Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 2
Apr 2019
Turn off MathJax
Article Contents
Namita Paudel Adhikari, Subash Adhikari, Xiaobo Liu, Liang Shen, Zhengquan Gu. Bacterial Diversity in Alpine Lakes:A Review from the Third Pole Region. Journal of Earth Science, 2019, 30(2): 387-396. doi: 10.1007/s12583-018-1206-5
Citation: Namita Paudel Adhikari, Subash Adhikari, Xiaobo Liu, Liang Shen, Zhengquan Gu. Bacterial Diversity in Alpine Lakes:A Review from the Third Pole Region. Journal of Earth Science, 2019, 30(2): 387-396. doi: 10.1007/s12583-018-1206-5

Bacterial Diversity in Alpine Lakes:A Review from the Third Pole Region

doi: 10.1007/s12583-018-1206-5
More Information
  • Corresponding author: Namita Paudel Adhikari; Xiaobo Liu
  • Received Date: 27 Mar 2018
  • Accepted Date: 30 Sep 2018
  • Publish Date: 01 Apr 2019
  • Microorganisms are unique among all of the living organisms because of their high population size, advanced genetic diversity, short generation time, and quick response to the small change in environmental conditions. Remote alpine lakes of the Third Pole region provide the unique habitat for microorganisms acting as a natural laboratory and offering the information about the ecological roles of microorganisms. Many researchers focused on microbial communities as well as the impact of physicochemical, biological and hydrological parameters in lakes of this region since decades but the comprehensive review focusing on bacterial diversity and the role of environmental parameters still lacks. Here we reviewed bacterial diversity in lakes of the Third Pole region by analyzing 16S rRNA clone libraries accessed from previous research findings. A total of 5 388 bacterial 16S rRNA gene sequences were analyzed and classified into different phylogenetic groups. The average relative abundance of dominant taxa includes Betaproteobacteria (19%), Bacteroidetes (18%), Gammaproteobacteria (16%), Actinobacteria (15%), Alphaproteobacteria (14%), Cyanobacteria (7%), and Firmicutes (5%). Several adaptational strategies were adopted by these dominant bacterial groups in order to accommodate in the respective habitat. Nevertheless, lake water properties like temperature, pH, salinity, incident UV radiation, turbidity, and nutrients also played role in bacterial diversity.


  • loading
  • Arifuzzaman, M., Khatun, M. R., Rahman, H., 2010. Isolation and Screening of Actinomycetes from Sundarbans Soil for Antibacterial Activity. African Journal of Biotechnology, 9(29): 4615-4619 J-Gate000001316858
    Berg, K. A., Lyra, C., Sivonen, K., et al., 2008. High Diversity of Cultivable Heterotrophic Bacteria in Association with Cyanobacterial Water Blooms. The ISME Journal, 3(3): 314-325.
    Bergström, A. K., 2010. The Use of TN: TP and DIN: TP Ratios as Indicators for Phytoplankton Nutrient Limitation in Oligotrophic Lakes Affected by N Deposition. Aquatic Sciences, 72(3): 277-281.
    Brahney, J., Mahowald, N., Ward, D. S., et al., 2015. Is Atmospheric Phosphorus Pollution Altering Global Alpine Lake Stoichiometry?. Global Biogeochemical Cycles, 29(9): 1369-1383.
    Cao, X. F., Wang, J., Liao, J. Q., et al., 2017. Bacterioplankton Community Responses to Key Environmental Variables in Plateau Freshwater Lake Ecosystems: A Structural Equation Modeling and Change Point Analysis. Science of the Total Environment, 580(5): 457-467.
    Casamayor, E. O., Schafer, H., Baneras, L., et al., 2000. Identification of and Spatio-Temporal Differences between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 66(2): 499-508.
    Catherine, Q., Susanna, W., Isidora, E. S., et al., 2013. A Review of Current Knowledge on Toxic Benthic Freshwater Cyanobacteria—Ecology, Toxin Production and Risk Management. Water Research, 47(15): 5464-5479.
    Cole, J. J., Prairie, Y. T., Caraco, N. F., et al., 2007. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 10(1): 172-185.
    Dai, Y., Yang, Y. Y., Wu, Z., et al., 2016. Spatiotemporal Variation of Planktonic and Sediment Bacterial Assemblages in Two Plateau Freshwater Lakes at Different Trophic Status. Applied Microbiology and Biotechnology, 100(9): 4161-4175.
    Diego, F., Yamila, B., Gisela, M., et al., 2015. Controlling Factors in Planktonic Communities over a Salinity Gradient in High-Altitude Lakes. Annales de Limnologie-International Journal of Limnology, 51(3): 261-272.
    Dong, H. L., Jiang, H. C., Yu, B. S., et al., 2010. Impacts of Environmental Change and Human Activity on Microbial Ecosystems on the Tibetan Plateau, NW China. GSA Today, 20(6): 4-10.
    Downing, J. A., Prairie, Y. T., Cole, J. J., et al., 2006. The Global Abundance and Size Distribution of Lakes, Ponds, and Impoundments. Limnology and Oceanography, 51(5): 2388-2397.
    Dunbar, J., Takala, S., Barns, S. M., et al., 1999. Levels of Bacterial Community Diversity in Four Arid Soils Compared by Cultivation and 16S rRNA Gene Cloning. Applied and Environmental Microbiology, 65(4): 1662-1669
    Eiler, A., Langenheder, S., Bertilsson, S., et al., 2003. Heterotrophic Bacterial Growth Efficiency and Community Structure at Different Natural Organic Carbon Concentrations. Applied and Environmental Microbiology, 69(7): 3701-3709.
    Guan, X. Y., Wang, J. F., Zhao, H., et al., 2013. Soil Bacterial Communities Shaped by Geochemical Factors and Land Use in a Less-Explored Area, Tibetan Plateau. BMC Genomics, 14(1): 820.
    Hengstmann, U. L. F., Chin, K., Janssen, P. H., et al., 1999. Comparative Phylogenetic Assignment of Environmental Sequences of Genes Encoding 16S rRNA and Numerically Abundant Culturable Bacteria from an Anoxic Rice Paddy Soil. Applied and Environmental Microbiology, 65(11): 5050-5058
    Hood, E., Fellman, J., Spencer, R. G. M., et al., 2009. Glaciers as a Source of Ancient and Labile Organic Matter to the Marine Environment. Nature, 462(7276): 1044-1047.
    Hu, A. Y., Yao, T. D., Jiao, N. Z., et al., 2010. Community Structures of Ammonia-Oxidising Archaea and Bacteria in High-Altitude Lakes on the Tibetan Plateau. Freshwater Biology, 55(11): 2375-2390.
    Jezbera, J., Jezberová, J., Koll, U., et al., 2012. Contrasting Trends in Distribution of Four Major Planktonic Betaproteobacterial Groups along a PH Gradient of Epilimnia of 72 Freshwater Habitats. FEMS Microbiology Ecology, 81(2): 467-479.
    Jiang, H., Dong, H., Zhang, G., et al., 2006. Microbial Diversity in Water and Sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China. Applied and Environmental Microbiology, 72(6): 3832-3845.
    Karentz, D., Bothwell, M. L., Coffin, R. B., et al., 1994. Impact of UV-B Radiation on Pelagic Freshwater Ecosystems: Report of Working Group on Bacteria and Phytoplankton. Advances in Limnology, 43(9): 31-69
    Kirchman, D. L., Dittel, A. I., Findlay, S. E. G., et al., 2004. Changes in Bacterial Activity and Community Structure in Response to Dissolved Organic Matter in the Hudson River, New York. Aquatic Microbial Ecology, 35: 243-257.
    Klug, J. L., Fischer, J. M., Ives, A. R., et al., 2000. Compensatory Dynamics in Planktonic Community Responses to pH Perturbations. Ecology, 81(2): 387-398.[0387:cdipcr];2
    Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7): 1870-1874.
    Lindström, E. S., Kamst-Van Agterveld, M. P., Zwart, G., 2005. Distribution of Typical Freshwater Bacterial Groups is Associated with pH, Temperature, and Lake Water Retention Time. Applied and Environmental Microbiology, 71(12): 8201-8206.
    Liu, K. S., Liu, Y. Q., Jiao, N. Z., et al., 2016. Vertical Variation of Bacterial Community in Nam Co, a Large Stratified Lake in Central Tibetan Plateau. Antonie van Leeuwenhoek, 109(10): 1323-1335.
    Liu, K. S., Liu, Y. Q., Jiao, N. Z., et al., 2017. Bacterial Community Composition and Diversity in Kalakuli, an Alpine Glacial-Fed Lake in Muztagh Ata of the Westernmost Tibetan Plateau. FEMS Microbiology Ecology, 93(7): fix085.
    Liu, X. B., Yao, T. D., Kang, S. C., et al., 2010. Bacterial Community of the Largest Oligosaline Lake, Namco on the Tibetan Plateau. Geomicrobiology Journal, 27(8): 669-682.
    Liu, Y. Q., Priscu, J. C., Yao, T. D., et al., 2014. A Comparison of Pelagic, Littoral, and Riverine Bacterial Assemblages in Lake Bangongco, Tibetan Plateau. FEMS Microbiology Ecology, 89(2): 211-221.
    Liu, Y. Q., Yao, T. D., Jiao, N. Z., et al., 2013a. Seasonal Dynamics of the Bacterial Community in Lake Namco, the Largest Tibetan Lake. Geomicrobiology Journal, 30(1): 17-28.
    Liu, Y. Q., Yao, T. D., Jiao, N. Z., et al., 2013b. Salinity Impact on Bacterial Community Composition in Five High-Altitude Lakes from the Tibetan Plateau, Western China. Geomicrobiology Journal, 30(5): 462-469.
    Liu, Y. Q., Yao, T. D., Zhu, L. P., et al., 2009. Bacterial Diversity of Freshwater Alpine Lake Puma Yumco on the Tibetan Plateau. Geomicrobiology Journal, 26(2): 131-145.
    Llirós, M., Inceoğlu, ., García-Armisen, T., et al., 2014. Bacterial Community Composition in Three Freshwater Reservoirs of Different Alkalinity and Trophic Status. PLOS ONE, 9(12): e116145.
    Margesin, R., Miteva, V., 2011. Diversity and Ecology of Psychrophilic Microorganisms. Research in Microbiology, 162(3): 346-361.
    Nedwell, D., 1999. Effect of Low Temperature on Microbial Growth: Lowered Affinity for Substrates Limits Growth at Low Temperature. FEMS Microbiology Ecology, 30(2): 101-111.
    Nelson, C. E., 2009. Phenology of High-Elevation Pelagic Bacteria: The Roles of Meteorologic Variability, Catchment Inputs and Thermal Stratification in Structuring Communities. The ISME Journal, 3(1): 13-30.
    Newton, R. J., Jones, S. E., Eiler, A., et al., 2011. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiology and Molecular Biology Reviews, 75(1): 14-49.
    Oren, A., 2001. The Bioenergetic Basis for the Decrease in Metabolic Diversity at Increasing Salt Concentrations: Implications for the Functioning of Salt Lake Ecosystems. Hydrobiologia, 466: 61-72 doi: 10.1023/A:1014557116838
    Peter, H., Sommaruga, R., 2016. Shifts in Diversity and Function of Lake Bacterial Communities Upon Glacier Retreat. The ISME Journal, 10(7): 1545-1554.
    Qiu, J., 2008. China: The Third Pole. Nature, 454(7203): 393-396.
    Sahay, H., Babu, B. K., Singh, S., et al., 2013. Cold-Active Hydrolases Producing Bacteria from Two Different Sub-Glacial Himalayan Lakes. Journal of Basic Microbiology, 53(8): 703-714.
    Sánchez-Hernández, J., Cobo, F., Amundsen, P. A., 2015. Food Web Topology in High Mountain Lakes. PLOS ONE, 10(11): e0143016.
    Shen, L., Yao, T. D., Xu, B. Q., et al., 2012. Variation of Culturable Bacteria along Depth in the East Rongbuk Ice Core, Mt. Everest. Geoscience Frontiers, 3(3): 327-334.
    Shokralla, S., Spall, J. L., Gibson, J. F., et al., 2012. Next-Generation Sequencing Technologies for Environmental DNA Research. Molecular Ecology, 21(8): 1794-1805.
    Sogin, M. L., Morrison, H. G., Huber, J. A., et al., 2006. Microbial Diversity in the Deep Sea and the Underexplored "Rare Biosphere". Proceedings of the National Academy of Sciences, 103(32): 12115-12120.
    Sommaruga, R., 2001. The Role of Solar UV Radiation in the Ecology of Alpine Lakes. Journal of Photochemistry and Photobiology B: Biology, 62(1/2): 35-42.
    Sommaruga, R., Casamayor, E. O., 2009. Bacterial 'Cosmopolitanism' and Importance of Local Environmental Factors for Community Composition in Remote High-Altitude Lakes. Freshwater Biology, 54(5): 994-1005.
    Stahl, D. A., 1995. Application of Phylogenetically Based Hybridization Probes to Microbial Ecology. Molecular Ecology, 4(5): 535-542.
    Stahl, D. A., Flesher, B., Mansfield, H. R., et al., 1988. Use of Phylogenetically Based Hybridization Probes for Studies of Ruminal Microbial Ecology. Applied and Environmental Microbiology, 54(5): 1079-1084.
    Staley, C., Unno, T., Gould, T. J., et al., 2013. Application of Illumina Next-Generation Sequencing to Characterize the Bacterial Community of the Upper Mississippi River. Journal of Applied Microbiology, 115(5): 1147-1158.
    Thomas, F., Hehemann, J. H., Rebuffet, E., et al., 2011. Environmental and Gut Bacteroidetes: The Food Connection. Frontiers in Microbiology, 2(5): 1-16.
    Tuomisto, H., 2012. An Updated Consumer's Guide to Evenness and Related Indices. Oikos, 121(8): 1203-1218.
    Wang, J. J., Yang, D. M., Zhang, Y., et al., 2011. Do Patterns of Bacterial Diversity along Salinity Gradients Differ from Those Observed for Macroorganisms?. PLOS ONE, 6(11): e27597.
    Wang, P. F., Wang, X., Wang, C., et al., 2017. Shift in Bacterioplankton Diversity and Structure: Influence of Anthropogenic Disturbances along the Yarlung Tsangpo River on the Tibetan Plateau, China. Scientific Reports, 7(1): 12529.
    Wang, Q., Garrity, G. M., Tiedje, J. M., et al., 2007. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology, 73(16): 5261-5267.
    Ward, D. M., Weller, R., Bateson, M. M., 1990. 16S rRNA Sequences Reveal Numerous Uncultured Microorganisms in a Natural Community. Nature, 345(6270): 63-65.
    Warnecke, F., Sommaruga, R., Sekar, R., et al., 2005. Abundances, Identity, and Growth State of Actinobacteria in Mountain Lakes of Different UV Transparency. Applied and Environmental Microbiology, 71(9): 5551-5559.
    Williamson, C. E., Dodds, W., Kratz, T. K., et al., 2008. Lakes and Streams as Sentinels of Environmental Change in Terrestrial and Atmospheric Processes. Frontiers in Ecology and the Environment, 6(5): 247-254.
    Wu, Q. L., Zwart, G., Schauer, M., et al., 2006. Bacterioplankton Community Composition along a Salinity Gradient of Sixteen High-Mountain Lakes Located on the Tibetan Plateau, China. Applied and Environmental Microbiology, 72(8): 5478-5485.
    Xing, P., Hahn, M. W., Wu, Q. L., 2009. Low Taxon Richness of Bacterioplankton in High-Altitude Lakes of the Eastern Tibetan Plateau, with a Predominance of Bacteroidetes and Synechococcus Spp.. Applied and Environmental Microbiology, 75(22): 7017-7025.
    Xiong, J. B., Liu, Y. Q., Lin, X. G., et al., 2012. Geographic Distance and pH Drive Bacterial Distribution in Alkaline Lake Sediments across Tibetan Plateau. Environmental Microbiology, 14(9): 2457-2466.
    Yadav, A. N., Sachan, S. G., Verma, P., et al., 2016. Cold Active Hydrolytic Enzymes Production by Psychrotrophic Bacilli Isolated from Three Sub-Glacial Lakes of NW Indian Himalayas. Journal of Basic Microbiology, 56(3): 294-307.
    Yang, J., Ma, L., Jiang, H. C., et al., 2016. Salinity Shapes Microbial Diversity and Community Structure in Surface Sediments of the Qinghai-Tibetan Lakes. Scientific Reports, 6(1): 25078.
    Yannarell, A. C., Triplett, E. W., 2005. Geographic and Environmental Sources of Variation in Lake Bacterial Community Composition. Applied and Environmental Microbiology, 71(1): 227-239.
    Yao, T. D., Thompson, L. G., Mosbrugger, V., et al., 2012. Third Pole Environment (TPE). Environmental Development, 3(1): 52-64.
    Zhang, G. Q., Yao, T. D., Xie, H. J., et al., 2015. An Inventory of Glacial Lakes in the Third Pole Region and Their Changes in Response to Global Warming. Global and Planetary Change, 131(6): 148-157.
    Zhang, Q., Hou, X. Y., Li, F. Y., et al., 2014. Alpha, Beta and Gamma Diversity Differ in Response to Precipitation in the Inner Mongolia Grassland. PLOS ONE, 9(3): e93518.
    Zhang, R., Wu, Q. L., Piceno, Y. M., et al., 2013. Diversity of Bacterioplankton in Contrasting Tibetan Lakes Revealed by High-Density Microarray and Clone Library Analysis. FEMS Microbiology Ecology, 86(2): 277-287.
    Zhang, S., Hou, S., Wu, Y., et al., 2008. Bacterial Diversity in Himalayan Glacial Ice and Its Relationship to Dust. Biogeosciences Discussions, 5(4): 3433-3456.
    Zhong, Z. P., Liu, Y., Miao, L. L., et al., 2016. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau. Applied and Environmental Microbiology, 82(6): 1846-1858.
    Zwart, G., Crump, B. C., Agterveld, M. P. K., et al., 2002. Typical Freshwater Bacteria: An Analysis of Available 16S rRNA Gene Sequences from Plankton of Lakes and Rivers. Aquatic Microbial Ecology, 28: 141-155.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views(386) PDF downloads(5) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint