Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 2
Apr 2019
Turn off MathJax
Article Contents
Xiaofei Fu, Lingyu Yan, Lingdong Meng, Xiaobo Liu. Deformation Mechanism and Vertical Sealing Capacity of Fault in the Mudstone Caprock. Journal of Earth Science, 2019, 30(2): 367-375. doi: 10.1007/s12583-018-0998-7
Citation: Xiaofei Fu, Lingyu Yan, Lingdong Meng, Xiaobo Liu. Deformation Mechanism and Vertical Sealing Capacity of Fault in the Mudstone Caprock. Journal of Earth Science, 2019, 30(2): 367-375. doi: 10.1007/s12583-018-0998-7

Deformation Mechanism and Vertical Sealing Capacity of Fault in the Mudstone Caprock

doi: 10.1007/s12583-018-0998-7
More Information
  • Corresponding author: Lingdong Meng; Xiaobo Liu
  • Received Date: 25 Mar 2013
  • Accepted Date: 12 Jan 2015
  • Publish Date: 01 Apr 2019
  • The petrophysical property of mudstone often transforms from ductile to brittle in the process of burial-uplift. The deformation mechanism of fault in brittle and ductile mudstone caprock is different, which leads to the formation of different types of fault zone structure. Different methods are required to evaluate the sealing mechanism of those fault zones. Based on the caprock deformation mechanism, fault sealing mechanism, quantitative evaluation method of vertical fault sealing capacity is put forward in this study. Clay smear is formed in the process of plastic deformation and its continuity controls the sealing capacity of fault. The outcrop and oil field data have confirmed that when sealing parameter SSF is less than 4-7, the clay smear becomes discontinuous and then oil and gas go through the caprock and migrate vertically. Quantities of fractures are formed in mudstone in the process of brittle deformation. The fracture density increases with the increase of the fault displacement. When the fractures are connected, oil and gas go through the caprock and migrate vertically. The connectivity of fault depends on the displacement and the thickness of caprock. On the basis of the above, a method is put forward to quantify the connectivity of fault with the juxtaposition thickness of caprock after faulting. The research on the juxtaposition thickness of caprock after faulting of the member Ⅱ of Dongying Formation in Nanpu depression and the distribution of oil and gas indicates when the juxtaposition thickness of caprock is less than 96.2 m, the fault becomes leaking vertically. In the lifting stage, with the releasing and unloading of the stress, the caprock becomes brittle generally and then forms through going fault which will lead to a large quantity of oil and gas migrate vertically.

     

  • loading
  • Anderson, R. S., 1994. Evolution of the Santa Cruz Mountains, California, through Tectonic Growth and Geomorphic Decay. Journal of Geophysical Research: Solid Earth, 99(B10): 20161-20179. https://doi.org/10.1029/94jb00713
    Aydin, A., Eyal, Y., 2002. Anatomy of a Normal Fault with Shale Smear: Implications for Fault Seal. AAPG Bulletin, 86(8): 1367-1381 http://cn.bing.com/academic/profile?id=ecf86ec8cc0ae4b1b38b91d31ae0cd00&encoded=0&v=paper_preview&mkt=zh-cn
    Aydin, A., Myers, R., Younes, A., 1998. Faults: Seals or Migration Pathways? Yes, No, Some are but Some aren't, and Some Faults are but only Sometimes!. American Association of Petroleum Geologists, Annual Meeting Abstract, Rio de Janeiro. No. A37
    Bolton, A., Maltman, A., 1998. Fluid-Flow Pathways in Actively Deforming Sediments: The Role of Pore Fluid Pressures and Volume Change. Marine and Petroleum Geology, 15(4): 281-297. https://doi.org/10.1016/s0264-8172(98)00025-7
    Burhannudinnur, M., Morley, C. K., 1997. Anatomy of Growth Fault Zones in Poorly Lithified Sandstones and Shales; Implications for Reservoir Studies and Seismic Interpretation; Part 1, Outcrop Study. Petroleum Geoscience, 3(3): 211-224. https://doi.org/10.1144/petgeo.3.3.211
    Caillet, G., Judge, N. C., Bramwell, N. P., et al., 1997. Overpressure and Hydrocarbon Trapping in the Chalk of the Norwegian Central Graben. Petroleum Geoscience, 3(1): 33-42. https://doi.org/10.1144/petgeo.3.1.33
    Childs, C., Walsh, J. J., Manzocchi, T., et al., 2007. Definition of a Fault Permeability Predictor from Outcrop Studies of a Faulted Turbidite Sequence, Taranaki, New Zealand. Geological Society, London, Special Publications, 292(1): 235-258. https://doi.org/10.1144/sp292.14
    Clausen, J. A., Gabrielsen, R. H., 2002. Parameters that Control the Development of Clay Smear at Low Stress States: An Experimental Study Using Ring-Shear Apparatus. Journal of Structural Geology, 24(10): 1569-1586. https://doi.org/10.1016/s0191-8141(01)00157-2
    Cuisiat, F., Skurtveit, E., 2010. An Experimental Investigation of the Development and Permeability of Clay Smears along Faults in Uncemented Sediments. Journal of Structural Geology, 32(11): 1850-1863. https://doi.org/10.1016/j.jsg.2009.12.005
    Davatzes, N. C., Aydin, A., 2005. Distribution and Nature of Fault Architecture in a Layered Sandstone and Shale Sequence: An Example from the Moab Fault, Utah. Fluid Flow and Petroleum Traps. AAPG Memoir, 85: 153-180. https://doi.org/10.1306/1033722M853134
    Dewhurst, D. N., Jones, R. M., Hillis, R. R., et al., 2002. Microstructural and Geomechanical Characterisation of Fault Rocks from the Carnarvon and Otway Basins. The APPEA Journal, 42(1): 167-186. https://doi.org/10.1071/aj01010
    Dong, H. Z., 2011. Oil-Gas and Reservoir-Forming Mechanism of the Damoguaihe Formation in the Southern Wuerxun Sag, Hailar Basin. Acta Petrolei Sinica, 32(1): 62-69 (in Chinese with English Abstract) doi: 10.1038/aps.2010.181
    Doughty, P. T., 2003. Clay Smear Seals and Fault Sealing Potential of an Exhumed Growth Fault, Rio Grande Rift, New Mexico. AAPG Bulletin, 87(3): 427-444. https://doi.org/10.1306/10010201130
    Eadington, P. J., Lisk, M., Krieger, F. W., 1996. Identifying Oil Well Sites. United States Patent, No. 5543616, [1996-08-06]
    Egholm, D. L., Clausen, O. R., Sandiford, M., et al., 2008. The Mechanics of Clay Smearing along Faults. Geology, 36(10): 787-790. https://doi.org/10.1130/g24975a.1
    Eichhubl, P., D'Onfro, P. S., Aydin, A., et al., 2005. Structure, Petrophysics, and Diagenesis of Shale Entrained along a Normal Fault at Black Diamond Mines, California—Implications for Fault Seal. AAPG Bulletin, 89(9): 1113-1137. https://doi.org/10.1306/04220504099
    Faerseth, R. B., 2006. Shale Smear along Large Faults: Continuity of Smear and the Fault Seal Capacity. Journal of the Geological Society, 163: 741-751. https://doi.org/10.1144/0016-76492005-162
    Ferrill, D. A., Morris, A. P., 2008. Fault Zone Deformation Controlled by Carbonate Mechanical Stratigraphy, Balcones Fault System, Texas. AAPG Bulletin, 92(3): 359-380. https://doi.org/10.1306/10290707066
    Fisher, Q. J., Knipe, R. J., 2001. The Permeability of Faults within Siliciclastic Petroleum Reservoirs of the North Sea and Norwegian Continental Shelf. Marine and Petroleum Geology, 18(10): 1063-1081. https://doi.org/10.1016/s0264-8172(01)00042-3
    Fossen, H., Schultz, R. A., Rundhovde, E., et al., 2010. Fault Linkage and Graben Stepovers in the Canyonlands (Utah) and the North Sea Viking Graben, with Implications for Hydrocarbon Migration and Accumulation. AAPG Bulletin, 94(5): 597-613. https://doi.org/10.1306/10130909088
    Fu, X. F., 2002. Fault Sealing and Fluid Migration of Overthrust in Kuche Sag: [Dissertation]. Daqing Petroleum Institute, Daqing (in Chinese with English Abstract)
    Fu, X. F., Chen, Z., Yan, B. Q., et al., 2013. Analysis of Main Controlling Factors for Hydrocarbon Accumulation in Central Rift Zones of the Hailar-Tamtsag Basin Using a Fault-Caprock Dual Control Mode. Science China Earth Sciences, 56(8): 1357-1370. https://doi.org/10.1007/s11430-013-4622-5
    Fu, X. F., Dong, J., Lü, Y. F., et al., 2012a. Fault structual Characteristics of Wuerxun-Beier Depression in the Hailaer Basin and Their Rerervior-Controlling Mechanism. Acta Geologica Sinica, 86(6): 877-889 (in Chinese with English Abstract)
    Fu, X. F., Guo, X., Zhu, L. X., et al., 2012b. Formation and Evolution of Clay Smear and Hydrocarbon Migration and Sealing. Journal of China University of Mining and Technology, 41(1): 52-63 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201201010
    Fu, X. F., Pan, G. Q., He, X. Y., et al., 2009. Lateral Sealing of Faults for Shallow Biogas in Heidimiao Formation of the Southern Daqing Placanticline. Acta Petrolei Sinica, 5: 678-684 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200905008
    Gao, Y. Q., Liu, L., 2007. Time Recording of Inorganic CO2 and Petroleum Infilling in Wuerxun Depression, Hailaer Basin. Acta Sedimentologica Sinica, 4: 574-582 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200704011
    Gibson, R. G., 1994. Fault-Zone Seals in Siliciclastic Strata of the Columbus Basin, Offshore Trinidad. AAPG Bulletin, 78: 1372-1385. https://doi.org/10.1306/a25feca7-171b-11d7-8645000102c1865d
    Gibson, R. G., 1998. Physical Character and Fluid-Flow Properties of Sandstone-Derived Fault Zones. Geological Society, London, Special Publications, 127(1): 83-97. https://doi.org/10.1144/gsl.sp.1998.127.01.07
    Grunau, H. R., 1987. A Worldwide Look at the Cap-Rock Problem. Journal of Petroleum Geology, 10(3): 245-265. https://doi.org/10.1111/j.1747-5457.1987.tb00945.x
    Gudehus, G., Karcher, C., 2007. Hypoplastic Simulation of Normal Faults without and with Clay Smears. Journal of Structural Geology, 29(3): 530-540. https://doi.org/10.1016/j.jsg.2006.09.011
    Hesthammer, J., Fossen, H., 1998. The Use of Dipmeter Data to Constrain the Structural Geology of the Gullfaks Field, Northern North Sea. Marine and Petroleum Geology, 15(6): 549-573. https://doi.org/10.1016/s0264-8172(98)00028-2
    Holland, M., Urai, J. L., van der Zee, W., et al., 2006. Fault Gouge Evolution in Highly Overconsolidated Claystones. Journal of Structural Geology, 28(2): 323-332. https://doi.org/10.1016/j.jsg.2005.10.005
    Hou, Q. J., Feng, Z. H., Huo, Q. L., 2004. Oil Migration Model and Entrapment Epoch of North Wuerxun Depression in Hailaer Basin. Earth Science, 29(4): 397-403 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200404004
    Ingram, G. M., Urai, J. L., 1999. Top-Seal Leakage through Faults and Fractures: The Role of Mudrock Properties. Geological Society, London, Special Publications, 158(1): 125-135. https://doi.org/10.1144/gsl.sp.1999.158.01.10
    Kim, J. W., Berg, R. R., Watkins, J. S., et al., 2003. Trapping Capacity of Faults in the Eocene Yegua Formation, East Sour Lake Field, Southeast Texas. AAPG Bulletin, 87(3): 415-425. https://doi.org/10.1306/08010201129
    Knipe, R. J., 1992. Faulting Processes and Fault Seal. Structural and Tectonic Modelling and Its Application to Petroleum Geology, 1: 325-342 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d5bf8fe4e84cc1fb359550e62e1cb08
    Knott, S. D., 1994. Fault Zone Thickness versus Displacement in the Permo-Triassic Sandstones of NW England. Journal of the Geological Society, 151(1): 17-25. https://doi.org/10.1144/gsjgs.151.1.0017
    Koledoye, A. B., Aydin, A., May, E., 2000. Three-Dimensional Visualization of Normal Fault Segmentation and its Implication for Fault Growth. The Leading Edge, 19(7): 692-701. https://doi.org/10.1190/1.1438692
    Koledoye, A. B., Aydin, A., May, E., 2003. A New Process-Based Methodology for Analysis of Shale Smear along Normal Faults in the Niger Delta. AAPG Bulletin, 87(3): 445-463. https://doi.org/10.1306/08010200131
    Lehner, F. K., Pilaar, W. F., 1997. The Emplacement of Clay Smears in Synsedimentary Normal Faults: Inferences from Field Observations near Frechen, Germany. Norwegian Petroleum Society Special Publication, 7: 15-38 doi: 10.1016/S0928-8937(97)80004-5
    Lindsay, N. G., Murphy, F. C., Walsh, J. J., et al., 1993. Outcrop Studies of Shale Smears on Fault Surfaces. International Association of Sedimentologists, 15: 113-123 http://cn.bing.com/academic/profile?id=08afac6db126aac7a537d1fb5d22c257&encoded=0&v=paper_preview&mkt=zh-cn
    Lü, Y. F., Sha, Z. X., Fu, X. F., et al., 2007. Quantitative Evaluation Method for Fault Vertical Sealing Ability and Its Application. Acta Petrolei Sinica, 28(5): 34-38 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200705006
    Nygård, R., Gutierrez, M., Bratli, R. K., et al., 2006. Brittle-Ductile Transition, Shear Failure and Leakage in Shales and Mudrocks. Marine and Petroleum Geology, 23(2): 201-212. https://doi.org/10.1016/j.marpetgeo.2005.10.001
    Peacock, D. C. P., Knipe, R. J., Sanderson, D. J., 2000. Glossary of Normal Faults. Journal of Structural Geology, 22(3): 291-305. https://doi.org/10.1016/s0191-8141(00)80102-9
    Roberts, G. P., 1996. Variation in Fault-Slip Directions along Active and Segmented Normal Fault Systems. Journal of Structural Geology, 18(6): 835-845. https://doi.org/10.1016/s0191-8141(96)80016-2
    Roberts, G. P., Gawthorpe, R. L., 1995. Strike Variation in Deformation and Diagenesis along Segmented Normal Faults: An Example from the Eastern Gulf of Corinth, Greece. Geological Society, London, Special Publications, 80(1): 57-74. https://doi.org/10.1144/gsl.sp.1995.080.01.03
    Runar, N., Marte, G., Rolf, K. B., et al., 2006. Brittle-Ductile Transition, Shear Failure and Leakage in Shales and Mudrocks. Marine and Petroleum Geology, 23: 201-212. https://doi.org/10.1016/j.marpetgeo.2005.10.001
    Schmatz, J., Vrolijk, P. J., Urai, J. L., 2010. Clay Smear in Normal Fault Zones—The Effect of Multilayers and Clay Cementation in Water-Saturated Model Experiments. Journal of Structural Geology, 32(11): 1834-1849. https://doi.org/10.1016/j.jsg.2009.12.006
    Schowalter, T. T., 1981. Prediction of Caprock Seal Capacity: Abstract. AAPG Bulletin, 65: 987-988 http://cn.bing.com/academic/profile?id=2b2e2fcf529169d05a00128136250ffe&encoded=0&v=paper_preview&mkt=zh-cn
    Smith, D. A., 1980. Sealing and Nonsealing Faults in Louisiana Gulf Coast Salt Basin. AAPG Bulletin, 64(2): 145-172 http://cn.bing.com/academic/profile?id=e3861237cd154738157e061c9dca7434&encoded=0&v=paper_preview&mkt=zh-cn
    Speksnijder, A., 1987. The Structural Configuration of Cormorant Block Ⅳ in Context of the Northern Viking Graben Structural Framework. Geologieen Mijnbouw, 65: 357-379
    Sperrevik, S., Færseth, R. B., Gabrielsen, R. H., 2000. Experiments on Clay Smear Formation along Faults. Petroleum Geoscience, 6(2): 113-123. https://doi.org/10.1144/petgeo.6.2.113
    Sperrevik, S., Gillespie, P. A., Fisher, Q. J., et al., 2002. Empirical Estimation of Fault Rock Properties. Norwegian Petroleum Society Special Publications, 11: 109-125. https://doi.org/10.1016/S0928-8937(02)80010-8
    Sun, Y. H., Zhao, B., Dong, Y. X., et al., 2013. Control of Faults on Hydrocarbon Migration and Accumulation in the Nanpu Sag. Oil & Gas Geology, 34(4): 540-549 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201304020.htm
    Takahashi, M., 2003. Permeability Change during Experimental Fault Smearing. Journal of Geophysical Research: Solid Earth, 108(B5): 1-15. https://doi.org/10.1029/2002jb001984
    Watts, N. L., 1987. Theoretical Aspects of Cap-Rock and Fault Seals for Single- and Two-Phase Hydrocarbon Columns. Marine and Petroleum Geology, 4(4): 274-307. https://doi.org/10.1016/0264-8172(87)90008-0
    Weber, K., Mandl, G., Pilaar, W., et al., 1978. The Role of Faults in Hydrocarbon Migration and Trapping in Nigerian Growth Fault Structures. 10th Annual Offshore Technology Conference Proceedings, 4: 2643-2653 http://cn.bing.com/academic/profile?id=94f815da3fa1c5730b309247a7454b9f&encoded=0&v=paper_preview&mkt=zh-cn
    Weber, K. J., 1997. A Historical Overview of the Efforts to Predict and Quantify Hydrocarbon Trapping Features in the Exploration Phase and in Field Development Planning. Norwegian Petroleum Society Special Publication, 7: 1-13 doi: 10.1016/S0928-8937(97)80003-3
    Yielding, G., 2002. Shale Gouge Ratio-Calibration by Geohistory. Norwegian Petroleum Society Special Publications, 11: 1-15 doi: 10.1016/S0928-8937(02)80003-0
    Yielding, G., Freeman, B., Needham, D. T., 1997. Quantitative Fault Seal Prediction. AAPG Bulletin, 81(6): 897-917 http://d.old.wanfangdata.com.cn/Periodical/sywt200603008
    Younes, A. I., Aydin, A., 2001. Comparison of Fault Sealing by Single and Multiple Layers of Shale:Outcrop Examples from the Gulf of Suez, Egypt. AAPG Annual Meeting Program, 10: 222. https://doi.org/10.1306/61eed580-173e-11d7-8645000102c1865
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(450) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return