Alard, O., Griffin, W. L., Lorand, J. P., et al., 2000. Non-Chondritic Distribution of the Highly Siderophile Elements in Mantle Sulphides. Nature, 407(6806):891-894. https://doi.org/10.1038/35038049 |
Amosse, J., Allibert, M., Fischer, W., et al., 1990. Experimental Study of the Solubility of Platinum and Iridium in Basic Silicate Melts-Implications for the Differentiation of Platinum-Group Elements during Magmatic Processes. Chemical Geology, 81(1/2):45-53. https://doi.org/10.1016/0009-2541(90)90038-9 |
Arndt, N., Lesher, C. M., Czamanske, G. K., 2005. Mantle-Derived Magmas and Magmatic Ni-Cu-(PGE) Deposits. Economic Geology, 100:5-24 |
Augé, T., Salpeteur, I., Bailly, L., et al., 2002. Magmatic and Hydrothermal Platinum-Group Minerals and Base-Metal Sulfides in the Baula Com-plex, India. The Canadian Mineralogist, 40(2):277-309. https://doi.org/10.2113/gscanmin.40.2.277 |
Barnes, S. J., Naldrett, A. J., Gorton, M. P., 1985. The Origin of the Fractionation of Platinum-Group Elements in Terrestrial Magmas. Chemical Geology, 53(3/4):303-323. https://doi.org/10.1016/0009-2541(85)90076-2 |
Barnes, S. J., Lightfoot, P. C., 2005. Formation of Magmatic Nickel Sulfide Ore Deposits and Processes Affecting Their Copper and Platinum Group Element Contents. Economic Geology, 100:179-213 doi: 10.2113/100.1.0179-a |
Barnes, S. J., Maier, W. D., 1999. The Fractionation of Ni, Cu and the Noble Metals in Silicate and Sulfide Liquids. In: Keays, R. R., Lesher, C. M., Ligthfoot, P. C., et al., eds., Dynamic Processes in Magmatic Ore De-posits and Their Application in Mineral Exploration. Geological Society Canada, Short Course Notes, 13: 69-106 |
BGMRGP (Bureau of Geology and Mineral Resources of Guizhou Province), 1987. Regional Geology of Guizhou Province. Geological Publishing House, Beijing (in Chinese) |
Bockrath, C., 2004. Fractionation of the Platinum-Group Elements during Mantle Melting. Science, 305(5692):1951-1953. https://doi.org/10.1126/science.1100160 |
Canil, D., 1999. Vanadium Partitioning between Orthopyroxene, Spinel and Silicate Melt and the Redox States of Mantle Source Regions for Primary Magmas. Geochimica et Cosmochimica Acta, 63(3/4):557-572. https://doi.org/10.1016/s0016-7037(98)00287-7 |
Capobianco, C. J., Drake, M. J., 1990. Partitioning of Ruthenium, Rhodium, and Palladium between Spinel and Silicate Melt and Implications for Platinum Group Element Fractionation Trends. Geochimica et Cosmo-chimica Acta, 54(3):869-874. https://doi.org/10.1016/0016-7037(90)90379-y |
Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2017. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186:173-194. https://doi.org/10.1016/j.earscirev.2017.06.001 |
Crocket, J., 2002. Platinum-Group Element Geochemistry of Mafic and Ultramafic Rocks. The Geology, Geochemistry, Mineralogy, and Mineral Beneficiation of Platinum-Group Elements. CIM Special, 54:177-210 doi: 10.1016-0301-9268(91)90045-C/ |
Ding, R. X., Zou, H. P., Min, K., et al., 2017. Detrital Zircon U-Pb Geo-chronology of Sinian-Cambrian Strata in the Eastern Guangxi Area, China. Journal of Earth Science, 28(2):295-304. https://doi.org/10.1007/s12583-017-0723-y |
Esser, B. K., Turekian, K. K., 1993. The Osmium Isotopic Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 57(13):3093-3104. https://doi.org/10.1016/0016-7037(93)90296-9 |
Fu, Y., Dong, L., Li, C., et al., 2016. New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niuti-tang Formation. Journal of Earth Science, 27(2):271-281. https://doi.org/10.1007/s12583-016-0606-7 |
Gao, J. F., Zhou, M. F., Lightfoot, P. C., et al., 2012a. Heterogeneous Os Isotope Compositions in the Kalatongke Sulfide Deposit, NW China:The Role of Crustal Contamination. Mineralium Deposita, 47(7):731-738. https://doi.org/10.1007/s00126-012-0414-7 |
Gao, J. F., Zhou, M. F., Lightfoot, P. C., et al., 2012b. Origin of PGE-Poor and Cu-Rich Magmatic Sulfides from the Kalatongke Deposit, Xinjiang, Northwest China. Economic Geology, 107(3):481-506. https://doi.org/10.2113/econgeo.107.3.481 |
Gao, S., Zhang, B. R., 1990. The Discovery of Archean TTG Gneisses in the Northern Yangtze Platform and Their Implications. Earth Sciences, 15(6):675-679 (in Chinese with English Abstract) |
Ge, W. C., Li, X. H., Liang, X. R., et al., 2001. Geochemistry and Geological Implications of Mafic-Ultramafic Rocks with the Age of~825 Ma in Yuanbaoshan-Baotan Area of Northern Guangxi. Geochemica, 30(2):123-130 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200102003 |
GRGST (Guizhou Regional Geological Survey Team), 1974. Regional Geological Survey Report of Fanjingshan Area (1: 50 000). Guizhou Regional Geological Survey Team, Beijing (in Chinese) |
Handler, M. R., Bennett, V. C., 1999. Behaviour of Platinum-Group Ele-ments in the Subcontinental Mantle of Eastern Australia during Variable Metasomatism and Melt Depletion. Geochimica et Cosmochimica Acta, 63(21):3597-3618. https://doi.org/10.1016/s0016-7037(99)00143-x |
Helmy, H. M., El Mahallawi, M. M., 2003. Gabbro Akarem Mafic-Ultramafic Complex, Eastern Desert, Egypt:A Late Precambrian Analogue of Alaskan-Type Complexes. Mineralogy and Petrology, 77(1/2):85-108. https://doi.org/10.1007/s00710-001-0185-9 |
Helmy, H. M., Mogessie, A., 2001. Gabbro Akarem, Eastern Desert, Egypt:Cu-Ni-PGE Mineralization in a Concentrically Zoned Mafic-Ultramafic Complex. Mineralium Deposita, 36(1):58-71. https://doi.org/10.1007/s001260050286 |
Jiang, X. F., Peng, S. B., Kusky, T. M., et al., 2018. Petrogenesis and Geotectonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton:Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1):93-102. https://doi.org/10.1007/s12583-018-0821-5 |
Keays, R. R., 1995. The Role of Komatiitic and Picritic Magmatism and S-Saturation in the Formation of Ore Deposits. Lithos, 34(1/2/3):1-18. https://doi.org/10.1016/0024-4937(95)90003-9 |
Lesher, C., Stone, W., 1996. Exploration Geochemistry of Komatiites. Geological Association of Canada, Short Course Notes, 12:153-204 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=648e84bec44e4e5b07021fe9526aca94 |
Li, L. M., Lin, S. F., Xing, G. F., et al., 2013. Geochronology and Geo-chemistry of Volcanic Rocks from the Shaojiwa Formation and Xingzi Group, Lushan Area, SE China:Implications for Neoproterozoic Back-Arc Basin in the Yangtze Block. Precambrian Research, 238:1-17. https://doi.org/10.1016/j.precamres.2013.09.016 |
Li, L. M., Lin, S. F., Xing, G. F., et al., 2016. Ca. 830 Ma Back-Arc Type Volcanic Rocks in the Eastern Part of the Jiangnan Orogen:Implications for the Neoproterozoic Tectonic Evolution of South China Block. Precambrian Research, 275:209-224. https://doi.org/10.1016/j.precamres.2016.01.016 |
Li, X. H., Li, W. X., Li, Z. X., et al., 2008. 850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China:A Major Epi-sode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1/2):341-357. https://doi.org/10.1016/j.lithos.2007.04.007 |
Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2):117-128. https://doi.org/10.1016/j.precamres.2009.07.004 |
Li, X. H., Li, Z. X., Ge, W. C., et al., 2003. Neoproterozoic Granitoids in South China:Crustal Melting above a Mantle Plume at ca. 825 Ma? Precambrian Research, 122(1-4):45-83 doi: 10.1016/S0301-9268(02)00207-3 |
Li, Z. X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia:Did it Start with a Mantle Plume beneath South China?. Earth and Planetary Science Letters, 173(3):171-181. https://doi.org/10.1016/s0012-821x(99)00240-x |
Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia:A Synthesis. Precambrian Research, 160(1):179-210 doi: 10.1016-j.precamres.2007.04.021/ |
Liu, H., Zhao, J. H., 2018. Neoproterozoic Peraluminous Granitoids in the Jiangnan Fold Belt:Implications for Lithospheric Differentiation and Crustal Growth. Precambrian Research, 309:152-165 doi: 10.1016/j.precamres.2017.05.001 |
Liu, Y. Y., Huang, Z. L., Zhu, C. M., 2017. A High Temperature and High Pressure Experimental Study on Re-Bearing Capability of Sulfide. Journal of Earth Science, 28(1):78-91. https://doi.org/10.1007/s12583-017-0739-3 |
Locmelis, M., Pearson, N. J., Barnes, S. J., et al., 2011. Ruthenium in Komatiitic Chromite. Geochimica et Cosmochimica Acta, 75(13):3645-3661. https://doi.org/10.1016/j.gca.2011.03.041 |
Lorand, J. P., Alard, O., 2001. Platinum-Group Element Abundances in the Upper Mantle:New Constraints from in-situ and Whole-Rock Analyses of Massif Central Xenoliths (France). Geochimica et Cosmochimica Acta, 65(16):2789-2806. https://doi.org/10.1016/s0016-7037(01)00627-5 |
Lorand, J. P., Pattou, L., Gros, M., 1999. Fractionation of Platinum-Group Elements and Gold in the Upper Mantle:A Detailed Study in Pyrenean Orogenic Lherzolites. Journal of Petrology, 40(6):957-981. https://doi.org/10.1093/petroj/40.6.957 |
Luguet, A., Alard, O., Lorand, J. P., et al., 2001. Laser-Ablation Microprobe (LAM)-ICPMS Unravels the Highly Siderophile Element Geochemistry of the Oceanic Mantle. Earth and Planetary Science Letters, 189(3/4):285-294. https://doi.org/10.1016/s0012-821x(01)00357-0 |
Maier, W. D., 2003. The Concentration of the Platinum-Group Elements in South African Komatiites:Implications for Mantle Sources, Melting Regime and PGE Fractionation during Crystallization. Journal of Pe-trology, 44(10):1787-1804. https://doi.org/10.1093/petrology/egg059 |
Mao, J. W., 2002. The 982 Ma Re-Os Age of Copper-Nickel Sulfide Ores in the Baotan Area, Guangxi and Its Geological Significance. Science China Earth Sciences, 45(10):911-920. https://doi.org/10.1360/02yd9090 |
Mavrogenes, J. A., O'Neill, H. S. C., 1999. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 63(7/8):1173-1180. https://doi.org/10.1016/s0016-7037(98)00289-0 |
Momme, P., Tegner, C., Brooks, K., et al., 2002. The Behaviour of Plati-num-Group Elements in Basalts from the East Greenland Rifted Margin. Contributions to Mineralogy and Petrology, 143(2):133-153. https://doi.org/10.1007/s00410-001-0338-1 |
Morgan, J. W., 1985. Osmium Isotope Constraints on Earth's Late Accre-tionary History. Nature, 317(6039):703-705. https://doi.org/10.1038/317703a0 |
Naldrett, A. J., 2004. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration. Springer Science and Business Media, Toronto |
Peach, C. L., Mathez, E. A., Keays, R. R., et al., 1994. Experimentally Determined Sulfide Melt-Silicate Melt Partition Coefficients for Iridium and Palladium. Chemical Geology, 117(1/2/3/4):361-377. https://doi.org/10.1016/0009-2541(94)90138-4 |
Peregoedova, A., Barnes, S. J., Baker, D. R., 2006. An Experimental Study of Mass Transfer of Platinum-Group Elements, Gold, Nickel and Copper in Sulfur-Dominated Vapor at Magmatic Temperatures. Chemical Geology, 235(1/2):59-75. https://doi.org/10.1016/j.chemgeo.2006.06.004 |
Pettigrew, N. T., Hattori, K. H., 2006. The Quetico Intrusions of Western Superior Province:Neo-Archean Examples of Alaskan/Ural-Type Mafic-Ultramafic Intrusions. Precambrian Research, 149(1/2):21-42. https://doi.org/10.1016/j.precamres.2006.06.004 |
Philipp, H., 2001. Platinum-Group Elements (PGE) in Basalts of the Seaward-Dipping Reflector Sequence, SE Greenland Coast. Journal of Petrology, 42(2):407-432. https://doi.org/10.1093/petrology/42.2.407 |
Puchtel, I. S., Humayun, M., 2001. Platinum Group Element Fractionation in a Komatiitic Basalt Lava Lake. Geochimica et Cosmochimica Acta, 65(17):2979-2993. https://doi.org/10.1016/s0016-7037(01)00642-1 |
Puchtel, I. S., Humayun, M., Campbell, A. J., et al., 2004. Platinum Group Element Geochemistry of Komatiites from the Alexo and Pyke Hill Areas, Ontario, Canada 1 1Associate Editor:R. J. Walker. Geochimica et Cosmochimica Acta, 68(6):1361-1383. https://doi.org/10.1016/j.gca.2003.09.013 |
Qi, L., Gao, J. F., Huang, X. W., et al., 2011. An Improved Digestion Technique for Determination of Platinum Group Elements in Geological Samples. Journal of Analytical Atomic Spectrometry, 26(9):1900-1904. https://doi.org/10.1039/c1ja10114e |
Qi, L., Zhou, M. F., 2008. Platinum-Group Elemental and Sr-Nd-Os Isotopic Geochemistry of Permian Emeishan Flood Basalts in Guizhou Province, SW China. Chemical Geology, 248(1/2):83-103. https://doi.org/10.1016/j.chemgeo.2007.11.004 |
Rehkämper, M., Halliday, A. N., Fitton, J. G., et al., 1999. Ir, Ru, Pt, and Pd in Basalts and Komatiites:New Constraints for the Geochemical Be-havior of the Platinum-Group Elements in the Mantle. Geochimica et Cosmochimica Acta, 63(22):3915-3934. https://doi.org/10.1016/s0016-7037(99)00219-7 |
Righter, K., Campbell, A. J., Humayun, M., et al., 2004. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-Bearing Spinel, Olivine, Pyroxene and Silicate Melts. Geochimica et Cosmochimica Acta, 68(4):867-880. https://doi.org/10.1016/j.gca.2003.07.005 |
Ripley, E. M., Lambert, D. D., Frick, L. R., 1998. Re-Os, Sm-Nd, and Pb Isotopic Constraints on Mantle and Crustal Contributions to Magmatic Sulfide Mineralization in the Duluth Complex. Geochimica et Cosmo-chimica Acta, 62(19/20):3349-3365. https://doi.org/10.1016/s0016-7037(98)00235-x |
Saha, A., Manikyamba, C., Santosh, M., et al., 2015. Platinum Group Elements (PGE) Geochemistry of Komatiites and Boninites from Dharwar Craton, India:Implications for Mantle Melting Processes. Journal of Asian Earth Sciences, 105:300-319. https://doi.org/10.13039/501100001412 |
Shirey, S. B., Walker, R. J., 1998. The Re-Osisotope System in Cosmo-chemistry and High-Temperature Geochemistry. Annual Review of Earth and Planetary Sciences, 26(1):423-500. https://doi.org/10.1146/annurev.earth.26.1.423 |
Song, X. Y., Hu, R. Z., Chen, L. M., 2009. Geochemical Natures of Copper, Nickel and PGE and Their Significance for the Study of Origin and Evolution of Mantle-Derived Magmas and Magmatic Sulfide Deposits. Earth Science Frontiers, 16(4):287-305 (in Chinese with English Ab-stract) |
Stockman, H. W., Hlava, P. F., 1984. Platinum-Group Minerals in Alpine Chromitites from Southwestern Oregon. Economic Geology, 79(3):491-508. https://doi.org/10.2113/gsecongeo.79.3.491 |
Su, J. B., Zhang, Y. Q., Dong, S. W., et al., 2014. Geochronology and Hf Isotopes of Granite Gravel from Fanjingshan, South China:Implication for the Precambrian Tectonic Evolution of Western Jiangnan Orogen. Journal of Earth Science, 25(4):619-629. https://doi.org/10.1007/s12583-014-0469-8 |
Vogel, D. C., Keays, R. R., James, R. S., et al., 1999. The Geochemistry and Petrogenesis of the Agnew Intrusion, Canada:A Product of S-Undersaturated, High-Al and Low-Ti Tholeiitic Magmas. Journal of Petrology, 40(3):423-450. https://doi.org/10.1093/petroj/40.3.423 |
Walker, R. J., Shirey, S. B., Hanson, G. N., et al., 1989. Re-Os, Rb-Sr, and O Isotopic Systematics of the Archean Kolar Schist Belt, Karnataka, India. Geochimica et Cosmochimica Acta, 53(11):3005-3013. https://doi.org/10.1016/0016-7037(89)90176-2 |
Wang, C. Y., Zhou, M. F., Keays, R. R., 2006. Geochemical Constraints on the Origin of the Permian Baimazhai Mafic-Ultramafic Intrusion, SW China. Contributions to Mineralogy and Petrology, 152(3):309-321. https://doi.org/10.1007/s00410-006-0103-6 |
Wang, J., 2003. History of Neoproterozoic Rift Basins in South China:Implications for Rodinia Break-Up. Precambrian Research, 122(1-4):141-158. https://doi.org/10.1016/s0301-9268(02)00209-7 |
Wang, M., Dai, C. G., Wang, X. H., et al., 2011. In-suit Zircon Geochronology and Hf Isotope of Mucscovite-Bearing Leucogranites from Fanjingshan, Guizhou Province, and Constraints on Cotinental Growth of the Southern China Block. Earth Science Frontiers, 15(5):213-223 (in Chinese with English Abstract) |
Wang, W., Chen, F. K., Hu, R., et al., 2012a. Provenance and Tectonic Setting of Neoproterozoic Sedimentary Sequences in the South China Block:Evidence from Detrital Zircon Ages and Hf-Nd Isotopes. International Journal of Earth Sciences, 101(7):1723-1744. https://doi.org/10.1007/s00531-011-0746-z |
Wang, W., Zhou, M. F., Yan, D. P., et al., 2012b. Depositional Age, Prove-nance, and Tectonic Setting of the Neoproterozoic Sibao Group, Southeastern Yangtze Block, South China. Precambrian Research, 192(1):107-124. https://doi.org/10.1016/j.precamres.2011.10.010 |
Wang, W., Wang, F., Chen, F. K., et al., 2010. Detrital Zircon Ages and Hf-Nd Isotopic Composition of Neoproterozoic Sedimentary Rocks in the Yangtze Block:Constraints on the Deposition Age and Provenance. The Journal of Geology, 118(1):79-94. https://doi.org/10.1086/648533 |
Wang, W., Zhao, J. H., Zhou, M. F., et al., 2014. Neoproterozoic Mafic-Ultramafic Intrusions from the Fanjingshan Region, South China:Im-plications for Subduction-Related Magmatism in the Jiangnan Fold Belt. The Journal of Geology, 122(4):455-473. https://doi.org/10.1086/676596 |
Wang, W., Zhao, J. H., Zhou, M. F., et al., 2018. Depositional Age, Prove-nance Characteristics and Tectonic Setting of the Meso- And Neopro-terozoic Sequences in SE Yangtze Block, China:Implications on Pro-terozoic Supercontinent Reconstructions. Precambrian Research, 309:231-247. https://doi.org/10.1016/j.precamres.2017.11.012 |
Wang, W., Zhou, M. F., Yan, D. P., et al., 2013. Detrital Zircon Record of Neoproterozoic Active-Margin Sedimentation in the Eastern Jiangnan Orogen, South China. Precambrian Research, 235:1-19. https://doi.org/10.1016/j.precamres.2013.05.013 |
Wang, X. C., Li, X. H., Li, W. X., et al., 2007. Ca. 825 Ma Komatiitic Basalts in South China:First Evidence for >1 500℃ Mantle Melts by a Rodinian Mantle Plume. Geology, 35(12):1103-1106. https://doi.org/10.1130/g23878a.1 |
Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004. Geochemistry of the Meso- To Neoproterozoic Basic-Acid Rocks from Hunan Province, South China:Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 135(1/2):79-103. https://doi.org/10.1016/j.precamres.2004.07.006 |
Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China:Implications for Tectonic Evolution. Precambrian Research, 145(1/2):111-130. https://doi.org/10.1016/j.precamres.2005.11.014 |
Wood, S., 2002. The Aqueous Geochemistry of the Platinum-Group Elements with Applications to Ore Deposits. The Geology, Geochemistry, Miner-alogy and Mineral Beneficiation of Platinum-Group Elements, 54:211-249 |
Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006. Reworking of Juvenile Crust:Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3/4):179-212. https://doi.org/10.1016/j.precamres.2006.01.012 |
Xia, Y., Xu, X. S., Niu, Y. L., et al., 2018. Neoproterozoic Amalgamation between Yangtze and Cathaysia Blocks:The Magmatism in Various Tectonic Settings and Continent-Arc-Continent Collision. Precambrian Research, 309:56-87. https://doi.org/10.1016/j.precamres.2017.02.020 |
Xie, H., Zhang, H., 2009. Significance and Characteristic of Muscovite Granites in Fanjingshan Area. Guizhou Geology, 26(4):243-247 (in Chinese with English Abstract) |
Xin, Y. J., Li, J. H., Dong, S. W., et al., 2017. Neoproterozoic Post-Collisional Extension of the Central Jiangnan Orogen:Geochemical, Geochronological, and Lu-Hf Isotopic Constraints from the Ca. 820-800 Ma Magmatic Rocks. Precambrian Research, 294:91-110. https://doi.org/10.1016/j.precamres.2017.03.018 |
Xue, H. M., Ma, F., Song, Y. Q., 2012. Mafic-Ultramafic Rocks from the Fanjingshan Region, Southwestern Margin of the Jiangnan Orogenic Belt:Ages, Geochemical Characteristics and Tectonic Setting. Acta Petrologica Sinica, 28(9):3015-3030 (in Chinese with English Ab-stract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201209026 |
Yang, C., Li, X. H., Wang, X. C., et al., 2015. Mid-Neoproterozoic Angular Unconformity in the Yangtze Block Revisited:Insights from Detrital Zircon U-Pb Age and Hf-O Isotopes. Precambrian Research, 266:165-178. https://doi.org/10.13039/501100002855 |
Yang, S. H., Zhou, M. F., Lightfoot, P. C., et al., 2012. Selective Crustal Contamination and Decoupling of Lithophile and Chalcophile Element Isotopes in Sulfide-Bearing Mafic Intrusions:An Example from the Jingbulake Intrusion, Xinjiang, NW China. Chemical Geology, 302-303:106-118. https://doi.org/10.1016/j.chemgeo.2011.10.019 |
Yao, J. L., Shu, L. S., Santosh, M., et al., 2014. Neoproterozoic Arc-Related Mafic-Ultramafic Rocks and Syn-Collision Granite from the Western Segment of the Jiangnan Orogen, South China:Constraints on the Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 243:39-62. https://doi.org/10.1016/j.precamres.2013.12.027 |
Yao, J. L., Shu, L. S., Santosh, M., et al., 2015. Neoproterozoic Arc-Related Andesite and Orogeny-Related Unconformity in the Eastern Jiangnan Orogenic Belt:Constraints on the Assembly of the Yangtze and Cathaysia Blocks in South China. Precambrian Research, 262:84-100. https://doi.org/10.1016/j.precamres.2013.12.027 |
Yin, C. Q., Lin, S. F., Davis, D. W., et al., 2013. Tectonic Evolution of the Southeastern Margin of the Yangtze Block:Constraints from SHRIMP U-Pb and LA-ICP-MS Hf Isotopic Studies of Zircon from the Eastern Jiangnan Orogenic Belt and Implications for the Tectonic Interpretation of South China. Precambrian Research, 236:145-156. https://doi.org/10.1016/j.precamres.2013.07.022 |
Zhang, H., Wang, M., Zheng, Q. Q., 2008. The Character and Its Significance of Magnesio-Ferri-Ultramagnesio-Ferri Irruptive Rock in Fanjingshan Mountain Area. Guizhou Geology, 25:161-165 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzdz200803001 |
Zhang, S. B., Wu, R. X., Zheng, Y. F., 2012. Neoproterozoic Continental Accretion in South China:Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Research, 220-221:45-64. https://doi.org/10.1016/j.precamres.2012.07.010 |
Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4):1241-1260. https://doi.org/10.13039/501100002855 |
Zhang, Y. Z., Wang, Y. J., Zhang, Y. H., et al., 2015. Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks:Evidence from the Cangshuipu Group and Associated Rocks along the Central Jiangnan Orogen, South China. Precambrian Research, 269:18-30. https://doi.org/10.1016/j.precamres.2015.08.003 |
Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223:13-54. https://doi.org/10.1016/j.precamres.2012.09.017 |
Zhao, J. H., Asimow, P. D., 2014. Neoproterozoic Boninite-Series Rocks in South China:A Depleted Mantle Source Modified by Sediment-Derived Melt. Chemical Geology, 388:98-111. https://doi.org/10.1016/j.chemgeo.2014.09.004 |
Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China):Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2):27-47. https://doi.org/10.1016/j.precamres.2006.09.002 |
Zhao, J. H., Zhou, M. F., 2013. Neoproterozoic High-Mg Basalts Formed by Melting of Ambient Mantle in South China. Precambrian Research, 233:193-205. https://doi.org/10.1016/j.precamres.2013.04.017 |
Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China:No Connection with the Gren-villian Orogeny. Geology, 39(4):299-302. https://doi.org/10.1130/g31701.1 |
Zheng, L., Zhi, X. C., Reisberg, L., 2009. Re-Os Systematics of the Raobazhai Peridotite Massifs from the Dabie Orogenic Zone, Eastern China. Chemical Geology, 268(1/2):1-14. https://doi.org/10.1016/j.chemgeo.2009.06.021 |
Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust:Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3/4):351-383. https://doi.org/10.1016/j.precamres.2008.01.004 |
Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4):1189-1206. https://doi.org/10.13039/501100002855 |
Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China:Coeval Arc Magmatism and Sedimentation. Precambrian Research, 170(1/2):27-42. https://doi.org/10.1016/j.precamres.2008.11.002 |
Zhou, J. C., Wang, X. L., Qiu, J. S., 2008. Is the Jiangnan Orogenic Belt a Grenvillian Orogenic Belt:Some Problems about the Precambrian Ge-ology of South China. Geological Journal of China Universities, 14(1):64-72 (in Chinese with English Abstract) |
Zhou, M. F., 1994. PGE Distribution in 2.7-Ga Layered Komatiite Flows from the Belingwe Greenstone Belt, Zimbabwe. Chemical Geology, 118(1-4):155-172. https://doi.org/10.1016/0009-2541(94)90174-0 |
Zhou, M. F., Sun, M., Keays, R. R., et al., 1998. Controls on Plati-num-Group Elemental Distributions of Podiform Chromitites:A Case Study of High-Cr and High-Al Chromitites from Chinese Orogenic Belts. Geochimica et Cosmochimica Acta, 62(4):677-688. https://doi.org/10.1016/s0016-7037(97)00382-7 |
Zhou, M. F., Zhao, X. F., Chen, W. T., et al., 2014. Proterozoic Fe-Cu Metallogeny and Supercontinental Cycles of the Southwestern Yangtze Block, Southern China and Northern Vietnam. Earth-Science Reviews, 139:59-82. https://doi.org/10.1016/j.earscirev.2014.08.013 |