Arifuzzaman, M., Khatun, M. R., Rahman, H., 2010. Isolation and Screening of Actinomycetes from Sundarbans Soil for Antibacterial Activity. African Journal of Biotechnology, 9(29): 4615-4619 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001316858 |
Berg, K. A., Lyra, C., Sivonen, K., et al., 2008. High Diversity of Cultivable Heterotrophic Bacteria in Association with Cyanobacterial Water Blooms. The ISME Journal, 3(3): 314-325. https://doi.org/10.1038/ismej.2008.110 |
Bergström, A. K., 2010. The Use of TN: TP and DIN: TP Ratios as Indicators for Phytoplankton Nutrient Limitation in Oligotrophic Lakes Affected by N Deposition. Aquatic Sciences, 72(3): 277-281. https://doi.org/10.1007/s00027-010-0132-0 |
Brahney, J., Mahowald, N., Ward, D. S., et al., 2015. Is Atmospheric Phosphorus Pollution Altering Global Alpine Lake Stoichiometry?. Global Biogeochemical Cycles, 29(9): 1369-1383. https://doi.org/10.1002/2015gb005137 |
Cao, X. F., Wang, J., Liao, J. Q., et al., 2017. Bacterioplankton Community Responses to Key Environmental Variables in Plateau Freshwater Lake Ecosystems: A Structural Equation Modeling and Change Point Analysis. Science of the Total Environment, 580(5): 457-467. https://doi.org/10.1016/j.scitotenv.2016.11.143 |
Casamayor, E. O., Schafer, H., Baneras, L., et al., 2000. Identification of and Spatio-Temporal Differences between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 66(2): 499-508. https://doi.org/10.1128/aem.66.2.499-508.2000 |
Catherine, Q., Susanna, W., Isidora, E. S., et al., 2013. A Review of Current Knowledge on Toxic Benthic Freshwater Cyanobacteria—Ecology, Toxin Production and Risk Management. Water Research, 47(15): 5464-5479. https://doi.org/10.1016/j.watres.2013.06.042 |
Cole, J. J., Prairie, Y. T., Caraco, N. F., et al., 2007. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 10(1): 172-185. https://doi.org/10.1007/s10021-006-9013-8 |
Dai, Y., Yang, Y. Y., Wu, Z., et al., 2016. Spatiotemporal Variation of Planktonic and Sediment Bacterial Assemblages in Two Plateau Freshwater Lakes at Different Trophic Status. Applied Microbiology and Biotechnology, 100(9): 4161-4175. https://doi.org/10.1007/s00253-015-7253-2 |
Diego, F., Yamila, B., Gisela, M., et al., 2015. Controlling Factors in Planktonic Communities over a Salinity Gradient in High-Altitude Lakes. Annales de Limnologie-International Journal of Limnology, 51(3): 261-272. https://doi.org/10.1051/limn/2015020 |
Dong, H. L., Jiang, H. C., Yu, B. S., et al., 2010. Impacts of Environmental Change and Human Activity on Microbial Ecosystems on the Tibetan Plateau, NW China. GSA Today, 20(6): 4-10. https://doi.org/10.1130/gsatg75a.1 |
Downing, J. A., Prairie, Y. T., Cole, J. J., et al., 2006. The Global Abundance and Size Distribution of Lakes, Ponds, and Impoundments. Limnology and Oceanography, 51(5): 2388-2397. https://doi.org/10.4319/lo.2006.51.5.2388 |
Dunbar, J., Takala, S., Barns, S. M., et al., 1999. Levels of Bacterial Community Diversity in Four Arid Soils Compared by Cultivation and 16S rRNA Gene Cloning. Applied and Environmental Microbiology, 65(4): 1662-1669 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001774886 |
Eiler, A., Langenheder, S., Bertilsson, S., et al., 2003. Heterotrophic Bacterial Growth Efficiency and Community Structure at Different Natural Organic Carbon Concentrations. Applied and Environmental Microbiology, 69(7): 3701-3709. https://doi.org/10.1128/aem.69.7.3701-3709.2003 |
Guan, X. Y., Wang, J. F., Zhao, H., et al., 2013. Soil Bacterial Communities Shaped by Geochemical Factors and Land Use in a Less-Explored Area, Tibetan Plateau. BMC Genomics, 14(1): 820. https://doi.org/10.1186/1471-2164-14-820 |
Hengstmann, U. L. F., Chin, K., Janssen, P. H., et al., 1999. Comparative Phylogenetic Assignment of Environmental Sequences of Genes Encoding 16S rRNA and Numerically Abundant Culturable Bacteria from an Anoxic Rice Paddy Soil. Applied and Environmental Microbiology, 65(11): 5050-5058 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_91680 |
Hood, E., Fellman, J., Spencer, R. G. M., et al., 2009. Glaciers as a Source of Ancient and Labile Organic Matter to the Marine Environment. Nature, 462(7276): 1044-1047. https://doi.org/10.1038/nature08580 |
Hu, A. Y., Yao, T. D., Jiao, N. Z., et al., 2010. Community Structures of Ammonia-Oxidising Archaea and Bacteria in High-Altitude Lakes on the Tibetan Plateau. Freshwater Biology, 55(11): 2375-2390. https://doi.org/10.1111/j.1365-2427.2010.02454.x |
Jezbera, J., Jezberová, J., Koll, U., et al., 2012. Contrasting Trends in Distribution of Four Major Planktonic Betaproteobacterial Groups along a PH Gradient of Epilimnia of 72 Freshwater Habitats. FEMS Microbiology Ecology, 81(2): 467-479. https://doi.org/10.1111/j.1574-6941.2012.01372.x |
Jiang, H., Dong, H., Zhang, G., et al., 2006. Microbial Diversity in Water and Sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China. Applied and Environmental Microbiology, 72(6): 3832-3845. https://doi.org/10.1128/aem.02869-05 |
Karentz, D., Bothwell, M. L., Coffin, R. B., et al., 1994. Impact of UV-B Radiation on Pelagic Freshwater Ecosystems: Report of Working Group on Bacteria and Phytoplankton. Advances in Limnology, 43(9): 31-69 |
Kirchman, D. L., Dittel, A. I., Findlay, S. E. G., et al., 2004. Changes in Bacterial Activity and Community Structure in Response to Dissolved Organic Matter in the Hudson River, New York. Aquatic Microbial Ecology, 35: 243-257. https://doi.org/10.3354/ame035243 |
Klug, J. L., Fischer, J. M., Ives, A. R., et al., 2000. Compensatory Dynamics in Planktonic Community Responses to pH Perturbations. Ecology, 81(2): 387-398. https://doi.org/10.1890/0012-9658(2000)081[0387:cdipcr]2.0.co;2 |
Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7): 1870-1874. https://doi.org/10.1093/molbev/msw054 |
Lindström, E. S., Kamst-Van Agterveld, M. P., Zwart, G., 2005. Distribution of Typical Freshwater Bacterial Groups is Associated with pH, Temperature, and Lake Water Retention Time. Applied and Environmental Microbiology, 71(12): 8201-8206. https://doi.org/10.1128/aem.71.12.8201-8206.2005 |
Liu, K. S., Liu, Y. Q., Jiao, N. Z., et al., 2016. Vertical Variation of Bacterial Community in Nam Co, a Large Stratified Lake in Central Tibetan Plateau. Antonie van Leeuwenhoek, 109(10): 1323-1335. https://doi.org/10.1007/s10482-016-0731-4 |
Liu, K. S., Liu, Y. Q., Jiao, N. Z., et al., 2017. Bacterial Community Composition and Diversity in Kalakuli, an Alpine Glacial-Fed Lake in Muztagh Ata of the Westernmost Tibetan Plateau. FEMS Microbiology Ecology, 93(7): fix085. https://doi.org/10.1093/femsec/fix085 |
Liu, X. B., Yao, T. D., Kang, S. C., et al., 2010. Bacterial Community of the Largest Oligosaline Lake, Namco on the Tibetan Plateau. Geomicrobiology Journal, 27(8): 669-682. https://doi.org/10.1080/01490450903528000 |
Liu, Y. Q., Priscu, J. C., Yao, T. D., et al., 2014. A Comparison of Pelagic, Littoral, and Riverine Bacterial Assemblages in Lake Bangongco, Tibetan Plateau. FEMS Microbiology Ecology, 89(2): 211-221. https://doi.org/10.1111/1574-6941.12278 |
Liu, Y. Q., Yao, T. D., Jiao, N. Z., et al., 2013a. Seasonal Dynamics of the Bacterial Community in Lake Namco, the Largest Tibetan Lake. Geomicrobiology Journal, 30(1): 17-28. https://doi.org/10.1080/01490451.2011.638700 |
Liu, Y. Q., Yao, T. D., Jiao, N. Z., et al., 2013b. Salinity Impact on Bacterial Community Composition in Five High-Altitude Lakes from the Tibetan Plateau, Western China. Geomicrobiology Journal, 30(5): 462-469. https://doi.org/10.1080/01490451.2012.710709 |
Liu, Y. Q., Yao, T. D., Zhu, L. P., et al., 2009. Bacterial Diversity of Freshwater Alpine Lake Puma Yumco on the Tibetan Plateau. Geomicrobiology Journal, 26(2): 131-145. https://doi.org/10.1080/01490450802660201 |
Llirós, M., Inceoğlu, ., García-Armisen, T., et al., 2014. Bacterial Community Composition in Three Freshwater Reservoirs of Different Alkalinity and Trophic Status. PLOS ONE, 9(12): e116145. https://doi.org/10.1371/journal.pone.0116145 |
Margesin, R., Miteva, V., 2011. Diversity and Ecology of Psychrophilic Microorganisms. Research in Microbiology, 162(3): 346-361. https://doi.org/10.1016/j.resmic.2010.12.004 |
Nedwell, D., 1999. Effect of Low Temperature on Microbial Growth: Lowered Affinity for Substrates Limits Growth at Low Temperature. FEMS Microbiology Ecology, 30(2): 101-111. https://doi.org/10.1016/s0168-6496(99)00030-6 |
Nelson, C. E., 2009. Phenology of High-Elevation Pelagic Bacteria: The Roles of Meteorologic Variability, Catchment Inputs and Thermal Stratification in Structuring Communities. The ISME Journal, 3(1): 13-30. https://doi.org/10.1038/ismej.2008.81 |
Newton, R. J., Jones, S. E., Eiler, A., et al., 2011. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiology and Molecular Biology Reviews, 75(1): 14-49. https://doi.org/10.1128/mmbr.00028-10 |
Oren, A., 2001. The Bioenergetic Basis for the Decrease in Metabolic Diversity at Increasing Salt Concentrations: Implications for the Functioning of Salt Lake Ecosystems. Hydrobiologia, 466: 61-72 doi: 10.1023/A:1014557116838 |
Peter, H., Sommaruga, R., 2016. Shifts in Diversity and Function of Lake Bacterial Communities Upon Glacier Retreat. The ISME Journal, 10(7): 1545-1554. https://doi.org/10.1038/ismej.2015.245 |
Qiu, J., 2008. China: The Third Pole. Nature, 454(7203): 393-396. https://doi.org/10.1038/454393a |
Sahay, H., Babu, B. K., Singh, S., et al., 2013. Cold-Active Hydrolases Producing Bacteria from Two Different Sub-Glacial Himalayan Lakes. Journal of Basic Microbiology, 53(8): 703-714. https://doi.org/10.1002/jobm.201200126 |
Sánchez-Hernández, J., Cobo, F., Amundsen, P. A., 2015. Food Web Topology in High Mountain Lakes. PLOS ONE, 10(11): e0143016. https://doi.org/10.1371/journal.pone.0143016 |
Shen, L., Yao, T. D., Xu, B. Q., et al., 2012. Variation of Culturable Bacteria along Depth in the East Rongbuk Ice Core, Mt. Everest. Geoscience Frontiers, 3(3): 327-334. https://doi.org/10.1016/j.gsf.2011.12.013 |
Shokralla, S., Spall, J. L., Gibson, J. F., et al., 2012. Next-Generation Sequencing Technologies for Environmental DNA Research. Molecular Ecology, 21(8): 1794-1805. https://doi.org/10.1111/j.1365-294x.2012.05538.x |
Sogin, M. L., Morrison, H. G., Huber, J. A., et al., 2006. Microbial Diversity in the Deep Sea and the Underexplored "Rare Biosphere". Proceedings of the National Academy of Sciences, 103(32): 12115-12120. https://doi.org/10.1073/pnas.0605127103 |
Sommaruga, R., 2001. The Role of Solar UV Radiation in the Ecology of Alpine Lakes. Journal of Photochemistry and Photobiology B: Biology, 62(1/2): 35-42. https://doi.org/10.1016/s1011-1344(01)00154-3 |
Sommaruga, R., Casamayor, E. O., 2009. Bacterial 'Cosmopolitanism' and Importance of Local Environmental Factors for Community Composition in Remote High-Altitude Lakes. Freshwater Biology, 54(5): 994-1005. https://doi.org/10.1111/j.1365-2427.2008.02146.x |
Stahl, D. A., 1995. Application of Phylogenetically Based Hybridization Probes to Microbial Ecology. Molecular Ecology, 4(5): 535-542. https://doi.org/10.1111/j.1365-294x.1995.tb00254.x |
Stahl, D. A., Flesher, B., Mansfield, H. R., et al., 1988. Use of Phylogenetically Based Hybridization Probes for Studies of Ruminal Microbial Ecology. Applied and Environmental Microbiology, 54(5): 1079-1084. https://doi.org/10.1002/bit.260310818 |
Staley, C., Unno, T., Gould, T. J., et al., 2013. Application of Illumina Next-Generation Sequencing to Characterize the Bacterial Community of the Upper Mississippi River. Journal of Applied Microbiology, 115(5): 1147-1158. https://doi.org/10.1111/jam.12323 |
Thomas, F., Hehemann, J. H., Rebuffet, E., et al., 2011. Environmental and Gut Bacteroidetes: The Food Connection. Frontiers in Microbiology, 2(5): 1-16. https://doi.org/10.3389/fmicb.2011.00093 |
Tuomisto, H., 2012. An Updated Consumer's Guide to Evenness and Related Indices. Oikos, 121(8): 1203-1218. https://doi.org/10.1111/j.1600-0706.2011.19897.x |
Wang, J. J., Yang, D. M., Zhang, Y., et al., 2011. Do Patterns of Bacterial Diversity along Salinity Gradients Differ from Those Observed for Macroorganisms?. PLOS ONE, 6(11): e27597. https://doi.org/10.1371/journal.pone.0027597 |
Wang, P. F., Wang, X., Wang, C., et al., 2017. Shift in Bacterioplankton Diversity and Structure: Influence of Anthropogenic Disturbances along the Yarlung Tsangpo River on the Tibetan Plateau, China. Scientific Reports, 7(1): 12529. https://doi.org/10.1038/s41598-017-12893-4 |
Wang, Q., Garrity, G. M., Tiedje, J. M., et al., 2007. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology, 73(16): 5261-5267. https://doi.org/10.1128/aem.00062-07 |
Ward, D. M., Weller, R., Bateson, M. M., 1990. 16S rRNA Sequences Reveal Numerous Uncultured Microorganisms in a Natural Community. Nature, 345(6270): 63-65. https://doi.org/10.1038/345063a0 |
Warnecke, F., Sommaruga, R., Sekar, R., et al., 2005. Abundances, Identity, and Growth State of Actinobacteria in Mountain Lakes of Different UV Transparency. Applied and Environmental Microbiology, 71(9): 5551-5559. https://doi.org/10.1128/aem.71.9.5551-5559.2005 |
Williamson, C. E., Dodds, W., Kratz, T. K., et al., 2008. Lakes and Streams as Sentinels of Environmental Change in Terrestrial and Atmospheric Processes. Frontiers in Ecology and the Environment, 6(5): 247-254. https://doi.org/10.1890/070140 |
Wu, Q. L., Zwart, G., Schauer, M., et al., 2006. Bacterioplankton Community Composition along a Salinity Gradient of Sixteen High-Mountain Lakes Located on the Tibetan Plateau, China. Applied and Environmental Microbiology, 72(8): 5478-5485. https://doi.org/10.1128/aem.00767-06 |
Xing, P., Hahn, M. W., Wu, Q. L., 2009. Low Taxon Richness of Bacterioplankton in High-Altitude Lakes of the Eastern Tibetan Plateau, with a Predominance of Bacteroidetes and Synechococcus Spp.. Applied and Environmental Microbiology, 75(22): 7017-7025. https://doi.org/10.1128/aem.01544-09 |
Xiong, J. B., Liu, Y. Q., Lin, X. G., et al., 2012. Geographic Distance and pH Drive Bacterial Distribution in Alkaline Lake Sediments across Tibetan Plateau. Environmental Microbiology, 14(9): 2457-2466. https://doi.org/10.1111/j.1462-2920.2012.02799.x |
Yadav, A. N., Sachan, S. G., Verma, P., et al., 2016. Cold Active Hydrolytic Enzymes Production by Psychrotrophic Bacilli Isolated from Three Sub-Glacial Lakes of NW Indian Himalayas. Journal of Basic Microbiology, 56(3): 294-307. https://doi.org/10.1002/jobm.201500230 |
Yang, J., Ma, L., Jiang, H. C., et al., 2016. Salinity Shapes Microbial Diversity and Community Structure in Surface Sediments of the Qinghai-Tibetan Lakes. Scientific Reports, 6(1): 25078. https://doi.org/10.1038/srep25078 |
Yannarell, A. C., Triplett, E. W., 2005. Geographic and Environmental Sources of Variation in Lake Bacterial Community Composition. Applied and Environmental Microbiology, 71(1): 227-239. https://doi.org/10.1128/aem.71.1.227-239.2005 |
Yao, T. D., Thompson, L. G., Mosbrugger, V., et al., 2012. Third Pole Environment (TPE). Environmental Development, 3(1): 52-64. https://doi.org/10.1016/j.envdev.2012.04.002 |
Zhang, G. Q., Yao, T. D., Xie, H. J., et al., 2015. An Inventory of Glacial Lakes in the Third Pole Region and Their Changes in Response to Global Warming. Global and Planetary Change, 131(6): 148-157. https://doi.org/10.1016/j.gloplacha.2015.05.013 |
Zhang, Q., Hou, X. Y., Li, F. Y., et al., 2014. Alpha, Beta and Gamma Diversity Differ in Response to Precipitation in the Inner Mongolia Grassland. PLOS ONE, 9(3): e93518. https://doi.org/10.1371/journal.pone.0093518 |
Zhang, R., Wu, Q. L., Piceno, Y. M., et al., 2013. Diversity of Bacterioplankton in Contrasting Tibetan Lakes Revealed by High-Density Microarray and Clone Library Analysis. FEMS Microbiology Ecology, 86(2): 277-287. https://doi.org/10.1111/1574-6941.12160 |
Zhang, S., Hou, S., Wu, Y., et al., 2008. Bacterial Diversity in Himalayan Glacial Ice and Its Relationship to Dust. Biogeosciences Discussions, 5(4): 3433-3456. https://doi.org/10.5194/bgd-5-3433-2008 |
Zhong, Z. P., Liu, Y., Miao, L. L., et al., 2016. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau. Applied and Environmental Microbiology, 82(6): 1846-1858. https://doi.org/10.1128/aem.03332-15 |
Zwart, G., Crump, B. C., Agterveld, M. P. K., et al., 2002. Typical Freshwater Bacteria: An Analysis of Available 16S rRNA Gene Sequences from Plankton of Lakes and Rivers. Aquatic Microbial Ecology, 28: 141-155. https://doi.org/10.3354/ame028141 |