Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 2
Apr 2019
Turn off MathJax
Article Contents
Sifang Huang, Wei Wang. Origin of the Fanjingshan Mafic-Ultramafic Rocks, Western Jiangnan Orogen, South China: Implications for PGE Fractionation and Mineralization. Journal of Earth Science, 2019, 30(2): 258-271. doi: 10.1007/s12583-018-1201-x
Citation: Sifang Huang, Wei Wang. Origin of the Fanjingshan Mafic-Ultramafic Rocks, Western Jiangnan Orogen, South China: Implications for PGE Fractionation and Mineralization. Journal of Earth Science, 2019, 30(2): 258-271. doi: 10.1007/s12583-018-1201-x

Origin of the Fanjingshan Mafic-Ultramafic Rocks, Western Jiangnan Orogen, South China: Implications for PGE Fractionation and Mineralization

doi: 10.1007/s12583-018-1201-x
Funds:

"Thousand Youth Talents Plan" grant to Wei Wang and MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources 01-1

"Thousand Youth Talents Plan" grant to Wei Wang and MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources MSFGPMR11

the National Natural Science Foundation of China 41572170

More Information
  • Corresponding author: Wei Wang
  • Received Date: 27 Sep 2017
  • Accepted Date: 03 Feb 2018
  • Publish Date: 01 Apr 2019
  • The Fanjingshan mafic-ultramafic rocks in the west Jiangnan Orogen of South China are considered to be a potential target for mineral exploration. However, the petrogenesis and magma evolution of these rocks are not yet clearly constrained, let along their economic significance. The compositions of platinum group elements (PGE) in the Fanjingshan mafic-ultramafic rocks can provide particular insight into the generation and evolution of the mantle-derived magma and thus the potential of Cu-Ni-PGE sulphide mineralization. The Fanjingshan mafic-ultramafic rocks have relatively high Pd-subgroup PGE (PPGE) relative to Ir-subgroup PGE (IPGE) in the primitive mantle-normalized diagrams. Meanwhile, the Fanjingshan mafic-ultramafic rocks have low Pd/Ir (11-28) ratios, implying relatively low degree of partial melting in the mantle. Low Cu/Pd ratios (545-5 216) and high Cu/Zr ratios (0.4-5.8 with the majority greater than 1) of Fanjingshan ultramafic rocks indicate that the S-undersaturated parental magma with relatively high PGE was formed. Although the Fanjingshan mafic rocks have remarkably higher Cu/Pd ratios (8 913-107 016) likely resulting from sulphide segregation, the degree of sulphide removal is insignificant. Fractionation of olivine rather than chromite and platinum group minerals or alloys governed the fractionation of PGE and produced depletion of IPGE (Os, Ir and Ru) relative to PPGE (Rh, Pt and Pd), as supported by the positive correlation between Pd/Ir and V, Y and REE. Collectively, original S-undersaturated magma and insignificant crustal contamination during magma ascent and emplacement result in the separation of immiscible sulphide impossible and thus impede the formation of economic CuNi-PGE sulphide mineralization within the Fanjingshan mafic-ultramafic rocks.

     

  • loading
  • Alard, O., Griffin, W. L., Lorand, J. P., et al., 2000. Non-Chondritic Distribution of the Highly Siderophile Elements in Mantle Sulphides. Nature, 407(6806):891-894. https://doi.org/10.1038/35038049
    Amosse, J., Allibert, M., Fischer, W., et al., 1990. Experimental Study of the Solubility of Platinum and Iridium in Basic Silicate Melts-Implications for the Differentiation of Platinum-Group Elements during Magmatic Processes. Chemical Geology, 81(1/2):45-53. https://doi.org/10.1016/0009-2541(90)90038-9
    Arndt, N., Lesher, C. M., Czamanske, G. K., 2005. Mantle-Derived Magmas and Magmatic Ni-Cu-(PGE) Deposits. Economic Geology, 100:5-24
    Augé, T., Salpeteur, I., Bailly, L., et al., 2002. Magmatic and Hydrothermal Platinum-Group Minerals and Base-Metal Sulfides in the Baula Com-plex, India. The Canadian Mineralogist, 40(2):277-309. https://doi.org/10.2113/gscanmin.40.2.277
    Barnes, S. J., Naldrett, A. J., Gorton, M. P., 1985. The Origin of the Fractionation of Platinum-Group Elements in Terrestrial Magmas. Chemical Geology, 53(3/4):303-323. https://doi.org/10.1016/0009-2541(85)90076-2
    Barnes, S. J., Lightfoot, P. C., 2005. Formation of Magmatic Nickel Sulfide Ore Deposits and Processes Affecting Their Copper and Platinum Group Element Contents. Economic Geology, 100:179-213 doi: 10.2113/100.1.0179-a
    Barnes, S. J., Maier, W. D., 1999. The Fractionation of Ni, Cu and the Noble Metals in Silicate and Sulfide Liquids. In: Keays, R. R., Lesher, C. M., Ligthfoot, P. C., et al., eds., Dynamic Processes in Magmatic Ore De-posits and Their Application in Mineral Exploration. Geological Society Canada, Short Course Notes, 13: 69-106
    BGMRGP (Bureau of Geology and Mineral Resources of Guizhou Province), 1987. Regional Geology of Guizhou Province. Geological Publishing House, Beijing (in Chinese)
    Bockrath, C., 2004. Fractionation of the Platinum-Group Elements during Mantle Melting. Science, 305(5692):1951-1953. https://doi.org/10.1126/science.1100160
    Canil, D., 1999. Vanadium Partitioning between Orthopyroxene, Spinel and Silicate Melt and the Redox States of Mantle Source Regions for Primary Magmas. Geochimica et Cosmochimica Acta, 63(3/4):557-572. https://doi.org/10.1016/s0016-7037(98)00287-7
    Capobianco, C. J., Drake, M. J., 1990. Partitioning of Ruthenium, Rhodium, and Palladium between Spinel and Silicate Melt and Implications for Platinum Group Element Fractionation Trends. Geochimica et Cosmo-chimica Acta, 54(3):869-874. https://doi.org/10.1016/0016-7037(90)90379-y
    Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2017. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186:173-194. https://doi.org/10.1016/j.earscirev.2017.06.001
    Crocket, J., 2002. Platinum-Group Element Geochemistry of Mafic and Ultramafic Rocks. The Geology, Geochemistry, Mineralogy, and Mineral Beneficiation of Platinum-Group Elements. CIM Special, 54:177-210 doi: 10.1016-0301-9268(91)90045-C/
    Ding, R. X., Zou, H. P., Min, K., et al., 2017. Detrital Zircon U-Pb Geo-chronology of Sinian-Cambrian Strata in the Eastern Guangxi Area, China. Journal of Earth Science, 28(2):295-304. https://doi.org/10.1007/s12583-017-0723-y
    Esser, B. K., Turekian, K. K., 1993. The Osmium Isotopic Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 57(13):3093-3104. https://doi.org/10.1016/0016-7037(93)90296-9
    Fu, Y., Dong, L., Li, C., et al., 2016. New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niuti-tang Formation. Journal of Earth Science, 27(2):271-281. https://doi.org/10.1007/s12583-016-0606-7
    Gao, J. F., Zhou, M. F., Lightfoot, P. C., et al., 2012a. Heterogeneous Os Isotope Compositions in the Kalatongke Sulfide Deposit, NW China:The Role of Crustal Contamination. Mineralium Deposita, 47(7):731-738. https://doi.org/10.1007/s00126-012-0414-7
    Gao, J. F., Zhou, M. F., Lightfoot, P. C., et al., 2012b. Origin of PGE-Poor and Cu-Rich Magmatic Sulfides from the Kalatongke Deposit, Xinjiang, Northwest China. Economic Geology, 107(3):481-506. https://doi.org/10.2113/econgeo.107.3.481
    Gao, S., Zhang, B. R., 1990. The Discovery of Archean TTG Gneisses in the Northern Yangtze Platform and Their Implications. Earth Sciences, 15(6):675-679 (in Chinese with English Abstract)
    Ge, W. C., Li, X. H., Liang, X. R., et al., 2001. Geochemistry and Geological Implications of Mafic-Ultramafic Rocks with the Age of~825 Ma in Yuanbaoshan-Baotan Area of Northern Guangxi. Geochemica, 30(2):123-130 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200102003
    GRGST (Guizhou Regional Geological Survey Team), 1974. Regional Geological Survey Report of Fanjingshan Area (1: 50 000). Guizhou Regional Geological Survey Team, Beijing (in Chinese)
    Handler, M. R., Bennett, V. C., 1999. Behaviour of Platinum-Group Ele-ments in the Subcontinental Mantle of Eastern Australia during Variable Metasomatism and Melt Depletion. Geochimica et Cosmochimica Acta, 63(21):3597-3618. https://doi.org/10.1016/s0016-7037(99)00143-x
    Helmy, H. M., El Mahallawi, M. M., 2003. Gabbro Akarem Mafic-Ultramafic Complex, Eastern Desert, Egypt:A Late Precambrian Analogue of Alaskan-Type Complexes. Mineralogy and Petrology, 77(1/2):85-108. https://doi.org/10.1007/s00710-001-0185-9
    Helmy, H. M., Mogessie, A., 2001. Gabbro Akarem, Eastern Desert, Egypt:Cu-Ni-PGE Mineralization in a Concentrically Zoned Mafic-Ultramafic Complex. Mineralium Deposita, 36(1):58-71. https://doi.org/10.1007/s001260050286
    Jiang, X. F., Peng, S. B., Kusky, T. M., et al., 2018. Petrogenesis and Geotectonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton:Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1):93-102. https://doi.org/10.1007/s12583-018-0821-5
    Keays, R. R., 1995. The Role of Komatiitic and Picritic Magmatism and S-Saturation in the Formation of Ore Deposits. Lithos, 34(1/2/3):1-18. https://doi.org/10.1016/0024-4937(95)90003-9
    Lesher, C., Stone, W., 1996. Exploration Geochemistry of Komatiites. Geological Association of Canada, Short Course Notes, 12:153-204 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=648e84bec44e4e5b07021fe9526aca94
    Li, L. M., Lin, S. F., Xing, G. F., et al., 2013. Geochronology and Geo-chemistry of Volcanic Rocks from the Shaojiwa Formation and Xingzi Group, Lushan Area, SE China:Implications for Neoproterozoic Back-Arc Basin in the Yangtze Block. Precambrian Research, 238:1-17. https://doi.org/10.1016/j.precamres.2013.09.016
    Li, L. M., Lin, S. F., Xing, G. F., et al., 2016. Ca. 830 Ma Back-Arc Type Volcanic Rocks in the Eastern Part of the Jiangnan Orogen:Implications for the Neoproterozoic Tectonic Evolution of South China Block. Precambrian Research, 275:209-224. https://doi.org/10.1016/j.precamres.2016.01.016
    Li, X. H., Li, W. X., Li, Z. X., et al., 2008. 850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China:A Major Epi-sode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1/2):341-357. https://doi.org/10.1016/j.lithos.2007.04.007
    Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2):117-128. https://doi.org/10.1016/j.precamres.2009.07.004
    Li, X. H., Li, Z. X., Ge, W. C., et al., 2003. Neoproterozoic Granitoids in South China:Crustal Melting above a Mantle Plume at ca. 825 Ma? Precambrian Research, 122(1-4):45-83 doi: 10.1016/S0301-9268(02)00207-3
    Li, Z. X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia:Did it Start with a Mantle Plume beneath South China?. Earth and Planetary Science Letters, 173(3):171-181. https://doi.org/10.1016/s0012-821x(99)00240-x
    Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia:A Synthesis. Precambrian Research, 160(1):179-210 doi: 10.1016-j.precamres.2007.04.021/
    Lightfoot, P. C., Hawkesworth, C. J., 1997. Flood Basalts and Magmatic Ni, Cu, and PGE Sulphide Mineralization:Comparative Geochemistry of the Noril'sk (Siberian Traps) and West Greenland Sequences. Large Igneous Provinces:Continental, Oceanic, and Planetary Flood Volcanism, 100:357-380
    Liu, H., Zhao, J. H., 2018. Neoproterozoic Peraluminous Granitoids in the Jiangnan Fold Belt:Implications for Lithospheric Differentiation and Crustal Growth. Precambrian Research, 309:152-165 doi: 10.1016/j.precamres.2017.05.001
    Liu, Y. Y., Huang, Z. L., Zhu, C. M., 2017. A High Temperature and High Pressure Experimental Study on Re-Bearing Capability of Sulfide. Journal of Earth Science, 28(1):78-91. https://doi.org/10.1007/s12583-017-0739-3
    Locmelis, M., Pearson, N. J., Barnes, S. J., et al., 2011. Ruthenium in Komatiitic Chromite. Geochimica et Cosmochimica Acta, 75(13):3645-3661. https://doi.org/10.1016/j.gca.2011.03.041
    Lorand, J. P., Alard, O., 2001. Platinum-Group Element Abundances in the Upper Mantle:New Constraints from in-situ and Whole-Rock Analyses of Massif Central Xenoliths (France). Geochimica et Cosmochimica Acta, 65(16):2789-2806. https://doi.org/10.1016/s0016-7037(01)00627-5
    Lorand, J. P., Pattou, L., Gros, M., 1999. Fractionation of Platinum-Group Elements and Gold in the Upper Mantle:A Detailed Study in Pyrenean Orogenic Lherzolites. Journal of Petrology, 40(6):957-981. https://doi.org/10.1093/petroj/40.6.957
    Luguet, A., Alard, O., Lorand, J. P., et al., 2001. Laser-Ablation Microprobe (LAM)-ICPMS Unravels the Highly Siderophile Element Geochemistry of the Oceanic Mantle. Earth and Planetary Science Letters, 189(3/4):285-294. https://doi.org/10.1016/s0012-821x(01)00357-0
    Maier, W. D., 2003. The Concentration of the Platinum-Group Elements in South African Komatiites:Implications for Mantle Sources, Melting Regime and PGE Fractionation during Crystallization. Journal of Pe-trology, 44(10):1787-1804. https://doi.org/10.1093/petrology/egg059
    Mao, J. W., 2002. The 982 Ma Re-Os Age of Copper-Nickel Sulfide Ores in the Baotan Area, Guangxi and Its Geological Significance. Science China Earth Sciences, 45(10):911-920. https://doi.org/10.1360/02yd9090
    Mavrogenes, J. A., O'Neill, H. S. C., 1999. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 63(7/8):1173-1180. https://doi.org/10.1016/s0016-7037(98)00289-0
    Momme, P., Tegner, C., Brooks, K., et al., 2002. The Behaviour of Plati-num-Group Elements in Basalts from the East Greenland Rifted Margin. Contributions to Mineralogy and Petrology, 143(2):133-153. https://doi.org/10.1007/s00410-001-0338-1
    Morgan, J. W., 1985. Osmium Isotope Constraints on Earth's Late Accre-tionary History. Nature, 317(6039):703-705. https://doi.org/10.1038/317703a0
    Naldrett, A. J., 2004. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration. Springer Science and Business Media, Toronto
    Peach, C. L., Mathez, E. A., Keays, R. R., et al., 1994. Experimentally Determined Sulfide Melt-Silicate Melt Partition Coefficients for Iridium and Palladium. Chemical Geology, 117(1/2/3/4):361-377. https://doi.org/10.1016/0009-2541(94)90138-4
    Peregoedova, A., Barnes, S. J., Baker, D. R., 2006. An Experimental Study of Mass Transfer of Platinum-Group Elements, Gold, Nickel and Copper in Sulfur-Dominated Vapor at Magmatic Temperatures. Chemical Geology, 235(1/2):59-75. https://doi.org/10.1016/j.chemgeo.2006.06.004
    Pettigrew, N. T., Hattori, K. H., 2006. The Quetico Intrusions of Western Superior Province:Neo-Archean Examples of Alaskan/Ural-Type Mafic-Ultramafic Intrusions. Precambrian Research, 149(1/2):21-42. https://doi.org/10.1016/j.precamres.2006.06.004
    Philipp, H., 2001. Platinum-Group Elements (PGE) in Basalts of the Seaward-Dipping Reflector Sequence, SE Greenland Coast. Journal of Petrology, 42(2):407-432. https://doi.org/10.1093/petrology/42.2.407
    Puchtel, I. S., Humayun, M., 2001. Platinum Group Element Fractionation in a Komatiitic Basalt Lava Lake. Geochimica et Cosmochimica Acta, 65(17):2979-2993. https://doi.org/10.1016/s0016-7037(01)00642-1
    Puchtel, I. S., Humayun, M., Campbell, A. J., et al., 2004. Platinum Group Element Geochemistry of Komatiites from the Alexo and Pyke Hill Areas, Ontario, Canada 1 1Associate Editor:R. J. Walker. Geochimica et Cosmochimica Acta, 68(6):1361-1383. https://doi.org/10.1016/j.gca.2003.09.013
    Qi, L., Gao, J. F., Huang, X. W., et al., 2011. An Improved Digestion Technique for Determination of Platinum Group Elements in Geological Samples. Journal of Analytical Atomic Spectrometry, 26(9):1900-1904. https://doi.org/10.1039/c1ja10114e
    Qi, L., Zhou, M. F., 2008. Platinum-Group Elemental and Sr-Nd-Os Isotopic Geochemistry of Permian Emeishan Flood Basalts in Guizhou Province, SW China. Chemical Geology, 248(1/2):83-103. https://doi.org/10.1016/j.chemgeo.2007.11.004
    Rehkämper, M., Halliday, A. N., Fitton, J. G., et al., 1999. Ir, Ru, Pt, and Pd in Basalts and Komatiites:New Constraints for the Geochemical Be-havior of the Platinum-Group Elements in the Mantle. Geochimica et Cosmochimica Acta, 63(22):3915-3934. https://doi.org/10.1016/s0016-7037(99)00219-7
    Righter, K., Campbell, A. J., Humayun, M., et al., 2004. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-Bearing Spinel, Olivine, Pyroxene and Silicate Melts. Geochimica et Cosmochimica Acta, 68(4):867-880. https://doi.org/10.1016/j.gca.2003.07.005
    Ripley, E. M., Lambert, D. D., Frick, L. R., 1998. Re-Os, Sm-Nd, and Pb Isotopic Constraints on Mantle and Crustal Contributions to Magmatic Sulfide Mineralization in the Duluth Complex. Geochimica et Cosmo-chimica Acta, 62(19/20):3349-3365. https://doi.org/10.1016/s0016-7037(98)00235-x
    Saha, A., Manikyamba, C., Santosh, M., et al., 2015. Platinum Group Elements (PGE) Geochemistry of Komatiites and Boninites from Dharwar Craton, India:Implications for Mantle Melting Processes. Journal of Asian Earth Sciences, 105:300-319. https://doi.org/10.13039/501100001412
    Shirey, S. B., Walker, R. J., 1998. The Re-Osisotope System in Cosmo-chemistry and High-Temperature Geochemistry. Annual Review of Earth and Planetary Sciences, 26(1):423-500. https://doi.org/10.1146/annurev.earth.26.1.423
    Song, X. Y., Hu, R. Z., Chen, L. M., 2009. Geochemical Natures of Copper, Nickel and PGE and Their Significance for the Study of Origin and Evolution of Mantle-Derived Magmas and Magmatic Sulfide Deposits. Earth Science Frontiers, 16(4):287-305 (in Chinese with English Ab-stract)
    Stockman, H. W., Hlava, P. F., 1984. Platinum-Group Minerals in Alpine Chromitites from Southwestern Oregon. Economic Geology, 79(3):491-508. https://doi.org/10.2113/gsecongeo.79.3.491
    Su, J. B., Zhang, Y. Q., Dong, S. W., et al., 2014. Geochronology and Hf Isotopes of Granite Gravel from Fanjingshan, South China:Implication for the Precambrian Tectonic Evolution of Western Jiangnan Orogen. Journal of Earth Science, 25(4):619-629. https://doi.org/10.1007/s12583-014-0469-8
    Vogel, D. C., Keays, R. R., James, R. S., et al., 1999. The Geochemistry and Petrogenesis of the Agnew Intrusion, Canada:A Product of S-Undersaturated, High-Al and Low-Ti Tholeiitic Magmas. Journal of Petrology, 40(3):423-450. https://doi.org/10.1093/petroj/40.3.423
    Walker, R. J., Shirey, S. B., Hanson, G. N., et al., 1989. Re-Os, Rb-Sr, and O Isotopic Systematics of the Archean Kolar Schist Belt, Karnataka, India. Geochimica et Cosmochimica Acta, 53(11):3005-3013. https://doi.org/10.1016/0016-7037(89)90176-2
    Wang, C. Y., Zhou, M. F., Keays, R. R., 2006. Geochemical Constraints on the Origin of the Permian Baimazhai Mafic-Ultramafic Intrusion, SW China. Contributions to Mineralogy and Petrology, 152(3):309-321. https://doi.org/10.1007/s00410-006-0103-6
    Wang, J., 2003. History of Neoproterozoic Rift Basins in South China:Implications for Rodinia Break-Up. Precambrian Research, 122(1-4):141-158. https://doi.org/10.1016/s0301-9268(02)00209-7
    Wang, M., Dai, C. G., Wang, X. H., et al., 2011. In-suit Zircon Geochronology and Hf Isotope of Mucscovite-Bearing Leucogranites from Fanjingshan, Guizhou Province, and Constraints on Cotinental Growth of the Southern China Block. Earth Science Frontiers, 15(5):213-223 (in Chinese with English Abstract)
    Wang, W., Chen, F. K., Hu, R., et al., 2012a. Provenance and Tectonic Setting of Neoproterozoic Sedimentary Sequences in the South China Block:Evidence from Detrital Zircon Ages and Hf-Nd Isotopes. International Journal of Earth Sciences, 101(7):1723-1744. https://doi.org/10.1007/s00531-011-0746-z
    Wang, W., Zhou, M. F., Yan, D. P., et al., 2012b. Depositional Age, Prove-nance, and Tectonic Setting of the Neoproterozoic Sibao Group, Southeastern Yangtze Block, South China. Precambrian Research, 192(1):107-124. https://doi.org/10.1016/j.precamres.2011.10.010
    Wang, W., Wang, F., Chen, F. K., et al., 2010. Detrital Zircon Ages and Hf-Nd Isotopic Composition of Neoproterozoic Sedimentary Rocks in the Yangtze Block:Constraints on the Deposition Age and Provenance. The Journal of Geology, 118(1):79-94. https://doi.org/10.1086/648533
    Wang, W., Zhao, J. H., Zhou, M. F., et al., 2014. Neoproterozoic Mafic-Ultramafic Intrusions from the Fanjingshan Region, South China:Im-plications for Subduction-Related Magmatism in the Jiangnan Fold Belt. The Journal of Geology, 122(4):455-473. https://doi.org/10.1086/676596
    Wang, W., Zhao, J. H., Zhou, M. F., et al., 2018. Depositional Age, Prove-nance Characteristics and Tectonic Setting of the Meso- And Neopro-terozoic Sequences in SE Yangtze Block, China:Implications on Pro-terozoic Supercontinent Reconstructions. Precambrian Research, 309:231-247. https://doi.org/10.1016/j.precamres.2017.11.012
    Wang, W., Zhou, M. F., Yan, D. P., et al., 2013. Detrital Zircon Record of Neoproterozoic Active-Margin Sedimentation in the Eastern Jiangnan Orogen, South China. Precambrian Research, 235:1-19. https://doi.org/10.1016/j.precamres.2013.05.013
    Wang, X. C., Li, X. H., Li, W. X., et al., 2007. Ca. 825 Ma Komatiitic Basalts in South China:First Evidence for >1 500℃ Mantle Melts by a Rodinian Mantle Plume. Geology, 35(12):1103-1106. https://doi.org/10.1130/g23878a.1
    Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004. Geochemistry of the Meso- To Neoproterozoic Basic-Acid Rocks from Hunan Province, South China:Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 135(1/2):79-103. https://doi.org/10.1016/j.precamres.2004.07.006
    Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China:Implications for Tectonic Evolution. Precambrian Research, 145(1/2):111-130. https://doi.org/10.1016/j.precamres.2005.11.014
    Wood, S., 2002. The Aqueous Geochemistry of the Platinum-Group Elements with Applications to Ore Deposits. The Geology, Geochemistry, Miner-alogy and Mineral Beneficiation of Platinum-Group Elements, 54:211-249
    Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006. Reworking of Juvenile Crust:Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3/4):179-212. https://doi.org/10.1016/j.precamres.2006.01.012
    Xia, Y., Xu, X. S., Niu, Y. L., et al., 2018. Neoproterozoic Amalgamation between Yangtze and Cathaysia Blocks:The Magmatism in Various Tectonic Settings and Continent-Arc-Continent Collision. Precambrian Research, 309:56-87. https://doi.org/10.1016/j.precamres.2017.02.020
    Xie, H., Zhang, H., 2009. Significance and Characteristic of Muscovite Granites in Fanjingshan Area. Guizhou Geology, 26(4):243-247 (in Chinese with English Abstract)
    Xin, Y. J., Li, J. H., Dong, S. W., et al., 2017. Neoproterozoic Post-Collisional Extension of the Central Jiangnan Orogen:Geochemical, Geochronological, and Lu-Hf Isotopic Constraints from the Ca. 820-800 Ma Magmatic Rocks. Precambrian Research, 294:91-110. https://doi.org/10.1016/j.precamres.2017.03.018
    Xue, H. M., Ma, F., Song, Y. Q., 2012. Mafic-Ultramafic Rocks from the Fanjingshan Region, Southwestern Margin of the Jiangnan Orogenic Belt:Ages, Geochemical Characteristics and Tectonic Setting. Acta Petrologica Sinica, 28(9):3015-3030 (in Chinese with English Ab-stract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201209026
    Yang, C., Li, X. H., Wang, X. C., et al., 2015. Mid-Neoproterozoic Angular Unconformity in the Yangtze Block Revisited:Insights from Detrital Zircon U-Pb Age and Hf-O Isotopes. Precambrian Research, 266:165-178. https://doi.org/10.13039/501100002855
    Yang, S. H., Zhou, M. F., Lightfoot, P. C., et al., 2012. Selective Crustal Contamination and Decoupling of Lithophile and Chalcophile Element Isotopes in Sulfide-Bearing Mafic Intrusions:An Example from the Jingbulake Intrusion, Xinjiang, NW China. Chemical Geology, 302-303:106-118. https://doi.org/10.1016/j.chemgeo.2011.10.019
    Yao, J. L., Shu, L. S., Santosh, M., et al., 2014. Neoproterozoic Arc-Related Mafic-Ultramafic Rocks and Syn-Collision Granite from the Western Segment of the Jiangnan Orogen, South China:Constraints on the Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 243:39-62. https://doi.org/10.1016/j.precamres.2013.12.027
    Yao, J. L., Shu, L. S., Santosh, M., et al., 2015. Neoproterozoic Arc-Related Andesite and Orogeny-Related Unconformity in the Eastern Jiangnan Orogenic Belt:Constraints on the Assembly of the Yangtze and Cathaysia Blocks in South China. Precambrian Research, 262:84-100. https://doi.org/10.1016/j.precamres.2013.12.027
    Yin, C. Q., Lin, S. F., Davis, D. W., et al., 2013. Tectonic Evolution of the Southeastern Margin of the Yangtze Block:Constraints from SHRIMP U-Pb and LA-ICP-MS Hf Isotopic Studies of Zircon from the Eastern Jiangnan Orogenic Belt and Implications for the Tectonic Interpretation of South China. Precambrian Research, 236:145-156. https://doi.org/10.1016/j.precamres.2013.07.022
    Zhang, H., Wang, M., Zheng, Q. Q., 2008. The Character and Its Significance of Magnesio-Ferri-Ultramagnesio-Ferri Irruptive Rock in Fanjingshan Mountain Area. Guizhou Geology, 25:161-165 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzdz200803001
    Zhang, S. B., Wu, R. X., Zheng, Y. F., 2012. Neoproterozoic Continental Accretion in South China:Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Research, 220-221:45-64. https://doi.org/10.1016/j.precamres.2012.07.010
    Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4):1241-1260. https://doi.org/10.13039/501100002855
    Zhang, Y. Z., Wang, Y. J., Zhang, Y. H., et al., 2015. Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks:Evidence from the Cangshuipu Group and Associated Rocks along the Central Jiangnan Orogen, South China. Precambrian Research, 269:18-30. https://doi.org/10.1016/j.precamres.2015.08.003
    Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223:13-54. https://doi.org/10.1016/j.precamres.2012.09.017
    Zhao, J. H., Asimow, P. D., 2014. Neoproterozoic Boninite-Series Rocks in South China:A Depleted Mantle Source Modified by Sediment-Derived Melt. Chemical Geology, 388:98-111. https://doi.org/10.1016/j.chemgeo.2014.09.004
    Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China):Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2):27-47. https://doi.org/10.1016/j.precamres.2006.09.002
    Zhao, J. H., Zhou, M. F., 2013. Neoproterozoic High-Mg Basalts Formed by Melting of Ambient Mantle in South China. Precambrian Research, 233:193-205. https://doi.org/10.1016/j.precamres.2013.04.017
    Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China:No Connection with the Gren-villian Orogeny. Geology, 39(4):299-302. https://doi.org/10.1130/g31701.1
    Zheng, L., Zhi, X. C., Reisberg, L., 2009. Re-Os Systematics of the Raobazhai Peridotite Massifs from the Dabie Orogenic Zone, Eastern China. Chemical Geology, 268(1/2):1-14. https://doi.org/10.1016/j.chemgeo.2009.06.021
    Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust:Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3/4):351-383. https://doi.org/10.1016/j.precamres.2008.01.004
    Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4):1189-1206. https://doi.org/10.13039/501100002855
    Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China:Coeval Arc Magmatism and Sedimentation. Precambrian Research, 170(1/2):27-42. https://doi.org/10.1016/j.precamres.2008.11.002
    Zhou, J. C., Wang, X. L., Qiu, J. S., 2008. Is the Jiangnan Orogenic Belt a Grenvillian Orogenic Belt:Some Problems about the Precambrian Ge-ology of South China. Geological Journal of China Universities, 14(1):64-72 (in Chinese with English Abstract)
    Zhou, M. F., 1994. PGE Distribution in 2.7-Ga Layered Komatiite Flows from the Belingwe Greenstone Belt, Zimbabwe. Chemical Geology, 118(1-4):155-172. https://doi.org/10.1016/0009-2541(94)90174-0
    Zhou, M. F., Sun, M., Keays, R. R., et al., 1998. Controls on Plati-num-Group Elemental Distributions of Podiform Chromitites:A Case Study of High-Cr and High-Al Chromitites from Chinese Orogenic Belts. Geochimica et Cosmochimica Acta, 62(4):677-688. https://doi.org/10.1016/s0016-7037(97)00382-7
    Zhou, M. F., Zhao, X. F., Chen, W. T., et al., 2014. Proterozoic Fe-Cu Metallogeny and Supercontinental Cycles of the Southwestern Yangtze Block, Southern China and Northern Vietnam. Earth-Science Reviews, 139:59-82. https://doi.org/10.1016/j.earscirev.2014.08.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(512) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return