Bojadjieva, J., Sheshov, V., Bonnard, C., 2018. Hazard and Risk Assessment of Earthquake-Induced Landslides—Case Study. Landslides, 15(1): 161–171. https://doi.org/10.1007/s10346-017-0905-9 |
Bray, J. D., 2007. Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements. Journal of Geotechnical and Geoenvironmental Engineering, 133: 381–392 doi: 10.1061/(ASCE)1090-0241(2007)133:4(381) |
Chen, X. L., Liu, C. G., Yu, L., et al., 2014a. Critical Acceleration as a Criterion in Seismic Landslide Susceptibility Assessment. Geomorphology, 217: 15–22. https://doi.org/10.1016/j.geomorph.2014.04.011 |
Chen, X. L., Yuan, R. M., Yu, L., 2014b. Applying the Newmark's Model of the Assessment of Earthquake-Triggered Landslides during the Lushan Earthquake. Seismology and Gelogy, 35(3): 661–670 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201303019 |
Chousianitis, K., Del Gaudio, V., Kalogeras, I., et al., 2014. Predictive Model of Arias Intensity and Newmark Displacement for Regional Scale Evaluation of Earthquake-Induced Landslide Hazard in Greece. Soil Dynamics and Earthquake Engineering, 65: 11–29. https://doi.org/10.1016/j.soildyn.2014.05.009 |
Cui, S., Pei, X., Wang, G., et al., 2010. Initiation of a Large Landslide Triggered by Wenchuan Earthquake Based on Ring Shear Tests. Chinese Journal of Geotechnical Engineering, 39(12): 2268–2277 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201712016 |
Dai, F. C., Xu, C., Yao, X., et al., 2011. Spatial Distribution of Landslides Triggered by the 2008 Ms 8.0 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 40(4): 883–895. https://doi.org/10.1016/j.jseaes.2010.04.010 |
Deng, Q. D., 2007. Chinese Active Tectonic Map. Seismological Press, Beijing (in Chinese) |
Di, B. F., Stamatopoulos, C. A., Dandoulaki, M., et al., 2016. A Method Predicting the Earthquake-Induced Landslide Risk by Back Analyses of Past Landslides and Its Application in the Region of the Wenchuan 12/5/2008 Earthquake. Natural Hazards, 85(2): 903–927. https://doi.org/10.1007/s11069-016-2611-7 |
Dreyfus, D. K., 2011. A Comparison of Methodologies Used to Predict Earthquake-Induced Landslides: [Dissertation]. University of Texas, Texas |
Dreyfus, D. K., Rathje, E. M., Jibson, R. W., 2013. The Influence of Different Simplified Sliding-Block Models and Input Parameters on Regional Predictions of Seismic Landslides Triggered by the Northridge Earthquake. Engineering Geology, 163: 41–54. https://doi.org/10.1016/j.enggeo.2013.05.015 |
Gallen, S. F., Clark, M. K., Godt, J. W., et al., 2017. Application and Evaluation of a Rapid Response Earthquake-Triggered Landslide Model to the 25 April 2015 Mw 7.8 Gorkha Earthquake, Nepal. Tectonophysics, 714/715: 173–187. https://doi.org/10.1016/j.tecto.2016.10.031 |
Ge, H., Chen, Q. G., Wang, D. W., 2013. The Assessment and Mapping of Seismic Landslide Hazards: A Case Study of Yingxiu Area, Sichuan Province. Geology in China, 2: 644–652 (in Chinese with English Abstract) http://cn.bing.com/academic/profile?id=2a1f0ce5ff0719feec1362f2c7501eb3&encoded=0&v=paper_preview&mkt=zh-cn |
Godt, J. W., Sener, B., Verdin, K. L., et al., 2008. Rapid Assessment of Earthquake-Induced Landsliding. In: Proceedings of the First World Landslide Forum, Tokyo |
Harp, E. L., Jibson, R. W., 1996. Inventory of Landslides Triggered by the 1994 Northridge, California Earthquake. Bulletin of the Seismological Society of America, 86(1): S319–S332. https://doi.org/10.3133/ofr95213 |
Hsieh, S. Y., Lee, C. T., 2011. Empirical Estimation of the Newmark Displacement from the Arias Intensity and Critical Acceleration. Engineering Geology, 122(1/2): 34–42. https://doi.org/10.1016/j.enggeo.2010.12.006 |
Huang, R. Q., Li, W. L., 2009. Analysis of the Geo-Hazards Triggered by the 12 May 2008 Wenchuan Earthquake, China. Bulletin of Engineering Geology and the Environment, 68(3): 363–371. https://doi.org/10.1007/s10064-009-0207-0 |
Jasper, J. C., Cook, N. G. W., 1969. Fundamentals of Rock Mechanics. Methuen and Company, London. 513 |
Jibson, R. W., 1993. Predicting Earthquake-Induced Landslide Displacements Using Newmark's Sliding Block Analysis. Transportation Research Record, 1411: 9–17 http://cn.bing.com/academic/profile?id=8c6346df766358525a8bd7debbe2b652&encoded=0&v=paper_preview&mkt=zh-cn |
Jibson, R. W., Harp, E. L., Michael, J. A., 2000. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps. Engineering Geology, 58(3/4): 271–289. https://doi.org/10.1016/s0013-7952(00)00039-9 |
Jibson, R. W., 2007. Regression Models for Estimating Coseismic Landslide Displacement. Engineering Geology, 91(2/3/4): 209–218. https://doi.org/10.1016/j.enggeo.2007.01.013 |
Jibson, R. W., Harp, E. L., Michael, J. A., 1998. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California Area. Open-File Report, California |
Jibson, R. W., Michael, J. A., 2009. Maps Showing Seismic Landslide Hazards in Anchorage, Alaska. U.S. Geological Survey Scientific Investigations Map 3077: 2 Sheets (Scale 1 : 25 000). 11 |
Jibson, R. W., 2011. Methods for Assessing the Stability of Slopes during Earthquakes—A Retrospective. Engineering Geology, 122(1/2): 43–50. https://doi.org/10.1016/j.enggeo.2010.09.017 |
Jibson, R. W., Rathje, E. M., Jibson, M. W., et al., 2013. SLAMMER: Seismic Landslide Movement Modeled Using Earthquake Records. Geologic Hazards Science Center, USGS, Reston Virginia |
Kargel, J. S., Leonard, G. J., Shugar, D. H., et al., 2016. Geomorphic and Geologic Controls of Geohazards Induced by Nepals 2015 Gorkha Earthquake. Science, 351(6269): aac8353–aac8353. https://doi.org/10.1126/science.aac8353 |
Keefer, D. K., 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin, 95(4): 406 doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2 |
Li, X. J., Liu, L., Wang, Y. S., et al., 2010. Analysis of Horizontal Strong-Motion Attenuation in the Great 2008 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 100(5B): 2440–2449. https://doi.org/10.1785/0120090245 |
Liu, H. B., Ling, H. I., 2012. Seismic Responses of Reinforced Soil Retaining Walls and the Strain Softening of Backfill Soils. International Journal of Geomechanics, 12(4): 351–356. https://doi.org/10.1061/(asce)gm.1943-5622.0000051 |
Liu, J. M., Wang, T., Shi, J. S., et al., 2017. Emergency Rapid Assessment of Landslides Induced by the Jiuzhaigou Ms 7.0 earthquake, Sichuan, China. Journal of Geomechnics, (5): 639–645 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201705001 |
Ma, S. Y., Xu, C., 2019. Assessment of Co-Seismic Landslide Hazard Using the Newmark Model and Statistical Analyses: A Case Study of the 2013 Lushan, China, Mw 6.6 Earthquake. Natural Hazards, 96(1): 389–412. https://doi.org/10.1007/s11069-018-3548-9 |
McCrink, T. P., 2001. Regional Earthquake-Induced Landslide Mapping Using Newmark Displacement Criteria. San Cruz County, California. 77–92 |
Meehan, C. L., Vahedifard, F., 2013. Evaluation of Simplified Methods for Predicting Earthquake-Induced Slope Displacements in Earth Dams and Embankments. Engineering Geology, 152(1): 180–193. https://doi.org/10.1016/j.enggeo.2012.10.016 |
Miles, S. B., Ho, C. L., 1999. Rigorous Landslide Hazard Zonation Using Newmark's Method and Stochastic Ground Motion Simulation. Soil Dynamics and Earthquake Engineering, 18(4): 305–323. https://doi.org/10.1016/s0267-7261(98)00048-7 |
Ministry of Construction of the People's Republic of China, 2009. Code for Geotechnical Engineering Investigation GB 50021-2001(2009). National Bureau of Quality Inspection, Beijing (in Chinese) |
Ministry of Water Resources of the People's Republic of China, 2014. Standard for Engineering Classification of Rock Masses GB/T 50218-2014. Standards Press of China, Beijing (in Chinese) |
Newmark, N. M., 1965. Effects of Earthquakes on Dams and Embankments. Géotechnique, 15(2): 139–160. https://doi.org/10.1680/geot.1965.15.2.139 |
Nowicki Jessee, M. A., Hamburger, M. W., Allstadt, K., et al., 2018. A Global Empirical Model for Near-Real-Time Assessment of Seismically Induced Landslides. Journal of Geophysical Research: Earth Surface, 123(8): 1835–1859. https://doi.org/10.1029/2017jf004494 |
Rao, G., Cheng, Y. L., Lin, A. M., et al., 2017. Relationship between Landslides and Active Normal Faulting in the Epicentral Area of the AD 1556 M~8.5 Huaxian Earthquake, SE Weihe Graben (Central China). Journal of Earth Science, 28(3): 545–554. https://doi.org/10.1007/s12583-017-0900-z |
Romeo, R., 2000. Seismically Induced Landslide Displacements: A Predictive Model. Engineering Geology, 58(3/4): 337–351. https://doi.org/10.1016/s0013-7952(00)00042-9 |
Robinson, T. R., Rosser, N. J., Davies, T. R. H., et al., 2018. Near-Real-Time Modeling of Landslide Impacts to Inform Rapid Response: An Example from the 2016 Kaikōura, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 108(3B): 1665–1682. https://doi.org/10.1785/0120170234 |
Saygili, G., Rathje, E. M., 2008. Empirical Predictive Models for Earthquake-Induced Sliding Displacements of Slopes. Journal of Geotechnical and Geoenvironmental Engineering, 134(6): 790–803. https://doi.org/10.1061/(asce)1090-0241(2008)134:6(790) |
Shao, X. Y., Ma, S. Y., Xu, C., et al., 2019. Planet Image-Based Inventorying and Machine Learning-Based Susceptibility Mapping for the Landslides Triggered by the 2018 Mw 6.6 Tomakomai, Japan Earthquake. Remote Sensing, 11(8): 978. https://doi.org/10.3390/rs11080978 |
Sharifi-Mood, M., Olsen, M. J., Gillins, D. T., et al., 2017. Performance-Based, Seismically-Induced Landslide Hazard Mapping of Western Oregon. Soil Dynamics and Earthquake Engineering, 103: 38–54. https://doi.org/10.1016/j.soildyn.2017.09.012 |
Sun, P., Wang, F., Yin, Y., et al., 2010. An Experimental Study on the Mechanism of Rapid and Long Run-out Landslide Triggered by Wenchuan Earthquake. Seismology and Geology, 32(1): 98–106 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201001010 |
Tang, C., Qi, X., Ding, J., et al., 2010. Dynamic Analysis on Rainfall-Induced Landslide Activity in High Seismic Intensity Areas of the Wenchuan Earthquake Using Remote Sensing Image. Earth Science––Journal of China University o f Geosciences, 35(2): 317–323 (in Chinese with English Abstract) doi: 10.3799/dqkx.2010.033 |
Tian, Y. Y., Xu, C., Xu, X. W., et al., 2016. Detailed Inventory Mapping and Spatial Analyses to Landslides Induced by the 2013 Ms 6.6 Minxian Earthquake of China. Journal of Earth Science, 27(6): 1016–1026. https://doi.org/10.1007/s12583-016-0905-z |
USGS, 2008. (2019/03/18). https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650#finite-fault |
Wang, G. H., Huang, R. Q., Lourenço, S. D. N., et al., 2014. A Large Landslide Triggered by the 2008 Wenchuan (M8.0) Earthquake in Donghekou Area: Phenomena and Mechanisms. Engineering Geology, 182: 148–157. https://doi.org/10.1016/j.enggeo.2014.07.013 |
Wang, T., Wu, S. R., Shi, J. S., et al., 2013. Case Study on Rapid Assessment of Regional Seismic Landslide Hazard Based on Simplified Newmark Displacement Model: Wenchuan Ms 8.0 Earthquake. Journal of Engineering Geology, 21(1): 16–24 http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201301004.htm |
Wen, Z., Xie, J., Gao, M., et al., 2010. Near-Source Strong Ground Motion Characteristics of the 2008 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 100(5B): 2425–2439. https://doi.org/10.1785/0120090266 |
Wilson, R. C., Keefer, D. K., 1983. Dynamic Analysis of a Slope Failure from the 6 August 1979 Coyote Lake, California, Earthquake. Bulletin of the Deismological Society of America, 73(3): 863–877 http://cn.bing.com/academic/profile?id=2c0e476d67212da1426ff218b73dee9b&encoded=0&v=paper_preview&mkt=zh-cn |
Xu, C., Xu, X. W., Dai, F. C., et al., 2013a. Application of an Incomplete Landslide Inventory, Logistic Regression Model and Its Validation for Landslide Susceptibility Mapping Related to the May 12, 2008 Wenchuan Earthquake of China. Natural Hazards, 68(2): 883–900. https://doi.org/10.1007/s11069-013-0661-7 |
Xu, C., Xu, X. W., Yao, Q., et al., 2013b. GIS-Based Bivariate Statistical Modelling for Earthquake-Triggered Landslides Susceptibility Mapping Related to the 2008 Wenchuan Earthquake, China. Quarterly Journal of Engineering Geology and Hydrogeology, 46(2): 221–236. https://doi.org/10.1144/qjegh2012-006 |
Xu, C., Xu, X. W., Yao, X., et al., 2014. Three (nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides, 11(3): 441–461. https://doi.org/10.1007/s10346-013-0404-6 |
Xu, C., Xu, X. W., Tian, Y. Y., et al., 2016. Two Comparable Earthquakes Produced Greatly Different Coseismic Landslides: The 2015 Gorkha, Nepal and 2008 Wenchuan, China Events. Journal of Earth Science, 27(6): 1008–1015. https://doi.org/10.1007/s12583-016-0684-6 |
Xu, C., Ma, S. Y., Tan, Z. B., et al., 2018. Landslides Triggered by the 2016 Mj 7.3 Kumamoto, Japan, Earthquake. Landslides, 15(3): 551–564. https://doi.org/10.1007/s10346-017-0929-1 |
Xu, G. X., Yao, L. K., Li, C. H., et al., 2012. Predictive Models for Permanent Displacement of Slopes Based on Recorded Strong-Motion Data of Wenchuan Earthquake. Chinese Journal of Geotechnical Engineering, 34(6): 1131–1136 (in Chinese with English Abstract) http://cn.bing.com/academic/profile?id=b64b637830c0332ddec5d7024975ad64&encoded=0&v=paper_preview&mkt=zh-cn |
Xu, L., Dai, F., Min, H., et al., 2010. Loess Landslide Types and Topographic Features at South Jingyang Plateau, China. Earth Science––Journal of China University o f Geosciences, 35(1): 155–160 (in Chinese with English Abstract) doi: 10.3799/dqkx.2010.016 |
Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009. Coseismic Reverse- and Oblique-Slip Surface Faulting Generated by the 2008 Mw 7.9 Wenchuan Earthquake, China. Geology, 37(6): 515–518. https://doi.org/10.1130/g25462a.1 |
Yin, Y. P., Wang, F. W., Sun, P., 2009. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China. Landslides, 6(2): 139–152. https://doi.org/10.1007/s10346-009-0148-5 |