Ahmad, T., Ramanujachary, K. V., Lofland, S. E., et al., 2004. Nanorods of Manganese Oxalate:A Single Source Precursor to Different Manganese Oxide Nanoparticles (MnO, Mn2O3, Mn3O4). Journal of Materials Chemistry, 14(23):3406. https://doi.org/10.1039/b409010a |
Babu, V., Unnikrishnan, P., Anu, G., et al., 2011. Distribution of Organophosphorus Pesticides in the Bed Sediments of a Backwater System Located in an Agricultural Watershed:Influence of Seasonal Intrusion of Seawater. Archives of Environmental Contamination and Toxicology, 60(4):597-609. https://doi.org/10.1007/s00244-010-9569-3 |
Boonchom, B., Baitahe, R., 2009. Synthesis and Characterization of Nanocrystalline Manganese Pyrophosphate Mn2P2O7. Materials Letters, 63(26):2218-2220. https://doi.org/10.1016/j.matlet.2009.07.028 |
Buxton, G. V., Greenstock, C. L., Helman, W. P., et al., 1988. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/·O- in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2):513-886. https://doi.org/10.1063/1.555805 |
Ccanccapa, A., Masiá, A., Navarro-Ortega, A., et al., 2016. Pesticides in the Ebro River Basin:Occurrence and Risk Assessment. Environmental Pollution, 211:414-424. https://doi.org/10.1016/j.envpol.2015.12.059 |
Chen, W. R., Huang, C. H., 2009. Transformation of Tetracyclines Mediated by Mn(Ⅱ) and Cu(Ⅱ) Ions in the Presence of Oxygen. Environmental Science & Technology, 43(2):401-407. https://doi.org/10.1021/es802295r |
Chen, W. R., Liu, C., Boyd, S. A., et al., 2013. Reduction of Carbadox Mediated by Reaction of Mn(Ⅲ) with Oxalic Acid. Environmental Science & Technology, 47(3):1357-1364. https://doi.org/10.1021/es303895w |
Das, T. N., Huie, R. E., Neta, P., 1999. Reduction Potentials of SO3-·, SO5-·, and S4O6·3-Radicals in Aqueous Solution. The Journal of Physical Chemistry A, 103(18):3581-3588. https://doi.org/10.1021/jp9900234 |
Davies, G., 1969. Some Aspects of the Chemistry of Manganese(Ⅲ) in Aqueous Solution. Coordination Chemistry Reviews, 4(2):199-224. https://doi.org/10.1016/s0010-8545(00)80086-7 |
Duckworth, O. W., Sposito, G., 2005. Siderophore-Manganese(Ⅲ) Interactions. I. Air-Oxidation of Manganese(Ⅱ) Promoted by Desferrioxamine B. Environmental Science & Technology, 39(16):6037-6044. https://doi.org/10.1021/es050275k |
Ehlert, K., Mikutta, C., Kretzschmar, R., 2016. Effects of Manganese Oxide on Arsenic Reduction and Leaching from Contaminated Floodplain Soil. Environmental Science & Technology, 50(17):9251-9261. https://doi.org/10.1021/acs.est.6b01767 |
Ehrlich, H. L., 1987. Manganese Oxide Reduction as a Form of Anaerobic Respiration. Geomicrobiology Journal, 5(3/4):423-431. https://doi.org/10.1080/01490458709385977 |
Gao, Y., Jiang, J., Zhou, Y., et al., 2017. Unrecognized Role of Bisulfite as Mn(Ⅲ) Stabilizing Agent in Activating Permanganate (Mn(Ⅶ)) for Enhanced Degradation of Organic Contaminants. Chemical Engineering Journal, 327:418-422. https://doi.org/10.1016/j.cej.2017.06.056 |
Guo, X. F., Jans, U., 2006. Kinetics and Mechanism of the Degradation of Methyl Parathion in Aqueous Hydrogen Sulfide Solution:Investigation of Natural Organic Matter Effects. Environmental Science & Technology, 40(3):900-906. https://doi.org/10.1021/es051453c |
Harrington, J. M., Parker, D. L., Bargar, J. R., et al., 2012. Structural Dependence of Mn Complexation by Siderophores:Donor Group Dependence on Complex Stability and Reactivity. Geochimica et Cosmochimica Acta, 88:106-119. https://doi.org/10.1016/j.gca.2012.04.006 |
Hayon, E., Treinin, A., Wilf, J., 1972. Electronic Spectra, Photochemistry, and Autoxidation Mechanism of the Sulfite-Bisulfite-Pyrosulfite Systems. SO2-, SO3-, SO4-, and SO5- Radicals. Journal of the American Chemical Society, 94(1):47-57. https://doi.org/10.1021/ja00756a009 |
Hu, E. D., Zhang, Y., Wu, S. Y., et al., 2017. Role of Dissolved Mn(Ⅲ) in Transformation of Organic Contaminants:Non-Oxidative Versus Oxidative Mechanisms. Water Research, 111:234-243. https://doi.org/10.1016/j.watres.2017.01.013 |
Huang, T. Y., Fang, C., Qian, Y. J., et al., 2017. Insight into Mn(Ⅱ)-Mediated Transformation of Β-Lactam Antibiotics:The Overlooked Hydrolysis. Chemical Engineering Journal, 321:662-668. https://doi.org/10.1016/j.cej.2017.04.011 |
Jiang, B., Liu, Y. K., Zheng, J. T., et al., 2015. Synergetic Transformations of Multiple Pollutants Driven by Cr(Ⅵ)-Sulfite Reactions. Environmental Science & Technology, 49(20):12363-12371. https://doi.org/10.1021/acs.est.5b03275 |
Jurado, A., Vàzquez-Suñé, E., Carrera, J., et al., 2012. Emerging Organic Contaminants in Groundwater in Spain:A Review of Sources, Recent Occurrence and Fate in a European Context. Science of The Total Environment, 440:82-94. https://doi.org/10.1016/j.scitotenv.2012.08.029 |
Kim, M., Liu, Q. C., Gabbaï, F. P., 2004. Use of an Organometallic Palladium Oxazoline Catalyst for the Hydrolysis of Methylparathion. Organometallics, 23(23):5560-5564. https://doi.org/10.1021/om049687c |
Klewicki, J. K., Morgan, J. J., 1998. Kinetic Behavior of Mn(Ⅲ) Complexes of Pyrophosphate, EDTA, and Citrate. Environmental Science & Technology, 32(19):2916-2922. https://doi.org/10.1021/es980308e |
Klewicki, J. K., Morgan, J. J., 1999. Dissolution of Β-MnOOH Particles by Ligands:Pyrophosphate, Ethylenediaminetetraacetate, and Citrate. Geochimica et Cosmochimica Acta, 63(19/20):3017-3024. https://doi.org/10.1016/s0016-7037(99)00229-x |
Liao, X. P., Zhang, C. X., Liu, Y., et al., 2016. Abiotic Degradation of Methyl Parathion by Manganese Dioxide:Kinetics and Transformation Pathway. Chemosphere, 150:90-96. https://doi.org/10.1016/j.chemosphere.2016.02.028 |
Liao, X. P., Zhang, C. X., Wang, Y. X., et al., 2017. The Abiotic Degradation of Methyl Parathion in Anoxic Sulfur-Containing System Mediated by Natural Organic Matter. Chemosphere, 176:288-295. https://doi.org/10.1016/j.chemosphere.2017.02.109 |
Liu, Y., 2016. The Study of Hydrolysis Behavior of Methyl Parathion: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract) |
Madison, A. S., Tebo, B. M., Mucci, A., et al., 2013. Abundant Porewater Mn(Ⅲ) is a Major Component of the Sedimentary Redox System. Science, 341(6148):875-878. https://doi.org/10.1126/science.1241396 |
Neta, P., Huie, R. E., Ross, A. B., 1988. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(3):1027-1284. https://doi.org/10.1063/1.555808 |
Oldham, V. E., Mucci, A., Tebo, B. M., et al., 2017. Soluble Mn(Ⅲ)-L Complexes are Abundant in Oxygenated Waters and Stabilized by Humic Ligands. Geochimica et Cosmochimica Acta, 199:238-246. https://doi.org/10.1016/j.gca.2016.11.043 |
Peña, J., Duckworth, O. W., Bargar, J. R., et al., 2007. Dissolution of Hausmannite (Mn3O4) in the Presence of the Trihydroxamate Siderophore Desferrioxamine B. Geochimica et Cosmochimica Acta, 71(23):5661-5671. https://doi.org/10.1016/j.gca.2007.03.043 |
Pino, N., Peñuela, G., 2011. Simultaneous Degradation of the Pesticides Methyl Parathion and Chlorpyrifos by an Isolated Bacterial Consortium from a Contaminated Site. International Biodeterioration & Biodegradation, 65(6):827-831. https://doi.org/10.1016/j.ibiod.2011.06.001 |
Pryor, W. A., 1960. The Kinetics of the Disproportionation of Sodium Thiosulfate to Sodium Sulfide and Sulfate. Journal of the American Chemical Society, 82(18):4794-4797. https://doi.org/10.1021/ja01503a010 |
Sheng, G. D., Xu, C., Xu, L., et al., 2009. Abiotic Oxidation of 17β-Estradiol by Soil Manganese Oxides. Environmental Pollution, 157(10):2710-2715. https://doi.org/10.1016/j.envpol.2009.04.030 |
Straus, D. L., Schlenk, D., Chambers, J. E., 2000. Hepatic Microsomal Desulfuration and Dearylation of Chlorpyrifos and Parathion in Fingerling Channel Catfish:Lack of Effect from Aroclor 1254. Aquatic Toxicology, 50(1/2):141-151. https://doi.org/10.1016/s0166-445x(99)00088-0 |
Sun, B., Guan, X. H., Fang, J. Y., et al., 2015. Activation of Manganese Oxidants with Bisulfite for Enhanced Oxidation of Organic Contaminants:The Involvement of Mn(Ⅲ). Environmental Science & Technology, 49(20):12414-12421. https://doi.org/10.1021/acs.est.5b03111 |
Sun, D. L., Wei, Y. L., Li, H. Z., et al., 2016. Insecticides in Sediment Cores from a Rural and a Suburban Area in South China:A Reflection of Shift in Application Patterns. Science of the Total Environment, 568:11-18. https://doi.org/10.1016/j.scitotenv.2016.05.202 |
Sun, S. F., Pang, S. Y., Jiang, J., et al., 2018. The Combination of Ferrate(Ⅵ) and Sulfite as a Novel Advanced Oxidation Process for Enhanced Degradation of Organic Contaminants. Chemical Engineering Journal, 333:11-19. https://doi.org/10.1016/j.cej.2017.09.082 |
Taube, H., 1947. Catalysis of the Reaction of Chlorine and Oxalic Acid. Complexes of Trivalent Manganese in Solutions Containing Oxalic Acid. Journal of the American Chemical Society, 69(6):1418-1428. https://doi.org/10.1021/ja01198a052 |
Trouwborst, R. E., Clement, B. G., Tebo, B. M., et al., 2006. Soluble Mn(Ⅲ) in Suboxic Zones. Science, 313(5795):1955-1957. https://doi.org/10.1126/science.1132876 |
Van Aken, B., Agathos, S. N., 2002. Implication of Manganese (Ⅲ), Oxalate, and Oxygen in the Degradation of Nitroaromatic Compounds by Manganese Peroxidase (MnP). Applied Microbiology and Biotechnology, 58(3):345-351. https://doi.org/10.1007/s00253-001-0888-1 |
Wang, Y., Stone, A. T., 2006. Reaction of MnⅢ, Ⅳ (Hydr)Oxides with Oxalic Acid, Glyoxylic Acid, Phosphonoformic Acid, and Structurally-Related Organic Compounds. Geochimica et Cosmochimica Acta, 70(17):4477-4490. https://doi.org/10.1016/j.gca.2006.06.1548 |
Wang, Z. M., Tebo, B. M., Giammar, D. E., 2014a. Effects of Mn(Ⅱ) on UO2 Dissolution under Anoxic and Oxic Conditions. Environmental Science & Technology, 48(10):5546-5554. https://doi.org/10.1021/es5002067 |
Wang, Z. M., Xiong, W., Tebo, B. M., et al., 2014b. Oxidative UO2 Dissolution Induced by Soluble Mn(Ⅲ). Environmental Science & Technology, 48(1):289-298. https://doi.org/10.1021/es4037308 |
Zamora, P. L., Villamena, F. A., 2012. Theoretical and Experimental Studies of the Spin Trapping of Inorganic Radicals by 5, 5-Dimethyl-1-Pyrroline N-Oxide (DMPO). 3. Sulfur Dioxide, Sulfite, and Sulfate Radical Anions. The Journal of Physical Chemistry A, 116(26):7210-7218. https://doi.org/10.1021/jp3039169 |