Aguiar, A., Aguiar, H. G. M., Azevedo, D. A., et al., 2011. Identification of Methylhopane and Methylmoretane Series in Ceará Basin Oils, Brazil, Using Comprehensive Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry. Energy & Fuels, 25(3): 1060-1065. https://doi.org/10.1021/ef1013659 |
Aguiar, A., Silva, A. I., Azevedo, D. A., et al., 2010. Application of Comprehensive Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry to Biomarker Characterization in Brazilian Oils. Fuel, 89(10): 2760-2768. https://doi.org/10.1016/j.fuel.2010.05.022 |
Bray, E. E., Evans, E. D., 1961. Distribution of N-Paraffins as a Clue to Recognition of Source Beds. Geochimica et Cosmochimica Acta, 22(1): 2-15. https://doi.org/10.1016/0016-7037(61)90069-2 |
Chen, J. H., Fu, J. M., Sheng, G. Y., et al., 1996. Diamondoid Hydrocarbon Ratios: Novel Maturity Indices for Highly Mature Crude Oils. Organic Geochemistry, 25(3/4): 179-190. https://doi.org/10.1016/s0146-6380(96)00125-8 |
Chikaraishi, Y., Naraoka, H., 2007. Δ13C and ΔD Relationships among Three n-Alkyl Compound Classes (n-Alkanoic Acid, n-Alkane and n-Alkanol) of Terrestrial Higher Plants. Organic Geochemistry, 38(2): 198-215. https://doi.org/10.1016/j.orggeochem.2006.10.003 |
Cukur, D., Horozal, S., Lee, G. H., et al., 2012. Timing of Trap Formation and Petroleum Generation in the Northern East China Sea Shelf Basin. Marine and Petroleum Geology, 36(1): 154-163. https://doi.org/10.1016/j.marpetgeo.2012.04.009 |
Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731): 54-57. https://doi.org/10.1038/19953 |
Dai, L. M., Li, S. Z., Lou, D., et al., 2014. Numerical Modeling of Late Miocene Tectonic Inversion in the Xihu Sag, East China Sea Shelf Basin, China. Journal of Asian Earth Sciences, 86: 25-37. https://doi.org/10.1016/j.jseaes.2013.09.033 |
Dawson, D., Grice, K., Alexander, R., 2005. Effect on Maturation on the Indigenous ΔD Signatures of Individual Hydrocarbons in Sediments and Crude Oils from the Perth Basin (Western Australia). Organic Geochemistry, 36(1): 95-104. https://doi.org/10.1016/j.orggeochem.2004.06.020 |
Dawson, D., Grice, K., Alexander, R., et al., 2007. The Effect of Source and Maturity on the Stable Isotopic Compositions of Individual Hydrocarbons in Sediments and Crude Oils from the Vulcan Sub-Basin, Timor Sea, Northern Australia. Organic Geochemistry, 38(7): 1015-1038. https://doi.org/10.1016/j.orggeochem.2007.02.018 |
de Rosa, M., Gambacorta, A., Minale, L., et al., 1972. The Formation of Ω-Cyclohexyl-Fatty Acids from Shikimate in an Acidophilic Thermophilic Bacillus. A New Biosynthetic Pathway. Biochemical Journal, 128(4): 751-754. https://doi.org/10.1042/bj1280751 |
Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., et al., 1978. Organic Geochemical Indicators of Paleoenvironmental Conditions of Sedimentation. Nature, 272(5650): 216-222. https://doi.org/10.1038/272216a0 |
Fowler, M. G., Abolins, P., Douglas, A. G., 1986. Monocyclic Alkanes in Ordovician Organic Matter. Organic Geochemistry, 10(4-6): 815-823. https://doi.org/10.1016/s0146-6380(86)80018-3 |
Freeman, K. H., Hayes, J. M., Trendel, J. M., et al., 1990. Evidence from Carbon Isotope Measurements for Diverse Origins of Sedimentary Hydrocarbons. Nature, 343(6255): 254-256. https://doi.org/10.1038/343254a0 |
Grice, K., Mesmay, R. D., Glucina, A., et al., 2008. An Improved and Rapid 5A Molecular Sieve Method for Gas Chromatography Isotope Ratio Mass Spectrometry of n-Alkanes (C8-C30+). Organic Geochemistry, 39(3): 284-288. https://doi.org/10.1016/j.orggeochem.2007.12.009 |
Hayes, J. M., Freeman, K. H., Popp, B. N., et al., 1990. Compound-Specific Isotopic Analysis: A Novel Tool for Reconstruction of Ancient Biogeochemical Processes. Organic Geochemistry, 16(4-6): 1115-1128. https://doi.org/10.1016/0146-6380(90)90147-r |
Hayes, J. M., Takigiku, R., Ocampo, R., et al., 1987. Isotopic Composition and Probable Origins of Organic Molecules in the Eocene Messel Shale. Nature, 329(6134): 48-51. https://doi.org/10.1038/329048a0 |
Inaba, T., Suzuki, N., 2003. Gel Permeation Chromatography for Fractionation and Isotope Ratio Analysis of Steranes and Triterpanes in Oils. Organic Geochemistry, 34(4): 635-641. https://doi.org/10.1016/s0146-6380(03)00017-2 |
Johns, R. B., Belsky, T., McCarthy, E. D., et al., 1966. The Organic Geochemistry of Ancient Sediments Ⅱ. Geochimica et Cosmochimica Acta, 30(12): 1191-1222. https://doi.org/10.1016/0016-7037(66)90120-7 |
Kikuchi, T., Suzuki, N., Saito, H., 2010. Change in Hydrogen Isotope Composition of N-Alkanes, Pristane, Phytane, and Aromatic Hydrocarbons in Miocene Siliceous Mudstones with Increasing Maturity. Organic Geochemistry, 41(9): 940-946. https://doi.org/10.1016/j.orggeochem.2010.05.004 |
Li, C. F., Zhou, Z., Ge, H., et al., 2009. Rifting Process of the Xihu Depression, East China Sea Basin. Tectonophysics, 472(1-4): 135-147. https://doi.org/10.1016/j.tecto.2008.04.026 |
Li, M. W., Riediger, C. L., Fowler, M. G., et al., 1997. Unusual Polycyclic Aromatic Hydrocarbons in the Lower Cretaceous Ostracode Zone Sedimentary and Related Oils of the Western Canada Sedimentary Basin. Organic Geochemistry, 27(7/8): 439-448. https://doi.org/10.1016/s0146-6380(97)00026-0 |
Li, S. F., Hu, S. Z., Cao, J., et al., 2012. Diamondoid Characterization in Condensate by Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry: The Junggar Basin of Northwest China. International Journal of Molecular Sciences, 13(9): 11399-11410. https://doi.org/10.3390/ijms130911399 |
Li, Y., Xiong, Y., Chen, Y., et al., 2014. The Effect of Evaporation on the Concentration and Distribution of Diamondoids in Oils. Organic Geochemistry, 69: 88-97. https://doi.org/10.1016/j.orggeochem.2014.02.007 |
Matthews, D. E., Hayes, J. M., 1978. Isotope-Ratio-Monitoring Gas Chromatography Mass Spectrometry. Analytical Chemistry, 50(11): 1465-1473. https://doi.org/10.1021/ac50033a022 |
Moldowan, J. M., Seifer, W. K., Gallegos, E. J., 1985. Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. American Association of Petroleum Geologists Bulletin, 69: 1255-1268 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10916469808949779 |
Oshima, M., Ariga, T., 1975. Cyclohexy1 Fatty Acids in Acidophilic Thermophihc Bacteria. Journal of Biology Chemistry, 250: 6963-6968 |
Pedentchouk, N., Freeman, K. H., Harris, N. B., 2006. Different Response of δD Values of n-Alkanes, Isoprenoids, and Kerogen during Thermal Maturation. Geochimica et Cosmochimica Acta, 70(8): 2063-2072. https://doi.org/10.1016/j.gca.2006.01.013 |
Powell, T. G., McKirdy, D. M., 1973. Relationship between Ratio of Pristane to Phytane, Crude Oil Composition and Geological Environment in Australia. Nature, 243(124): 37-39. https://doi.org/10.1038/physci243037a0 |
Radke, J., Bechtel, A., Gaupp, R., et al., 2005. Correlation between Hydrogen Isotope Ratios of Lipid Biomarkers and Sediment Maturity. Geochimica et Cosmochimica Acta, 69(23): 5517-5530. https://doi.org/10.1016/j.gca.2005.07.014 |
Rubinstein, I., Strausz, O. P., 1979. Geochemistry of the Thiourea Adduct Fraction from an Alberta Petroleum. Geochimica et Cosmochimica Acta, 43(8): 1387-1392. https://doi.org/10.1016/0016-7037(79)90129-7 |
Schaeffer, P., Poinsot, J., Hauke, V., et al., 1994. Novel Optically Active Hydrocarbons in Sediments: Evidence for an Extensive Biological Cyclization of Higher Regular Polyphenols. Angewandte Chemie, 33(11): 1166-1169. https://doi.org/10.1002/anie.199411661 |
Schimmelmann, A., Sessions, A., Boreham, C. J., et al., 2004. D/H Ratios in Terrestrially Sourced Petroleum Systems. Organic Geochemistry, 35(10): 1169-1195. https://doi.org/10.1016/j.orggeochem.2004.05.006 |
Seifert, W. K., Moldowan, J. M., 1986. Use of Biological Markers in Petroleum Exploration. Methods in Geochemistry and Geophysics, 24: 261-290 http://cn.bing.com/academic/profile?id=3a876512747a1e5a428f0dd25e96aa94&encoded=0&v=paper_preview&mkt=zh-cn |
Spiro, B., 1984. Effects of the Mineral Matrix on the Distribution of Geochemical Markers in Thermally Affected Sedimentary Sequences. Organic Geochemistry, 6: 543-559. https://doi.org/10.1016/0146-6380(84)90077-9 |
Tang, Y. C., Huang, Y. S., Ellis, G. S., et al., 2005. A Kinetic Model for Thermally Induced Hydrogen and Carbon Isotope Fractionation of Individual n-Alkanes in Crude Oil. Geochimica et Cosmochimica Acta, 69(18): 4505-4520. https://doi.org/10.1016/j.gca.2004.12.026 |
Triwahyono, S., Abdul, J. A., Shamsuddin, M., et al., 2005. Isomerization of Cyclohexane to Methylcyclopentane over Pt/sulfate-ZrO2 Catalyst. 2nd International Conference on Chemical and Bioprocess Engineering, Sabah |
Ventura, G. T., Raghuraman, B., Nelson, R. K., et al., 2010. Compound Class Oil Fingerprinting Techniques Using Comprehensive Two-Dimensional Gas Chromatography (GC×GC). Organic Geochemistry, 41(9): 1026-1035. https://doi.org/10.1016/j.orggeochem.2010.02.014 |
Ventura, G. T., Simoneit, B. R. T., Nelson, R. K., et al., 2012. The Composition, Origin and Fate of Complex Mixtures in the Maltene Fractions of Hydrothermal Petroleum Assessed by Comprehensive Two-Dimensional Gas Chromatography. Organic Geochemistry, 45: 48-65. https://doi.org/10.1016/j.orggeochem.2012.01.002 |
Wang, T. G., Zhong, N. N., Huo, D. J., et al., 1997. Several Genetic Mechanisms of Immature Crude Oils in China. Acta Sedimentologica Sinica, 2: 75-83 (in Chinese with English Abstract) |
Wang, Y., Huang, Y., 2003. Hydrogen Isotopic Fractionation of Petroleum Hydrocarbons during Vaporization: Implications for Assessing Artificial and Natural Remediation of Petroleum Contamination. Applied Geochemistry, 18(10): 1641-1651. https://doi.org/10.1016/s0883-2927(03)00076-3 |
Wei, Z. B, Moldowan, J. M., Jarvie, D. M., et al., 2006. The Fate of Diamondoids in Coals and Sedimentary Rocks. Geology, 34(12): 1013-1023. https://doi.org/10.1130/g22840a.1 |
Wei, Z. B., Moldowan, J. M., Zhang, S. C., et al., 2007. Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil Cracking: Geochemical Models from Hydrous Pyrolysis. Organic Geochemistry, 38(2): 227-249. https://doi.org/10.1016/j.orggeochem.2006.09.011 |
Williams, J. A., Dolcater, D. L., Torkelson, B. E., et al., 1988. Anomalous Concentrations of Specific Alkylaromatic and Alkylcycloparaff in Components in West Texas and Michigan Crude Oils. Organic Geochemistry, 13(1-3): 47-60. https://doi.org/10.1016/0146-6380(88)90024-1 |
Yang, S. C., Hu, S. B., Cai, D. S., et al., 2004. Present-Day Heat Flow, Thermal History and Tectonic Subsidence of the East China Sea Basin. Marine and Petroleum Geology, 21(9): 1095-1105. https://doi.org/10.1016/j.marpetgeo.2004.05.007 |
Ye, J. R., Chen, H. H., Chen, J. Y., et al., 2006. Fluid History Analysis in the Xihu Depression, East China Sea. Natural Gas Industry, 26(9): 40-43 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200609012 |
Zhu, C. S., Zhao, H., Wang, P. R., et al., 2003. The Distribution and Carbon Isotopic Composition of Unusual Polycyclic Alkanes in the Cretaceous Lengshuiwu Formation, China. Organic Geochemistry, 34(7): 1027-1035. https://doi.org/10.1016/s0146-6380(03)00037-8 |
Zhu, Y., Li, Y., Zhou, J., et al., 2012. Geochemical Characteristics of Tertiary Coal-Bearing Source Rocks in Xihu Depression, East China Sea Basin. Marine and Petroleum Geology, 35(1): 154-165. https://doi.org/10.1016/j.marpetgeo.2012.01.005 |