analysis of Water Distribution in Deformed and Metamorphosed Rocks. Tectonophysics, 245(3/4):263-276. https://doi.org/10.1016/0040-1951(94)00239-6
    Parsons, A. J., Phillips, R. J., Lloyd, G. E., et al., 2016. Mid-Crustal Deformation of the Annapurna-Dhaulagiri Himalaya, Central Nepal:A Typical Example of Channel Flow during the Himalayan Orogeny. Geosphere, 12(3):985-1015. https://doi.org/10.1130/ges01246.1
    Paterson, M. S., 1982. The Determination of Hydroxyl by Infrared-Absorption in Quartz, Silicate-Glasses and Similar Materials. Bulletin de Mineralogie, 105:20-29 https://www.researchgate.net/publication/279901322_The_determination_of_hydroxyl_by_infrared_adsorption_in_quartz_silicate_glasses_and_similar_materials
    Potter, R. M., Rossman, G. R., 1977. Desert Varnish:The Importance of Clay Minerals. Science, 196(4297):1446-1448. https://doi.org/10.1126/science.196.4297.1446
    Rossman, G. R., 1996. Studies of OH in Nominally Anhydrous Minerals. Physics and Chemistry of Minerals, 23(4/5):299-304 doi: 10.1007-BF00207777/
    Rossman, G. R., Aines, R. D., 1991. The Hydrous Components in Garnets:Grossular-Hydrogrossular. American Mineralogist, 76:1153-1164 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7c828892a859c7f288e351c67ac306c6
    Rowley, D. B., 1996. Age of Initiation of Collision between India and Asia:A Review of Stratigraphic Data. Earth and Planetary Science Letters, 145(1/2/3/4):1-13. https://doi.org/10.1016/s0012-821x(96)00201-4
    Schmödicke, E., Gose, J., Reinhardt, J., et al., 2015. Garnet in Cratonic and Non-Cratonic Mantle and Lower Crustal Xenoliths from Southern Africa:Composition, Water Incorporation and Geodynamic Constraints. Precambrian Research, 270:285-299. https://doi.org/10.1016/j.precamres.2015.09.019
    Seaman, S. J., Williams, M. L., Jercinovic, M. J., et al., 2013. Water in Nominally Anhydrous Minerals:Implications for Partial Melting and Strain Localization in the Lower Crust. Geology, 41(10):1051-1054. https://doi.org/10.1130/g34435.1
    Shen, K., Wang, J. L., Dong, X., 2010. Fluid Inclusions of the High-Pressure Granulites from the Namche Barwa Complex of the Eastern Himalayan Syntaxis, Tibet:Fluid Composition and Evolution in the Continental Subduction-Zone. Journal of Asian Earth Sciences, 38(1/2):44-56. https://doi.org/10.1016/j.jseaes.2009.12.006
    Sheng, Y. M., Xia, Q. K., Dallai, L., et al., 2007. H2O Contents and D/H Ratios of Nominally Anhydrous Minerals from Ultrahigh-Pressure Eclogites of the Dabie Orogen, Eastern China. Geochimica et Cosmochimica Acta, 71(8):2079-2103. https://doi.org/10.1016/j.gca.2007.01.018
    Skogby, H., Bell, D. R., Rossman, G. R., 1990. Hydroxide in Pyroxene-Variations in the Natural-Environment. American Mineralogist, 75:764-774 https://www.researchgate.net/publication/246404304_Hydroxide_in_pyroxene_Variations_in_the_natural_environment
    Su, W., Ji, Z. P., Ye, K., et al., 2004. Distribution of Hydrous Components in Jadeite of the Dabie Mountains. Earth and Planetary Science Letters, 222(1):85-100. https://doi.org/10.1016/j.epsl.2004.02.028
    Su, W., Zhang, M., Liu, X. H., et al., 2012. Exact Timing of Granulite Metamorphism in the Namche-Barwa, Eastern Himalayan Syntaxis:New Constrains from SIMS U-Pb Zircon Age. International Journal of Earth Sciences, 101(1):239-252. https://doi.org/10.1007/s00531-011-0656-0
    Thomas, S.-M., Koch-Müller, M., Reichart, P., et al., 2009. IR Calibrations for Water Determination in Olivine, R-GeO2, and SiO2 Polymorphs. Physics and Chemistry of Minerals, 36(9):489-509. https://doi.org/10.1007/s00269-009-0295-1
    Tian, Z. L., Zhang, Z. M., Dong, X., 2016. Metamorphism of High-P Metagreywacke from the Eastern Himalayan Syntaxis:Phase Equilibria and P-T Path. Journal of Metamorphic Geology, 34(7):697-718. https://doi.org/10.1111/jmg.12205
    Wang, J. M., Rubatto, D., Zhang, J. J., 2015. Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya):In-Sequence Thrusting and Its Implications. Journal of Petrology, 56(9):1677-1702. https://doi.org/10.1093/petrology/egv050
    Wang, Q., Bagdassarov, N., Xia, Q. K., et al., 2014. Water Contents and Electrical Conductivity of Peridotite Xenoliths from the North China Craton:Implications for Water Distribution in the Upper Mantle. Lithos, 189:105-126. https://doi.org/10.1016/j.lithos.2013.08.005
    Wang, Y. H., Zhang, L. F., Zhang, J. J., et al., 2017. The Youngest Eclogite in Central Himalaya:P-T Path, U-Pb Zircon Age and Its Tectonic Implication. Gondwana Research, 41:188-206. https://doi.org/10.1016/j.gr.2015.10.013
    Xia, Q. K., Sheng, Y. M., Yang, X. Z., et al., 2005. Heterogeneity of Water in Garnets from UHP Eclogites, Eastern Dabieshan, China. Chemical Geology, 224(4):237-246. https://doi.org/10.1016/j.chemgeo.2005.08.003
    Xia, Q. K., Yang, X. Z., Deloule, E., et al., 2006. Water in the Lower Crustal Granulite Xenoliths from Nushan, Eastern China. Journal of Geophysical Research:Solid Earth, 111(B11):B11202. https://doi.org/10.1029/2006jb004296
    Xu, W. C., Zhang, H. F., Parrish, R., et al., 2010. Timing of Granulite-Facies Metamorphism in the Eastern Himalayan Syntaxis and Its Tectonic Implications. Tectonophysics, 485(1/2/3/4):231-244. https://doi.org/10.1016/j.tecto.2009.12.023
    Yang, X. Z., Xia, Q. K., Deloule, E., et al., 2008. Water in Minerals of the Continental Lithospheric Mantle and Overlying Lower Crust:A Comparative Study of Peridotite and Granulite Xenoliths from the North China Craton. Chemical Geology, 256(1/2):33-45. https://doi.org/10.1016/j.chemgeo.2008.07.020
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
    Zhang, J. F., Jin, Z. M., Green, H. W., et al., 2001. Hydroxyl in Continental Deep Subduction Zone:Evidence from UHP Eclogites of the Dabie Mountains. Chinese Science Bulletin, 46(7):592-596. https://doi.org/10.1007/bf02900418
    Zhang, J. J., Ji, J. Q., Zhong, D. L., et al., 2004. Structural Pattern of Eastern Himalayan Syntaxis in Namjagbarwa and Its Formation Process. Science in China Series D:Earth Sciences, 47(2):138-150. https://doi.org/10.1360/02yd0042
    Zhang, L., Jin, Z. M., 2016. High-Temperature Metamorphism of the Yushugou Ophiolitic Slice:Late Devonian Subduction of Seamount and Mid-Oceanic Ridge in the South Tianshan Orogen. Journal of Asian Earth Sciences, 132:75-93. https://doi.org/10.1016/j.jseaes.2016.10.001
    Zhang, L., Zhang, J. F., Jin, Z. M., 2016. Metamorphic P-T-Water Conditions of the Yushugou Granulites from the Southeastern Tianshan Orogen:Implications for Paleozoic Accretionary Orogeny. Gondwana Research, 29(1):264-277. https://doi.org/10.1016/j.gr.2014.12.009
    Zhang, Z. M., Dong, X., Santosh, M., et al., 2012. Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet:Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton. Gondwana Research, 21(1):123-137. https://doi.org/10.1016/j.gr.2011.02.002
    Zhang, Z. M., Shen, K., Sun, W. D., et al., 2008. Fluids in Deeply Subducted Continental Crust:Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China. Geochimica et Cosmochimica Acta, 72(13):3200-3228. https://doi.org/10.1016/j.gca.2008.04.014
    Zhang, Z. M., Xiang, H., Dong, X., et al., 2015. Long-Lived High-Temperature Granulite-Facies Metamorphism in the Eastern Himalayan Orogen, South Tibet. Lithos, 212-215:1-15. https://doi.org/10.1016/j.lithos.2014.10.009
    Zheng, Y. F., 2009. Fluid Regime in Continental Subduction Zones:Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks. Journal of the Geological Society, 166(4):763-782. https://doi.org/10.1144/0016-76492008-016r
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(587) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return