Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 3
Jun 2019
Turn off MathJax
Article Contents
Yang Li, Cong Zhang, Xiaoyu Liu, Tingting Shen, Tian Qiu, Jingsui Yang. Metamorphism and Oceanic Crust Exhumation—Constrained by the Jilang Eclogite and Meta-Quartzite from the Sumdo (U)HP Metamorphic Belt. Journal of Earth Science, 2019, 30(3): 510-524. doi: 10.1007/s12583-019-0894-9
Citation: Yang Li, Cong Zhang, Xiaoyu Liu, Tingting Shen, Tian Qiu, Jingsui Yang. Metamorphism and Oceanic Crust Exhumation—Constrained by the Jilang Eclogite and Meta-Quartzite from the Sumdo (U)HP Metamorphic Belt. Journal of Earth Science, 2019, 30(3): 510-524. doi: 10.1007/s12583-019-0894-9

Metamorphism and Oceanic Crust Exhumation—Constrained by the Jilang Eclogite and Meta-Quartzite from the Sumdo (U)HP Metamorphic Belt

doi: 10.1007/s12583-019-0894-9
More Information
  • Corresponding author: Cong Zhang
  • Received Date: 27 Nov 2018
  • Accepted Date: 20 Feb 2019
  • Publish Date: 01 Jun 2019
  • The Sumdo eclogite-bearing (U)HP metamorphic belt extends over 100 km across the middle part of the Lhasa terrane in southern Tibet, which forms a Permian-Triassic oceanic subduction zone between the south and the north Lhasa sub-terranes, leading to the reinterpretation of the tectonic evolution of the Lhasa terrane in the Tibetan-Himalayan orogeny. Previous studies show that there are significant differences in temperature and pressure conditions of the eclogites in four areas, e.g., Sumdo, Xindaduo, Bailang and Jilang areas. Studying the peak metamorphic P-T conditions and path of eclogite in the Sumdo belt is of great significance to reveal the subduction and exhumation mechanism of Paleo-Tethys Ocean in the Lhasa terrane. In this contribution, eclogite in the Jilang area of the Sumdo belt is chosen as an example to study its metamorphic evolution. The mineral assemblage of the eclogite is garnet, omphacite, phengite, hornblende, epidote, quartz and minor biotite. Garnet has a "dirty" core with abundant inclusions such as epidote, amphibole, plagioclase and a "clear" rim with few inclusions of omphacite and phengite. From the core to the rim, pyrope content in garnet increases while grossular content decreases, showing typical growth zoning. The rim of garnet is wrapped by the pargasite+plagioclase corona, showing amphibolite facies overprint during retrogression. Three stages of metamorphism are inferred as (1) prograde stage, represented by the core of garnet and mineral inclusions therein; (2) peak stage, represented by the garnet rim, omphacite, lawsonite, phengite, and quartz; (3) retrograde stage characterized by decomposition of lawsonite to zoisite, followed by symplectite of omphacite and corona rimmed garnet. A P-T pseudosection contoured with isopleths of grossular and pyrope contents in garnet is used to constrain the near peak P-T condition at 2.85 GPa, 575 C. In general, the Jilang eclogite shows a clockwise P-T path with a near isothermal decompression process during exhumation. Combined with the age peaks of 583, 911, and 1 134 Ma from the detrital zircons of the country metaquartzite, a continental margin material involving exhumation process at shallow depth after the subduction channel exhumation is inferred for the Jilang eclogite and may further indicate that the subduction direction of the Sumdo eclogite belt is from north to south.

     

  • loading
  • Agard, P., Yamato, P., Jolivet, L., et al., 2009. Exhumation of Oceanic Blueschists and Eclogites in Subduction Zones: Timing and Mechanisms. Earth-Science Reviews, 92(1/2): 53–79. https://doi.org/10.1016/j.earscirev.2008.11.002
    Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x
    Cao, D. D., Cheng, H., Zhang, L. M., et al., 2017. Post-Peak Metamorphic Evolution of the Sumdo Eclogite from the Lhasa Terrane of Southeast Tibet. Journal of Asian Earth Sciences, 143: 156–170. https://doi.org/10.1016/j.jseaes.2017.04.020
    Carswell, D. A., 1990. Eclogite Facies Rocks. Blackie, New York. 396
    Carswell, D. A., Compagnoni, R., 2003. Introduction with Review of the Definition, Distribution and Geotectonic Significance of Ultrahigh Pressure Metamorphism. In: Carswell, D. A., Compagnoni, R., eds., EMU Notes in Mineralogy, vol. 5, E tv s Lorànd University Press, Budapest. 3–9
    Chen, S. Y., Yang, J. S., Li, Y., et al., 2009. Ultramafic Blocks in Sumdo Region, Lhasa Block, Eastern Tibet Plateau: An Ophiolite Unit. Journal of Earth Science, 20(2): 332–347. https://doi.org/10.1007/s12583-009-0028-x
    Chen, Y., Ye, K., Wu, T. F., et al., 2013. Exhumation of Oceanic Eclogites: Thermodynamic Constraints on Pressure, Temperature, Bulk Composition and Density. Journal of Metamorphic Geology, 31(5): 549–570. https://doi.org/10.1111/jmg.12033
    Cheng, H., Zhang, C., Vervoort, J. D., et al., 2012. Zircon U-Pb and Garnet Lu-Hf Geochronology of Eclogites from the Lhasa Block, Tibet. Lithos, 155: 341–359. https://doi.org/10.1016/j.lithos.2012.09.011
    Cheng, H., Liu, Y. M., Vervoort, J. D., et al., 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar Multichronometric Dating on the Bailang Eclogite Constrains the Closure Timing of the Paleo-Tethys Ocean in the Lhasa Terrane, Tibet. Gondwana Research, 28(4): 1482–1499. https://doi.org/10.1016/j.gr.2014.09.017
    Coggon, R., Holland, T. J. B., 2002. Mixing Properties of Phengitic Micas and Revised Garnet-Phengite Thermobarometers. Journal of Metamorphic Geology, 20(7): 683–696. https://doi.org/10.1046/j.1525-1314.2002.00395.x
    Coleman, R. G., Wang, X., 1995. Ultrahigh-Pressure Metamorphism. Cambridge University Press, New York. 528
    Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1/2/3/4): 85–102. https://doi.org/10.1016/0012-821x(94)00237-s
    de Capitani, C., Brown, T. H., 1987. The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions. Geochimica et Cosmochimica Acta, 51(10): 2639–2652. https://doi.org/10.1016/0016-7037(87)90145-1
    de Capitani, C., Petrakakis, K., 2010. The Computation of Equilibrium Assemblage Diagrams with Theriak/Domino Software. American Mineralogist, 95(7): 1006–1016. https://doi.org/10.2138/am.2010.3354
    Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino- and Orthoamphiboles in the System Na2O-CaO-FeO- MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6): 631–656. https://doi.org/10.1111/j.1525-1314.2007.00720.x
    Ellis, D. J., Green, D. H., 1979. An Experimental Study of the Effect of Ca upon Garnet-Clinopyroxene Fe-Mg Exchange Equilibria. Contributions to Mineralogy and Petrology, 71(1): 13–22. https://doi.org/10.1007/bf00371878
    Ernst, W. G., 1988. Tectonic History of Subduction Zones Inferred from Retrograde Blueschist P-T Paths. Geology, 16(12): 1081–1084. https://doi.org/10.1130/0091-7613(1988)016<1081:thoszi>2.3.co;2 doi: 10.1130/0091-7613(1988)016<1081:thoszi>2.3.co;2
    Ernst, W. G., Liou, J. G., 1995. Contrasting Plate-Tectonic Styles of the Qinling-Dabie-Sulu and Franciscan Metamorphic Belts. Geology, 23(4): 353–356. https://doi.org/10.1130/0091-7613(1995)023<0353:cptsot>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0353:cptsot>2.3.co;2
    Ernst, W. G., 2001. Subduction, Ultrahigh-Pressure Metamorphism, and Regurgitation of Buoyant Crustal Slices—Implications for Arcs and Continental Growth. Physics of the Earth and Planetary Interiors, 127(1/2/3/4): 253–275. https://doi.org/10.1016/s0031-9201(01)00231-x
    Green, E., Holland, T., Powell, R., 2007. An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks. American Mineralogist, 92(7): 1181–1189. https://doi.org/10.2138/am.2007.2401
    Guillot, S., Hattori, K., Agard, P., et al., 2009. Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. In: Lallemand, S., Funiciello, F., eds., Subduction Zone Geodynamics. Springer, Berlin, Heidelberg. 175–205
    Guynn, J. H., Kapp, P., Pullen, A., et al., 2006. Tibetan Basement Rocks near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet. Geology, 34(6): 505–508. https://doi.org/10.1130/g22453.1
    Hacker, B. R., Gerya, T. V., 2013. Paradigms, New and Old, for Ultrahigh-Pressure Tectonism. Tectonophysics, 603: 79–88. https://doi.org/10.1016/j.tecto.2013.05.026
    Holland, T. J. B., Baker, J., Powell, R., 1998. Mixing Properties and Activity-Composition Relationships of Chlorites in the System MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 10(3): 395–406. https://doi.org/10.1127/ejm/10/3/0395
    Holland, T., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4): 492–501. https://doi.org/10.1007/s00410-003-0464-z
    Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
    Huang, J., Tian, Z. L., Zhang, C., et al., 2015. Metamorphic Evolution of Sumdo Eclogite in Lhasa Block of the Tibetan Plateau: Phase Equilibrium in NCKMnFMASHTO System. Geology in China, 42(5): 1559–1571 (in Chinese with English Abstract)
    Krogh, E. J., 1988. The Garnet-Clinopyroxene Fe-Mg Geothermometer: A Reinterpretation of Existing Experimental Data. Contributions to Mineralogy and Petrology, 99(1): 44–48. https://doi.org/10.1007/bf00399364
    Krogh Ravna, E., 2000. The Garnet-Clinopyroxene Fe2+-Mg Geothermometer: An Updated Calibration. Journal of Metamorphic Geology, 18(2): 211–219. https://doi.org/10.1046/j.1525-1314.2000.00247.x
    Krogh Ravna, E., Terry, M. P., 2004. Geothermobarometry of UHP and HP Eclogites and Schists—An Evaluation of Equilibria among Garnet- Clinopyroxene-Kyanite-Phengite-Coesite/Quartz. Journal of Metamorphic Geology, 22(6): 579–592. https://doi.org/10.1111/j.1525-1314.2004.00534.x
    Li, P., Zhang, C., Liu, X. Y., et al., 2017. The Metamorphic Processes of the Xindaduo Eclogite in Tibet and Its Constrain on the Evolutionary of the Paleo-Tethys Subduction Zone. Acta Petrologica Sinica, 33(12): 3753–3765 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201712005
    Li, J. L., Klemd, R., Gao, J., et al., 2016. Poly-Cyclic Metamorphic Evolution of Eclogite: Evidence for Multistage Buria-Exhumation Cycling in a Subduction Channel. Journal of Petrology, 57(1): 119–146. https://doi.org/10.1093/petrology/egw002
    Liou, J. G., Zhang, R. Y., Ernst, W. G., 2007. Very High-Pressure Orogenic Garnet Peridotites. Proceedings of the National Academy of Sciences, 104(22): 9116–9121. https://doi.org/10.1073/pnas.0607300104
    Liu, Y., Liu, H. F., Theye, T., et al., 2009. Evidence for Oceanic Subduction at the NE Gondwana Margin during Permo-Triassic Times. Terra Nova, 21(3): 195–202. https://doi.org/10.1111/j.1365-3121.2009.00874.x
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
    Ludwig, K. R., 2003. Userʼs Manual for Isoplot/Ex, Version 300: A Geochronological Toolkit for Microsoft Excell. Berkeley Geochronology Center Special Publication, Berkeley. 70
    Lü, Z., Zhang, L. F., Du, J. X., et al., 2008. Coesite Inclusions in Garnet from Eclogitic Rocks in Western Tianshan, Northwest China: Convincing Proof of UHP Metamorphism. American Mineralogist, 93(11/12): 1845–1850. https://doi.org/10.2138/am.2008.2800
    Maruyama, S., Liou, J. G., Terabayashi, M., 1996. Blueschists and Eclogites of the World and Their Exhumation. International Geology Review, 38(6): 485–594. https://doi.org/10.1080/00206819709465347
    Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1/2/3/4): 49–67. https://doi.org/10.1016/j.chemgeo.2008.02.003
    Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3–14. https://doi.org/10.1016/j.jseaes.2011.12.018
    Powell, R., 1985. Regression Diagnostics and Robust Regression in Geothermometer/Geobarometer Calibration: The Garnet-Clinopyroxene Geothermometer Revisited. Journal of Metamorphic Geology, 3(3): 231–243. https://doi.org/10.1111/j.1525-1314.1985.tb00319.x
    Powell, R., Holland, T. J. B., 2008. On Thermobarometry. Journal of Metamorphic Geology, 26(2): 155–179. https://doi.org/10.1111/j.1525-1314.2007.00756.x
    Reinecke, T., 1991. Very-High-Pressure Metamorphism and Uplift of Coesite-Bearing Metasediments from the Zermatt-Saas Zone, Western Alps. European Journal of Mineralogy, 3(1): 7–18. https://doi.org/10.1127/ejm/3/1/0007
    Shen, T. T., Zhang, C., Tian, Z. L., et al., 2018. Petrological Studies of Jilang Eclogite in the Lhasa Terrane and Its Constraint on the Subduction and Exhumation Processes of the Paleo-Tethys Oceanic Crust. Petrologica et Mineralogica Sinica, 37(6): 917–932 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201806004
    Song, S. G., Niu, Y. L., Su, L., et al., 2014. Continental Orogenesis from Ocean Subduction, Continent Collision/subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 129: 59–84. https://doi.org/10.1016/j.earscirev.2013.11.010
    Shreve, R. L., Cloos, M., 1986. Dynamics of Sediment Subduction, Melange Formation, and Prism Accretion. Journal of Geophysical Research, 91(B10): 10229. https://doi.org/10.1029/jb091ib10p10229
    van Roermund, H. L. M., Drury, M. R., 1998. Ultra-High Pressure (P > 6 GPa) Garnet Peridotites in Western Norway: Exhumation of Mantle Rocks from > 85 km Depth. Terra Nova, 10(6): 295–301. https://doi.org/10.1046/j.1365-3121.1998.00213.x
    Wang, Q. C., Cong, B. L., 1996. Tectonic Implication of UHP Rocks from the Dabie Mountains. Science in China Series D: Earth Sciences, 39: 311–318
    Wei, C. J., Powell, R., 2004. Calculated Phase Relations in High-Pressure Metapelites in the System NKFMASH (Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O) with Application to Natural Rocks. Journal of Petrology, 45: 183–202 doi: 10.1093/petrology/egg085
    Wei, C. J., Su, X. L., Lou, Y. X., et al., 2009. A New Interpretation of the Conventional Thermobarometry in Eclogite: Evidence from the Calculated P-T Pseudosections. Acta Petrologica Sinica, 25(9): 2078–2088 (in Chinese with English Abstract)
    Wei, C. J., Clarke, G. L., 2011. Calculated Phase Equilibria for MORB Compositions: A Reappraisal of the Metamorphic Evolution of Lawsonite Eclogite. Journal of Metamorphic Geology, 29(9): 939–952. https://doi.org/10.1111/j.1525-1314.2011.00948.x
    Yamato, P., Agard, P., Burov, E., et al., 2007. Burial and Exhumation in a Subduction Wedge: Mutual Constraints from Thermomechanical Modeling and Natural P-T-t Data (Schistes Lustrés, Western Alps). Journal of Geophysical Research, 112(B7): B07410. https://doi.org/10.1029/2006jb004441
    Yang, J. S., Xu, Z. Q., Geng, Q. R., et al., 2006. A Possible New HP/UHP(?) Metamorphic Belt in China: Discovery of Eclogite in the Lhasa Terrane, Tibet. Acta Geologica Sinica, 80(12): 1787–1792 (in Chinese with English Abstract)
    Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet: A New Border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1): 76–89. https://doi.org/10.1016/j.jseaes.2008.04.001
    Yang, X. L., Zhang, L. F., Zhao, Z. D., et al., 2014. Metamorphic Evolution of Glaucophane Eclogite from Sumdo, Lhasa Block of Tibetan Plateau: Phase Equilibria and Metamorphic P-T Path. Acta Petrologica Sinica, 30(5): 1505–1519 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201405022
    Ye, K., Cong, B. L., Ye, D. N., 2000. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407(6805): 734–736. https://doi.org/10.1038/35037566
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan- Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
    Zhai, Q. G., Zhang, R. Y., Jahn, B. M., et al., 2011. Triassic Eclogites from Central Qiangtang, Northern Tibet, China: Petrology, Geochronology and Metamorphic P-T Path. Lithos, 125(1/2): 173–189. https://doi.org/10.1016/j.lithos.2011.02.004
    Zhang, C., Bader, T., van Roermund, H. L. M., et al., 2019a. The Metamorphic Evolution and Tectonic Significance of the Sumdo HP-UHP Metamorphic Terrane, Central-South Lhasa Block, Tibet. Geological Society, London, Special Publications. https://doi.org/10.1144/sp474.4
    Zhang, C., Bader, T., Zhang, L. M., et al., 2019b. Metamorphic Evolution and Age Constraints of the Garnet-Bearing Mica Schist from the Xindaduo Area of the Sumdo (U)HP Metamorphic Belt, Tibet. Geological Magazine. https://doi.org/10.1017/s001675681800033x
    Zhang, D. D., Zhang, L. F., Zhao, Z. D., 2011. A Study of Metamorphism of Sumdo Eclogite in Tibet, China. Earth Science Frontiers, 18(2): 116–126 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201102010
    Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4): 939–960. https://doi.org/10.1016/j.gr.2011.11.004
    Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1010–1025. https://doi.org/10.1007/s12583-018-0852-y
    Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science China Earth Science, 58(7): 1045–1069 (in Chinese with English Abstract) doi: 10.1007/s11430-015-5097-3
    Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1/2): 105–161. https://doi.org/10.1016/s0012-8252(02)00133-2
    Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Zircon U-Pb Dating and in-situ Hf Isotopic Analysis of Permian Peraluminous Granite in the Lhasa Terrane, Southern Tibet: Implications for Permian Collisional Orogeny and Paleogeography. Tectonophysics, 469(1/2/3/4): 48–60. https://doi.org/10.1016/j.tecto.2009.01.017
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241–255. https://doi.org/10.1016/j.epsl.2010.11.005
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean- Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290–308. https://doi.org/10.1016/j.chemgeo.2011.12.024
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429–1454. https://doi.org/10.1016/j.gr.2012.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(745) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return