Beaumont, C., Jamieson, R. A., Nguyen, M. H., et al., 2004. Crustal Channel Flows:1. Numerical Models with Applications to the Tectonics of the Himalayan-Tibetan Orogen. Journal of Geophysical Research:Solid Earth, 109(B6):B06406. https://doi.org/10.1029/2003jb002809 |
Bell, D. R., Rossman, G. R., Maldener, J., et al., 2004. Hydroxide in Kyanite:A Quantitative Determination of the Absolute Amount and Calibration of the IR Spectrum. American Mineralogist, 89(7):998-1003. https://doi.org/10.2138/am-2004-0710 |
Bell, D. R., Ihinger, P. D., Rossman, G. R., 1995. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 80(5/6):465-474. https://doi.org/10.2138/am-1995-5-607 |
Beran, A., Gotzinger, M. A., 1987. The Quantitative IR Spectroscopic Determination of Structural OH Groups in Kyanites. Mineralogy and Petrology, 36(1):41-49. https://doi.org/10.1007/bf01164368 |
Booth, A. L., Chamberlain, C. P., Kidd, W. S. F., et al., 2009. Constraints on the Metamorphic Evolution of the Eastern Himalayan Syntaxis from Geochronologic and Petrologic Studies of Namche Barwa. Geological Society of America Bulletin, 121(3/4):385-407. https://doi.org/10.1130/b26041.1 |
Booth, A. L., Zeitler, P. K., Kidd, W. S. F., et al., 2004. U-Pb Zircon Constraints on the Tectonic Evolution of Southeastern Tibet, Namche Barwa Area. American Journal of Science, 304(10):889-929. https://doi.org/10.2475/ajs.304.10.889 |
Burg, J.-P., Nievergelt, P., Oberli, F., et al., 1998. The Namche Barwa Syntaxis:Evidence for Exhumation Related to Compressional Crustal Folding. Journal of Asian Earth Sciences, 16(2/3):239-252. https://doi.org/10.1016/s0743-9547(98)00002-6 |
Ding, L., Zhong, D. L., Yin, A., et al., 2001. Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3):423-438. https://doi.org/10.1029/2004tc001729 |
Geng, Q. R., Pan, G. T., Zheng, L. L., et al., 2006. The Eastern Himalayan Syntaxis:Major Tectonic Domains, Ophiolitic Mélanges and Geologic Evolution. Journal of Asian Earth Sciences, 27(3):265-285. https://doi.org/10.1016/j.jseaes.2005.03.009 |
Gong, B., Zheng, Y. F., Chen, R. X., 2007. TC/EA-MS Online Determination of Hydrogen Isotope Composition and Water Concentration in Eclogitic Garnet. Physics and Chemistry of Minerals, 34(10):687-698. https://doi.org/10.1007/s00269-007-0184-4 |
Griggs, D., 1974. A Model of Hydrolytic Weakening in Quartz. Journal of Geophysical Research, 79(11):1653-1661. https://doi.org/10.1029/jb079i011p01653 |
Groppo, C., Rolfo, F., Indares, A., 2012. Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal:The Effect of Decompression and Implications for the 'Channel Flow' Model. Journal of Petrology, 53(5):1057-1088. https://doi.org/10.1093/petrology/egs009 |
Guilmette, C., Indares, A., Hébert, R., 2011. High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications. Lithos, 124(1/2):66-81. https://doi.org/10.1016/j.lithos.2010.09.003 |
Handy, M. R., Mulch, A., Rosenau, M., et al., 2001. The Role of Fault Zones and Melts as Agents of Weakening, Hardening and Differentiation of the Continental Crust:A Synthesis. Geological Society, London, Special Publications, 186(1):305-332. https://doi.org/10.1144/gsl.sp.2001.186.01.18 |
Jamieson, R. A., Beaumont, C., Medvedev, S., et al., 2004. Crustal Channel Flows:2. Numerical Models with Implications for Metamorphism in the Himalayan-Tibetan Orogen. Journal of Geophysical Research:Solid Earth, 109(B6):407 http://d.old.wanfangdata.com.cn/Periodical/dxqy200803010 |
Jamieson, R. A., Beaumont, C., Nguyen, M. H., et al., 2006. Provenance of the Greater Himalayan Sequence and Associated Rocks:Predictions of Channel Flow Models. Geological Society, London, Special Publications, 268(1):165-182. https://doi.org/10.1144/gsl.sp.2006.268.01.07 |
Johnson, E. A., 2006. Water in Nominally Anhydrous Crustal Minerals:Speciation, Concentration, and Geologic Significance. Reviews in Mineralogy and Geochemistry, 62(1):117-154. https://doi.org/10.2138/rmg.2006.62.6 |
Johnson, E. A., Rossman, G. R., 2003. The Concentration and Speciation of Hydrogen in Feldspars Using FTIR And1H MAS NMR Spectroscopy. American Mineralogist, 88(5/6):901-911. https://doi.org/10.2138/am-2003-5-620 |
Johnson, E. A., Rossman, G. R., 2004. A Survey of Hydrous Species and Concentrations in Igneous Feldspars. American Mineralogist, 89(4):586-600. https://doi.org/10.2138/am-2004-0413 |
Johnson, E. A., Rossman, G. R., Dyar, M. D., et al., 2002. Correlation between OH Concentration and Oxygen Isotope Diffusion Rate in Diopsides from the Adirondack Mountains, New York. American Mineralogist, 87(7):899-908. https://doi.org/10.2138/am-2002-0713 |
Katayama, I., Nakashima, S., Yurimoto, H., 2006. Water Content in Natural Eclogite and Implication for Water Transport into the Deep Upper Mantle. Lithos, 86(3/4):245-259. https://doi.org/10.1016/j.lithos.2005.06.006 |
Kohlstedt, D. L., 2006. The Role of Water in High-Temperature Rock Deformation. Reviews in Mineralogy and Geochemistry, 62(1):377-396. https://doi.org/10.2138/rmg.2006.62.16 |
Kohn, M. J., 2008. P-T-t Data from Central Nepal Support Critical Taper and Repudiate Large-Scale Channel Flow of the Greater Himalayan Sequence. Geological Society of America Bulletin, 120(3/4):259-273. https://doi.org/10.1130/b26252.1 |
Kohn, M. J., 2014. Himalayan Metamorphism and Its Tectonic Implications. Annual Review of Earth and Planetary Sciences, 42(1):381-419. https://doi.org/10.1146/annurev-earth-060313-055005 |
Kovács, I. J., Németh, B., Török, K., et al., 2015. Very Dry Lower Crust beneath the Central Part of the Carpathian-Pannonian Region: The Role of Miocene Extension Induced Melting. Goldschmidt Conference 2015, August 16-21, Prague |
Kronenberg, A. K., 1994. Hydrogen Speciation and Chemical Weakening of Quartz. Reviews in Mineralogy and Geochemistry, 29:123-176 doi: 10.1007/BF00308135 |
Kronenberg, A. K., Wolf, G. H., 1990. Fourier Transform Infrared Spectroscopy Determinations of Intragranular Water Content in Quartz-Bearing Rocks:Implications for Hydrolytic Weakening in the Laboratory and within the Earth. Tectonophysics, 172(3/4):255-271. https://doi.org/10.1016/0040-1951(90)90034-6 |
Langer, K., Robarick, E., Sobolev, N. V., et al., 1993. Single-Crystal Spectra of Garnets from Diamondiferous High-Pressure Metamorphic Rocks from Kazakhstan:Indications for OH-, H2O, and FeTi Charge Transfer. European Journal of Mineralogy, 5(6):1091-1100 doi: 10.1127/ejm/5/6/1091 |
Leech, M. L., Singh, S., Jain, A. K., et al., 2005. The Onset of India-Asia Continental Collision:Early, Steep Subduction Required by the Timing of UHP Metamorphism in the Western Himalaya. Earth and Planetary Science Letters, 234(1/2):83-97. https://doi.org/10.1016/j.epsl.2005.02.038 |
Li, W., Jin, Z. M., Li, H. M., et al., 2017. High Water Content in Primitive Mid-Ocean Ridge Basalt from Southwest Indian Ridge (51.56°E):Implications for Recycled Hydrous Component in the Mantle. Journal of Earth Science, 28(3):411-421. https://doi.org/10.1007/s12583-017-0731-y |
Liu, F. L., Zhang, L. F., 2014. High-Pressure Granulites from Eastern Himalayan Syntaxis:P-T Path, Zircon U-Pb Dating and Geological Implications. Acta Petrologica Sinica, 30(10):2808-2820 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410002 |
Liu, Y., Yang, Z. Q., Wang, M., 2007. History of Zircon Growth in a High-Pressure Granulite within the Eastern Himalayan Syntaxis, and Tectonic Implications. International Geology Review, 49(9):861-872. https://doi.org/10.2747/0020-6814.49.9.861 |
Liu, Y., Zhong, D., 1997. Petrology of High-Pressure Granulites from the Eastern Himalayan Syntaxis. Journal of Metamorphic Geology, 15(4):451-466. https://doi.org/10.1111/j.1525-1314.1997.00033.x |
Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2):265-282. https://doi.org/10.1007/s12583-016-0925-8 |
Nakashima, S., Matayoshi, H., Yuko, T., et al., 1995. Infrared Microspectroscopy Analysis of Water Distribution in Deformed and Metamorphosed Rocks. Tectonophysics, 245(3/4):263-276. https://doi.org/10.1016/0040-1951(94)00239-6 |
Parsons, A. J., Phillips, R. J., Lloyd, G. E., et al., 2016. Mid-Crustal Deformation of the Annapurna-Dhaulagiri Himalaya, Central Nepal:A Typical Example of Channel Flow during the Himalayan Orogeny. Geosphere, 12(3):985-1015. https://doi.org/10.1130/ges01246.1 |
Paterson, M. S., 1982. The Determination of Hydroxyl by Infrared-Absorption in Quartz, Silicate-Glasses and Similar Materials. Bulletin de Mineralogie, 105:20-29 https://www.researchgate.net/publication/279901322_The_determination_of_hydroxyl_by_infrared_adsorption_in_quartz_silicate_glasses_and_similar_materials |
Potter, R. M., Rossman, G. R., 1977. Desert Varnish:The Importance of Clay Minerals. Science, 196(4297):1446-1448. https://doi.org/10.1126/science.196.4297.1446 |
Rossman, G. R., 1996. Studies of OH in Nominally Anhydrous Minerals. Physics and Chemistry of Minerals, 23(4/5):299-304 doi: 10.1007-BF00207777/ |
Rossman, G. R., Aines, R. D., 1991. The Hydrous Components in Garnets:Grossular-Hydrogrossular. American Mineralogist, 76:1153-1164 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7c828892a859c7f288e351c67ac306c6 |
Rowley, D. B., 1996. Age of Initiation of Collision between India and Asia:A Review of Stratigraphic Data. Earth and Planetary Science Letters, 145(1/2/3/4):1-13. https://doi.org/10.1016/s0012-821x(96)00201-4 |
Schmödicke, E., Gose, J., Reinhardt, J., et al., 2015. Garnet in Cratonic and Non-Cratonic Mantle and Lower Crustal Xenoliths from Southern Africa:Composition, Water Incorporation and Geodynamic Constraints. Precambrian Research, 270:285-299. https://doi.org/10.1016/j.precamres.2015.09.019 |
Seaman, S. J., Williams, M. L., Jercinovic, M. J., et al., 2013. Water in Nominally Anhydrous Minerals:Implications for Partial Melting and Strain Localization in the Lower Crust. Geology, 41(10):1051-1054. https://doi.org/10.1130/g34435.1 |
Shen, K., Wang, J. L., Dong, X., 2010. Fluid Inclusions of the High-Pressure Granulites from the Namche Barwa Complex of the Eastern Himalayan Syntaxis, Tibet:Fluid Composition and Evolution in the Continental Subduction-Zone. Journal of Asian Earth Sciences, 38(1/2):44-56. https://doi.org/10.1016/j.jseaes.2009.12.006 |
Sheng, Y. M., Xia, Q. K., Dallai, L., et al., 2007. H2O Contents and D/H Ratios of Nominally Anhydrous Minerals from Ultrahigh-Pressure Eclogites of the Dabie Orogen, Eastern China. Geochimica et Cosmochimica Acta, 71(8):2079-2103. https://doi.org/10.1016/j.gca.2007.01.018 |
Skogby, H., Bell, D. R., Rossman, G. R., 1990. Hydroxide in Pyroxene-Variations in the Natural-Environment. American Mineralogist, 75:764-774 https://www.researchgate.net/publication/246404304_Hydroxide_in_pyroxene_Variations_in_the_natural_environment |
Su, W., Ji, Z. P., Ye, K., et al., 2004. Distribution of Hydrous Components in Jadeite of the Dabie Mountains. Earth and Planetary Science Letters, 222(1):85-100. https://doi.org/10.1016/j.epsl.2004.02.028 |
Su, W., Zhang, M., Liu, X. H., et al., 2012. Exact Timing of Granulite Metamorphism in the Namche-Barwa, Eastern Himalayan Syntaxis:New Constrains from SIMS U-Pb Zircon Age. International Journal of Earth Sciences, 101(1):239-252. https://doi.org/10.1007/s00531-011-0656-0 |
Thomas, S.-M., Koch-Müller, M., Reichart, P., et al., 2009. IR Calibrations for Water Determination in Olivine, R-GeO2, and SiO2 Polymorphs. Physics and Chemistry of Minerals, 36(9):489-509. https://doi.org/10.1007/s00269-009-0295-1 |
Tian, Z. L., Zhang, Z. M., Dong, X., 2016. Metamorphism of High-P Metagreywacke from the Eastern Himalayan Syntaxis:Phase Equilibria and P-T Path. Journal of Metamorphic Geology, 34(7):697-718. https://doi.org/10.1111/jmg.12205 |
Wang, J. M., Rubatto, D., Zhang, J. J., 2015. Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya):In-Sequence Thrusting and Its Implications. Journal of Petrology, 56(9):1677-1702. https://doi.org/10.1093/petrology/egv050 |
Wang, Q., Bagdassarov, N., Xia, Q. K., et al., 2014. Water Contents and Electrical Conductivity of Peridotite Xenoliths from the North China Craton:Implications for Water Distribution in the Upper Mantle. Lithos, 189:105-126. https://doi.org/10.1016/j.lithos.2013.08.005 |
Wang, Y. H., Zhang, L. F., Zhang, J. J., et al., 2017. The Youngest Eclogite in Central Himalaya:P-T Path, U-Pb Zircon Age and Its Tectonic Implication. Gondwana Research, 41:188-206. https://doi.org/10.1016/j.gr.2015.10.013 |
Xia, Q. K., Sheng, Y. M., Yang, X. Z., et al., 2005. Heterogeneity of Water in Garnets from UHP Eclogites, Eastern Dabieshan, China. Chemical Geology, 224(4):237-246. https://doi.org/10.1016/j.chemgeo.2005.08.003 |
Xia, Q. K., Yang, X. Z., Deloule, E., et al., 2006. Water in the Lower Crustal Granulite Xenoliths from Nushan, Eastern China. Journal of Geophysical Research:Solid Earth, 111(B11):B11202. https://doi.org/10.1029/2006jb004296 |
Xu, W. C., Zhang, H. F., Parrish, R., et al., 2010. Timing of Granulite-Facies Metamorphism in the Eastern Himalayan Syntaxis and Its Tectonic Implications. Tectonophysics, 485(1/2/3/4):231-244. https://doi.org/10.1016/j.tecto.2009.12.023 |
Yang, X. Z., Xia, Q. K., Deloule, E., et al., 2008. Water in Minerals of the Continental Lithospheric Mantle and Overlying Lower Crust:A Comparative Study of Peridotite and Granulite Xenoliths from the North China Craton. Chemical Geology, 256(1/2):33-45. https://doi.org/10.1016/j.chemgeo.2008.07.020 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Zhang, J. F., Jin, Z. M., Green, H. W., et al., 2001. Hydroxyl in Continental Deep Subduction Zone:Evidence from UHP Eclogites of the Dabie Mountains. Chinese Science Bulletin, 46(7):592-596. https://doi.org/10.1007/bf02900418 |
Zhang, J. J., Ji, J. Q., Zhong, D. L., et al., 2004. Structural Pattern of Eastern Himalayan Syntaxis in Namjagbarwa and Its Formation Process. Science in China Series D:Earth Sciences, 47(2):138-150. https://doi.org/10.1360/02yd0042 |
Zhang, L., Jin, Z. M., 2016. High-Temperature Metamorphism of the Yushugou Ophiolitic Slice:Late Devonian Subduction of Seamount and Mid-Oceanic Ridge in the South Tianshan Orogen. Journal of Asian Earth Sciences, 132:75-93. https://doi.org/10.1016/j.jseaes.2016.10.001 |
Zhang, L., Zhang, J. F., Jin, Z. M., 2016. Metamorphic P-T-Water Conditions of the Yushugou Granulites from the Southeastern Tianshan Orogen:Implications for Paleozoic Accretionary Orogeny. Gondwana Research, 29(1):264-277. https://doi.org/10.1016/j.gr.2014.12.009 |
Zhang, Z. M., Dong, X., Santosh, M., et al., 2012. Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet:Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton. Gondwana Research, 21(1):123-137. https://doi.org/10.1016/j.gr.2011.02.002 |
Zhang, Z. M., Shen, K., Sun, W. D., et al., 2008. Fluids in Deeply Subducted Continental Crust:Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China. Geochimica et Cosmochimica Acta, 72(13):3200-3228. https://doi.org/10.1016/j.gca.2008.04.014 |
Zhang, Z. M., Xiang, H., Dong, X., et al., 2015. Long-Lived High-Temperature Granulite-Facies Metamorphism in the Eastern Himalayan Orogen, South Tibet. Lithos, 212-215:1-15. https://doi.org/10.1016/j.lithos.2014.10.009 |
Zheng, Y. F., 2009. Fluid Regime in Continental Subduction Zones:Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks. Journal of the Geological Society, 166(4):763-782. https://doi.org/10.1144/0016-76492008-016r |