Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 4
Aug 2019
Turn off MathJax
Article Contents
Caixiang Zhang, Xiaoping Liao, You Lü, Chao Nan. Enhanced Degradation of Methyl Parathion in the Ligand Stabilized Soluble Mn(Ⅲ)-Sulfite System. Journal of Earth Science, 2019, 30(4): 861-869. doi: 10.1007/s12583-018-0889-y
Citation: Caixiang Zhang, Xiaoping Liao, You Lü, Chao Nan. Enhanced Degradation of Methyl Parathion in the Ligand Stabilized Soluble Mn(Ⅲ)-Sulfite System. Journal of Earth Science, 2019, 30(4): 861-869. doi: 10.1007/s12583-018-0889-y

Enhanced Degradation of Methyl Parathion in the Ligand Stabilized Soluble Mn(Ⅲ)-Sulfite System

doi: 10.1007/s12583-018-0889-y
Funds:

the State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology FSKLCCA1511

the National Natural Science Foundation of China 41702267

the "111" Project of the Ministry of Edu-cation of China 

China Postdoctoral Science Foundation 2017M612536

the National Natural Science Foundation of China 41772251

the National Natural Science Foundation of China 41521001

More Information
  • Corresponding author: Caixiang Zhang
  • Received Date: 08 Nov 2018
  • Accepted Date: 20 Dec 2018
  • Publish Date: 01 Aug 2019
  • The ligand-stabilized soluble Mn(Ⅲ) recognized as active intermediate can potentially mediate the attenuation of contaminants. In this study, the abiotic degradation behaviors of methyl parathion in the ligand stabilized Mn(Ⅲ)-sulfite system were investigated. The results showed that the yield of soluble Mn(Ⅲ) produced from the redox reaction of MnO2 and oxalic acid was dependent linearly on the dosage of MnO2 and caused the decomposition of methyl parathion up to 50.1% in Mn(Ⅲ)-sulfite system after 30 minutes. The fitted pseudo-first-order reaction constants of methyl parathion degradation increased with the increasing of the amount of produced Mn(Ⅲ) but was not effected linearly by the addition of sulfite. Other ligands, including pyrophosphate and oxalic acid, acted as effective complexing agents to stabilize soluble Mn(Ⅲ), and exhibited competitive effect on methyl parathion degradation with sulfite. The formation of Mn(Ⅲ)-sulfite complexes is the critical step in the system to produce abundant reactive oxygen species identified as SO3-· to facilitate methyl parathion degradation. The hydrolysis and oxidation of methyl parathion were acknowledged as two primary transformation mechanisms in Mn(Ⅲ)-sulfite system. These findings indicate that naturally ligands-stabilized soluble Mn(Ⅲ) can be generated and could oxidatively decompose organophosphate pesticides such as methyl parathion.

     

  • loading
  • Ahmad, T., Ramanujachary, K. V., Lofland, S. E., et al., 2004. Nanorods of Manganese Oxalate:A Single Source Precursor to Different Manganese Oxide Nanoparticles (MnO, Mn2O3, Mn3O4). Journal of Materials Chemistry, 14(23):3406. https://doi.org/10.1039/b409010a
    Babu, V., Unnikrishnan, P., Anu, G., et al., 2011. Distribution of Organophosphorus Pesticides in the Bed Sediments of a Backwater System Located in an Agricultural Watershed:Influence of Seasonal Intrusion of Seawater. Archives of Environmental Contamination and Toxicology, 60(4):597-609. https://doi.org/10.1007/s00244-010-9569-3
    Boonchom, B., Baitahe, R., 2009. Synthesis and Characterization of Nanocrystalline Manganese Pyrophosphate Mn2P2O7. Materials Letters, 63(26):2218-2220. https://doi.org/10.1016/j.matlet.2009.07.028
    Buxton, G. V., Greenstock, C. L., Helman, W. P., et al., 1988. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/·O- in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2):513-886. https://doi.org/10.1063/1.555805
    Ccanccapa, A., Masiá, A., Navarro-Ortega, A., et al., 2016. Pesticides in the Ebro River Basin:Occurrence and Risk Assessment. Environmental Pollution, 211:414-424. https://doi.org/10.1016/j.envpol.2015.12.059
    Chen, W. R., Huang, C. H., 2009. Transformation of Tetracyclines Mediated by Mn(Ⅱ) and Cu(Ⅱ) Ions in the Presence of Oxygen. Environmental Science & Technology, 43(2):401-407. https://doi.org/10.1021/es802295r
    Chen, W. R., Liu, C., Boyd, S. A., et al., 2013. Reduction of Carbadox Mediated by Reaction of Mn(Ⅲ) with Oxalic Acid. Environmental Science & Technology, 47(3):1357-1364. https://doi.org/10.1021/es303895w
    Das, T. N., Huie, R. E., Neta, P., 1999. Reduction Potentials of SO3-·, SO5-·, and S4O6·3-Radicals in Aqueous Solution. The Journal of Physical Chemistry A, 103(18):3581-3588. https://doi.org/10.1021/jp9900234
    Davies, G., 1969. Some Aspects of the Chemistry of Manganese(Ⅲ) in Aqueous Solution. Coordination Chemistry Reviews, 4(2):199-224. https://doi.org/10.1016/s0010-8545(00)80086-7
    Duckworth, O. W., Sposito, G., 2005. Siderophore-Manganese(Ⅲ) Interactions. I. Air-Oxidation of Manganese(Ⅱ) Promoted by Desferrioxamine B. Environmental Science & Technology, 39(16):6037-6044. https://doi.org/10.1021/es050275k
    Ehlert, K., Mikutta, C., Kretzschmar, R., 2016. Effects of Manganese Oxide on Arsenic Reduction and Leaching from Contaminated Floodplain Soil. Environmental Science & Technology, 50(17):9251-9261. https://doi.org/10.1021/acs.est.6b01767
    Ehrlich, H. L., 1987. Manganese Oxide Reduction as a Form of Anaerobic Respiration. Geomicrobiology Journal, 5(3/4):423-431. https://doi.org/10.1080/01490458709385977
    Gao, Y., Jiang, J., Zhou, Y., et al., 2017. Unrecognized Role of Bisulfite as Mn(Ⅲ) Stabilizing Agent in Activating Permanganate (Mn(Ⅶ)) for Enhanced Degradation of Organic Contaminants. Chemical Engineering Journal, 327:418-422. https://doi.org/10.1016/j.cej.2017.06.056
    Guo, X. F., Jans, U., 2006. Kinetics and Mechanism of the Degradation of Methyl Parathion in Aqueous Hydrogen Sulfide Solution:Investigation of Natural Organic Matter Effects. Environmental Science & Technology, 40(3):900-906. https://doi.org/10.1021/es051453c
    Harrington, J. M., Parker, D. L., Bargar, J. R., et al., 2012. Structural Dependence of Mn Complexation by Siderophores:Donor Group Dependence on Complex Stability and Reactivity. Geochimica et Cosmochimica Acta, 88:106-119. https://doi.org/10.1016/j.gca.2012.04.006
    Hayon, E., Treinin, A., Wilf, J., 1972. Electronic Spectra, Photochemistry, and Autoxidation Mechanism of the Sulfite-Bisulfite-Pyrosulfite Systems. SO2-, SO3-, SO4-, and SO5- Radicals. Journal of the American Chemical Society, 94(1):47-57. https://doi.org/10.1021/ja00756a009
    Hu, E. D., Zhang, Y., Wu, S. Y., et al., 2017. Role of Dissolved Mn(Ⅲ) in Transformation of Organic Contaminants:Non-Oxidative Versus Oxidative Mechanisms. Water Research, 111:234-243. https://doi.org/10.1016/j.watres.2017.01.013
    Huang, T. Y., Fang, C., Qian, Y. J., et al., 2017. Insight into Mn(Ⅱ)-Mediated Transformation of Β-Lactam Antibiotics:The Overlooked Hydrolysis. Chemical Engineering Journal, 321:662-668. https://doi.org/10.1016/j.cej.2017.04.011
    Jiang, B., Liu, Y. K., Zheng, J. T., et al., 2015. Synergetic Transformations of Multiple Pollutants Driven by Cr(Ⅵ)-Sulfite Reactions. Environmental Science & Technology, 49(20):12363-12371. https://doi.org/10.1021/acs.est.5b03275
    Jurado, A., Vàzquez-Suñé, E., Carrera, J., et al., 2012. Emerging Organic Contaminants in Groundwater in Spain:A Review of Sources, Recent Occurrence and Fate in a European Context. Science of The Total Environment, 440:82-94. https://doi.org/10.1016/j.scitotenv.2012.08.029
    Kim, M., Liu, Q. C., Gabbaï, F. P., 2004. Use of an Organometallic Palladium Oxazoline Catalyst for the Hydrolysis of Methylparathion. Organometallics, 23(23):5560-5564. https://doi.org/10.1021/om049687c
    Klewicki, J. K., Morgan, J. J., 1998. Kinetic Behavior of Mn(Ⅲ) Complexes of Pyrophosphate, EDTA, and Citrate. Environmental Science & Technology, 32(19):2916-2922. https://doi.org/10.1021/es980308e
    Klewicki, J. K., Morgan, J. J., 1999. Dissolution of Β-MnOOH Particles by Ligands:Pyrophosphate, Ethylenediaminetetraacetate, and Citrate. Geochimica et Cosmochimica Acta, 63(19/20):3017-3024. https://doi.org/10.1016/s0016-7037(99)00229-x
    Liao, X. P., Zhang, C. X., Liu, Y., et al., 2016. Abiotic Degradation of Methyl Parathion by Manganese Dioxide:Kinetics and Transformation Pathway. Chemosphere, 150:90-96. https://doi.org/10.1016/j.chemosphere.2016.02.028
    Liao, X. P., Zhang, C. X., Wang, Y. X., et al., 2017. The Abiotic Degradation of Methyl Parathion in Anoxic Sulfur-Containing System Mediated by Natural Organic Matter. Chemosphere, 176:288-295. https://doi.org/10.1016/j.chemosphere.2017.02.109
    Liu, Y., 2016. The Study of Hydrolysis Behavior of Methyl Parathion: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
    Madison, A. S., Tebo, B. M., Mucci, A., et al., 2013. Abundant Porewater Mn(Ⅲ) is a Major Component of the Sedimentary Redox System. Science, 341(6148):875-878. https://doi.org/10.1126/science.1241396
    Neta, P., Huie, R. E., Ross, A. B., 1988. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(3):1027-1284. https://doi.org/10.1063/1.555808
    Oldham, V. E., Mucci, A., Tebo, B. M., et al., 2017. Soluble Mn(Ⅲ)-L Complexes are Abundant in Oxygenated Waters and Stabilized by Humic Ligands. Geochimica et Cosmochimica Acta, 199:238-246. https://doi.org/10.1016/j.gca.2016.11.043
    Peña, J., Duckworth, O. W., Bargar, J. R., et al., 2007. Dissolution of Hausmannite (Mn3O4) in the Presence of the Trihydroxamate Siderophore Desferrioxamine B. Geochimica et Cosmochimica Acta, 71(23):5661-5671. https://doi.org/10.1016/j.gca.2007.03.043
    Pino, N., Peñuela, G., 2011. Simultaneous Degradation of the Pesticides Methyl Parathion and Chlorpyrifos by an Isolated Bacterial Consortium from a Contaminated Site. International Biodeterioration & Biodegradation, 65(6):827-831. https://doi.org/10.1016/j.ibiod.2011.06.001
    Pryor, W. A., 1960. The Kinetics of the Disproportionation of Sodium Thiosulfate to Sodium Sulfide and Sulfate. Journal of the American Chemical Society, 82(18):4794-4797. https://doi.org/10.1021/ja01503a010
    Sheng, G. D., Xu, C., Xu, L., et al., 2009. Abiotic Oxidation of 17β-Estradiol by Soil Manganese Oxides. Environmental Pollution, 157(10):2710-2715. https://doi.org/10.1016/j.envpol.2009.04.030
    Straus, D. L., Schlenk, D., Chambers, J. E., 2000. Hepatic Microsomal Desulfuration and Dearylation of Chlorpyrifos and Parathion in Fingerling Channel Catfish:Lack of Effect from Aroclor 1254. Aquatic Toxicology, 50(1/2):141-151. https://doi.org/10.1016/s0166-445x(99)00088-0
    Sun, B., Guan, X. H., Fang, J. Y., et al., 2015. Activation of Manganese Oxidants with Bisulfite for Enhanced Oxidation of Organic Contaminants:The Involvement of Mn(Ⅲ). Environmental Science & Technology, 49(20):12414-12421. https://doi.org/10.1021/acs.est.5b03111
    Sun, D. L., Wei, Y. L., Li, H. Z., et al., 2016. Insecticides in Sediment Cores from a Rural and a Suburban Area in South China:A Reflection of Shift in Application Patterns. Science of the Total Environment, 568:11-18. https://doi.org/10.1016/j.scitotenv.2016.05.202
    Sun, S. F., Pang, S. Y., Jiang, J., et al., 2018. The Combination of Ferrate(Ⅵ) and Sulfite as a Novel Advanced Oxidation Process for Enhanced Degradation of Organic Contaminants. Chemical Engineering Journal, 333:11-19. https://doi.org/10.1016/j.cej.2017.09.082
    Taube, H., 1947. Catalysis of the Reaction of Chlorine and Oxalic Acid. Complexes of Trivalent Manganese in Solutions Containing Oxalic Acid. Journal of the American Chemical Society, 69(6):1418-1428. https://doi.org/10.1021/ja01198a052
    Trouwborst, R. E., Clement, B. G., Tebo, B. M., et al., 2006. Soluble Mn(Ⅲ) in Suboxic Zones. Science, 313(5795):1955-1957. https://doi.org/10.1126/science.1132876
    Van Aken, B., Agathos, S. N., 2002. Implication of Manganese (Ⅲ), Oxalate, and Oxygen in the Degradation of Nitroaromatic Compounds by Manganese Peroxidase (MnP). Applied Microbiology and Biotechnology, 58(3):345-351. https://doi.org/10.1007/s00253-001-0888-1
    Wang, Y., Stone, A. T., 2006. Reaction of MnⅢ, Ⅳ (Hydr)Oxides with Oxalic Acid, Glyoxylic Acid, Phosphonoformic Acid, and Structurally-Related Organic Compounds. Geochimica et Cosmochimica Acta, 70(17):4477-4490. https://doi.org/10.1016/j.gca.2006.06.1548
    Wang, Z. M., Tebo, B. M., Giammar, D. E., 2014a. Effects of Mn(Ⅱ) on UO2 Dissolution under Anoxic and Oxic Conditions. Environmental Science & Technology, 48(10):5546-5554. https://doi.org/10.1021/es5002067
    Wang, Z. M., Xiong, W., Tebo, B. M., et al., 2014b. Oxidative UO2 Dissolution Induced by Soluble Mn(Ⅲ). Environmental Science & Technology, 48(1):289-298. https://doi.org/10.1021/es4037308
    Zamora, P. L., Villamena, F. A., 2012. Theoretical and Experimental Studies of the Spin Trapping of Inorganic Radicals by 5, 5-Dimethyl-1-Pyrroline N-Oxide (DMPO). 3. Sulfur Dioxide, Sulfite, and Sulfate Radical Anions. The Journal of Physical Chemistry A, 116(26):7210-7218. https://doi.org/10.1021/jp3039169
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(273) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return