Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 3
Jun 2019
Turn off MathJax
Article Contents
Lei Li, Wenjian Zhai. Geochemistry and Petrogenesis of the ca. 2.5 Ga High-K Granitoids in the Southern North China Craton. Journal of Earth Science, 2019, 30(3): 647-665. doi: 10.1007/s12583-019-0895-8
Citation: Lei Li, Wenjian Zhai. Geochemistry and Petrogenesis of the ca. 2.5 Ga High-K Granitoids in the Southern North China Craton. Journal of Earth Science, 2019, 30(3): 647-665. doi: 10.1007/s12583-019-0895-8

Geochemistry and Petrogenesis of the ca. 2.5 Ga High-K Granitoids in the Southern North China Craton

doi: 10.1007/s12583-019-0895-8
Funds:

the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences MSFGPMR16

the Key Program of the Ministry of Land and Resources of China 1212011220497

More Information
  • Corresponding author: Lei Li
  • Received Date: 15 Oct 2018
  • Accepted Date: 25 Feb 2019
  • Publish Date: 01 Jun 2019
  • Archean high-K granitoids, generally formed after tonalite-trondhjemite-granodiorite (TTGs), are important for understanding crustal reworking of ancient cratons. The Linshan Archean high-K granitoids from the southern Trans-North China Orogen (TNCO) provide a window into the continental crustal evolution of the North China Craton (NCC). They mainly consist of monzogranite and granodiorite which were formed during 2 542-2 503 Ma. The high-K granitoids have high SiO2 (65.86 wt.%-78.08 wt.%), K2O (3.29 wt.%-7.62 wt.%) and low P2O5 (0.01 wt.%-0.27 wt.%). They display right inclined REE patterns with negative Eu anomalies (Eu/Eu*=0.20-0.81). Their spider diagram is characterized by enrichment of Rb, K, Th, U and depletion of Nb, Ta, Zr, Ti. The rocks have positive and variable zircon εHf(t) (+2.5 to +6.6) and whole-rock εNd(t) (+0.7 to +4.5) with two-stage model ages (TDM2Hf=2.87-2.64 Ga; TDM2Nd=2.77-2.50 Ga) similar to those of the Archean TTG-type rocks, amphibolites and diorites in the area. These evidences suggest that the high-K granitoids were produced by partial melting of juvenile crustal rocks. The Linshan high-K granitoids show relatively high whole-rock zircon saturation temperatures (694-889℃) and low Sr/Y ratios (0.27-21.1), indicating low pressure partial melting. Combined with other geological evidences, the Linshan high-K granitoids are suggested to have been produced by partial melting of the continental crust in a post-collision extensional environment after an arc-continent collision. Thus, the NCC did not amalgamate together until ca. 2.5 Ga. Compiled zircon U-Pb ages and Hf isotopes reveal that the ca. 2.5 Ga magmatism represents reworking of the continental crust.

     

  • loading
  • Anhaeusser, C. R., 2014. Archaean Greenstone Belts and Associated Granitic Rocks-A Review. Journal of African Earth Sciences, 100:684-732. https://doi.org/10.1016/j.jafrearsci.2014.07.019
    Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., et al., 2010. The Growth of the Continental Crust:Constraints from Zircon Hf-Isotope Data. Li-thos, 119(3/4):457-466. https://doi.org/10.1016/j.lithos.2010.07.024
    Boily, M., Leclair, A., Maurice, C., et al., 2009. Paleo-to Mesoarchean Basement Recycling and Terrane Definition in the Northeastern Superior Province, Québec, Canada. Precambrian Research, 168(1/2):23-44. https://doi.org/10.1016/j.precamres.2008.07.009
    Cao, Z. Q., Zhai, W. J., Jiang, X. F., et al., 2016. About 2.5 Ga Tectono-Metamorphic Event in Southern Margin of North China Craton and Its Significance. Earth Science, 41(4):570-585 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201604002.htm
    Cawthorn, R. G., Strong, D. F., Brown, P. A., 1976. Origin of Corundum-Normative Intrusive and Extrusive Magmas. Nature, 259(5539):102-104. https://doi.org/10.1038/259102a0
    Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1/2):1-26. https://doi.org/10.1017/s0263593300007720
    Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplo Granites. Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
    Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types:25 Years Later. Australian Journal of Earth Sciences, 48(4):489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
    Chen, A. X., Zhou, D., Zhang, Q. K., et al., 2018. Age, Geochemistry, and Tectonic Implications of Dulaerqiao Granite, Inner Mongolia. Journal of Earth Science, 29(1):78-92. https://doi.org/10.1007/s12583-017-0817-6
    Chen, C., Lü, X. B., Wu, C. M., et al., 2018. Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China:Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint. Journal of Earth Science, 29(1):114-129. https://doi.org/10.1007/s12583-017-0808-7
    Chen, N. H.-C., Zhao, G. C., Jahn, B. M., et al., 2017. U-Pb Zircon Ages and Hf Isotopes of ~2.5 Ga Granitoids from the Yinshan Block, North China Craton:Implications for Crustal Growth. Precambrian Research, 303:171-182. https://doi.org/10.1016/j.precamres.2017.03.016
    Chen, H. X., Wang, H. Y. C., Peng, T., et al., 2016. Petrogenesis and Geochronology of the Neoarchean-Paleoproterozoic Granitoid and Monzonitic Gneisses in the Taihua Complex:Episodic Magmatism of the Southwestern Trans-North China Orogen. Precambrian Research, 287:31-47. https://doi.org/10.1016/j.precamres.2016.10.014
    Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry:An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12):1567-1574. https://doi.org/10.1039/b206707b
    Conly, A. G., Brenan, J. M., Bellon, H., et al., 2005. Arc to Rift Transitional Volcanism in the Santa Rosalía Region, Baja California Sur, Mexico. Journal of Volcanology and Geothermal Research, 142(3/4):303-341. https://doi.org/10.1016/j.jvolgeores.2004.11.013
    Deng, H., Kusky, T., Polat, A., et al., 2016. A 2.5 Ga Fore-Arc Subduction-Accretion Complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton. Precambrian Research, 275:241-264. https://doi.org/10.1016/j.precamres.2016.01.024
    Diwu, C. R., Sun, Y., Guo, A. L., et al., 2011. Crustal Growth in the North China Craton at ~2.5Ga:Evidence from in Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 20(1):149-170. https://doi.org/10.1016/j.gr.2011.01.011
    Diwu, C. R., Sun, Y., Lin, C. L., et al., 2010. LA-(MC)-ICPMS U-Pb Zircon Geochronology and Lu-Hf Isotope Compositions of the Taihua Complex on the Southern Margin of the North China Craton. Chinese Science Bulletin, 55(23):2557-2571. https://doi.org/10.1007/s11434-010-3273-6
    Dong, M. M., Wang, C. M., Yao, E. Y., et al., 2018. LA-ICP-MS Zircon U-Pb Geochronology of the Taihua Complex in Lushan Area of Henan Province and Its Geological Implications. Acta Petrologica et Miner-alogica, 37(1):1-18 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201801001.htm
    Eby, G. N., 1990. The A-Type Granitoids:A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2):115-134. https://doi.org/10.1016/0024-4937(90)90043-z
    Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petro-genetic and Tectonic Implications. Geology, 20(7):641. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
    Faure, M., Trap, P., Lin, W., et al., 2007. Polyorogenic Evolution of the Paleoproterozoic Trans-North China Belt-New Insights from the Lüliangshan-Hengshan-Wutaishan and Fuping Massifs. Episodes, 30(2):95-106 http://www.cqvip.com/QK/86983X/200702/25064961.html
    Farahat, E. S., Mohamed, H. A., Ahmed, A. F., et al., 2007. Origin of I-And A-Type Granitoids from the Eastern Desert of Egypt:Implications for Crustal Growth in the Northern Arabian-Nubian Shield. Journal of African Earth Sciences, 49(1/2):43-58. https://doi.org/10.1016/j.jafrearsci.2007.07.002
    Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033
    Frost, C. D., Frost, B. R., Kirkwood, R., et al., 2006. The Tonalite-Trondhjemite-Granodiorite (TTG) to Granodiorite-Granite (GG) Tran-sition in the Late Archean Plutonic Rocks of the Central Wyoming Province. Canadian Journal of Earth Sciences, 43(10):1419-1444. https://doi.org/10.1139/e06-082
    Frost, C. D., McLaughlin, J. F., Frost, B. R., et al., 2017. Hadean Origins of Paleoarchean Continental Crust in the Central Wyoming Province. Ge-ological Society of America Bulletin, 129(3/4):259-280. https://doi.org/10.1130/b31555.1
    Gardiner, N. J., Hickman, A. H., Kirkland, C. L., et al., 2017. Processes of Crust Formation in the Early Earth Imaged through Hf Isotopes from the East Pilbara Terrane. Precambrian Research, 297:56-76. https://doi.org/10.1016/j.precamres.2017.05.004
    Geng, J. Z., Qiu, K. F., Gou, Z. Y., et al., 2017. Tectonic Regime Switchover of Triassic Western Qinling Orogen:Constraints from LA-ICP-MS Zircon U-Pb Geochronology and Lu-Hf Isotope of Dangchuan Intrusive Complex in Gansu, China. Geochemistry, 77(4):637-651. https://doi.org/10.1016/j.chemer.2017.05.001
    Geng, Y. S., Du, L. L., Ren, L. D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton:Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2/3):517-529. https://doi.org/10.1016/j.gr.2011.07.006
    Guo, L. S., Liu, S. W., Liu, Y. L., et al., 2008. Zircon Hf Isotopic Features of TTG Gneisses and Formation Environment of Precambrian Sushui Complex in Zhongtiao Moutains. Acta Petrologica Sinica, 24(1):139-148 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200801012.htm
    He, X. H., Zhong, H., Zhao, Z. F., et al., 2018. U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyries:Implication for the Genesis of Early Cretaceous Felsic In-trusions in East Qinling. Journal of Earth Science, 29(4):920-938. https://doi.org/10.1007/s12583-018-0788-2
    Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICPMS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English Abstract)
    Huang, Q. W., Shi, Y., Liu, M. H., et al., 2018. Geochronology and Geochemistry of the Shahewan and Caoping Granites in South Qinling and Their Significance. Earth Science, 43(Suppl. 2):83-101. https://doi.org/10.3799/dqkx.2018.316 (in Chinese with English Abstract)
    Huang, X. L., Wilde, S. A., Yang, Q. J., et al., 2012. Geochronology and Petrogenesis of Gray Gneisses from the Taihua Complex at Xiong'er in the Southern Segment of the Trans-North China Orogen:Implications for Tectonic Transformation in the Early Paleoproterozoic. Lithos, 134/135:236-252. https://doi.org/10.1016/j.lithos.2012.01.004
    Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen across the Archean-Proterozoic Boundary. Precambrian Research, 233:337-357. https://doi.org/10.1016/j.precamres.2013.05.016
    Jia, X. L., 2016. Research for Taihua Complex in Xiaoqinling and Lushan Areas: Implications for the Evolution of the Crystalline Basement in Southern North China Craton: [Dissertation]. Northwest University, Xi'an. 25-170 (in Chinese)
    Ju, Y. J., Zhang, X. L., Lai, S. C., et al., 2017. Permian-Triassic High-ly-Fractionated Ⅰ-Type Granites from the Southwestern Qaidam Basin (NW China):Implications for the Evolution of the Paleo-Tethys in the Eastern Kunlun Orogenic Belt. Journal of Earth Science, 28(1):51-62. https://doi.org/10.1007/s12583-017-0745-5
    Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4):383-397. https://doi.org/10.1016/s1367-9120(03)00071-3
    Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1):26-35. https://doi.org/10.1016/j.gr.2011.01.004
    Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis:A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162:387-432. https://doi.org/10.1016/j.earscirev.2016.09.002
    Kumar, K. V., Ernst, W. G., Leelanandam, C., et al., 2011. Origin of ~2.5 Ga Potassic Granite from the Nellore Schist Belt, SE India:Textural, Cathodoluminescence, and SHRIMP U-Pb Data. Contributions to Mineralogy and Petrology, 162(4):867-888. https://doi.org/10.1007/s00410-011-0629-0
    Li, J. H., Niu, X. L., Kusky, T. M., et al., 2004. Neoarchean Plate Tectonic Evolution of North China and Its Correlation with Global Cratonic Blocks. Earth Science Frontiers, 11(3):273-283 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200403034.htm
    Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥ 3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4):339-342. https://doi.org/10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2
    Liu, D. Y., Wan, Y. S., Wu, J. S., et al., 2007. Eoarchean Rocks and Zircons in the North China Craton. In: van Kranendonk, M., Smithies, R. H., Bennett, V., eds., Earth's Oldest Rocks. Developments in Precambrian Geology, vol. 15. Elsevier, Amsterdam. 251-273. https://doi.org/10.1016/S0166-2635(07)15035-0
    Liu, D. Y., Wilde, S. A., Wan, Y. S., et al., 2009. Combined U-Pb, Hafnium and Oxygen Isotope Analysis of Zircons from Meta-Igneous Rocks in the Southern North China Craton Reveal Multiple Events in the Late Mesoarchean-Early Neoarchean. Chemical Geology, 261(1/2):140-154. https://doi.org/10.1016/j.chemgeo.2008.10.041
    Liu, D. Y., Wilde, S. A., Wan, Y. S., et al., 2008. New U-Pb and Hf Isotopic Data Confirm Anshan as the Oldest Preserved Segment of the North China Craton. American Journal of Science, 308(3):200-231. https://doi.org/10.2475/03.2008.02
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2):537-571. https://doi.org/10.1093/petrology/egp082
    Lu, J. S., Wang, G. D., Wang, H., et al., 2014. Metamorphic Evolution of the Lushan Terrane in the Precambrian Taihua Complex, Henan Province. Acta Petrologica Sinica, 30(10):3062-3074 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410020
    Lu, J. S., Wang, G. D., Wang, H., et al., 2015. Zircon SIMS U-Pb Geo-chronology of the Lushan Terrane:Dating Metamorphism of the Southwestern Terminal of the Palaeoproterozoic Trans-North China Orogen. Geological Magazine, 152(2):367-377. https://doi.org/10.1017/s0016756814000430
    Ludwig, K. R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of American Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
    Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., et al., 2008. Hafnium Isotope Characterization of the GJ-1 Zircon Reference Material by So-lution and Laser-Ablation MC-ICPMS. Chemical Geology, 255(1/2):231-235. https://doi.org/10.1016/j.chemgeo.2008.06.040
    Moyen, J. F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148:312-336. https://doi.org/10.1016/j.lithos.2012.06.010
    Patchett, P. J., Tatsumoto, M., 1980. Lu-Hf Total-Rock Isochron for the Eucrite Meteorites. Nature, 288(5791):571-574. https://doi.org/10.1038/288571a0
    Patiño Douce, A. E., 2004. Vapor-Absent Melting of Tonalite at 15-32 kbar. Journal of Petrology, 46(2):275-290. https://doi.org/10.1093/petrology/egh071
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
    Pfänder, J. A., Münker, C., Stracke, A., et al., 2007. Nb/Ta and Zr/Hf in Ocean Island Basalts-Implications for Crust-Mantle Differentiation and the Fate of Niobium. Earth and Planetary Science Letters, 254(1/2):158-172. https://doi.org/10.1016/j.epsl.2006.11.027
    Qiu, J. S., Xiao, E., Hu, J., et al., 2008. Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes. Acta Petrologica Sinica, 24(11):2468-2484 (in Chinese with English Abstract)
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., Treatise on Geochemistry. The Crust, vol. 3. Elsevier, Amsterdam. 1-64
    Santosh, M., 2010. Assembling North China Craton within the Columbia Supercontinent:The Role of Double-Sided Subduction. Precambrian Research, 178(1/2/3/4):149-167. https://doi.org/10.1016/j.precamres.2010.02.003
    Shen, Q. H., Qian, X. L., 1995. Archean Rock Associations, Episodes and Tectonic Evolution of China. Acta Geoscientia Sinica, 16(2):113-120 (in Chinese with English Abstract)
    Sun, Q. Y., Zhou, Y. Y., Wang, W., et al., 2017. Formation and Evolution of the Paleoproterozoic Meta-Mafic and Associated Supracrustal Rocks from the Lushan Taihua Complex, Southern North China Craton:Insights from Zircon U-Pb Geochronology and Whole-Rock Geochemistry. Precambrian Research, 303:428-444. https://doi.org/10.1016/j.precamres.2017.05.018
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tang, L., Santosh, M., 2018. Neoarchean Granite-Greenstone Belts and Related Ore Mineralization in the North China Craton:An Overview. Geoscience Frontiers, 9(3):751-768. https://doi.org/10.1016/j.gsf.2017.04.002
    Tian, W., Liu, S. W., Liu, C. H., et al., 2006. Zircon SHRIMP Geochronology and Geochemistry of TTG Rocks in Sushui Complex from Zhongtiao Mountains with Its Geological Implications. Progress in Natural Science, 16(5):492-500. https://doi.org/10.1080/10020070612330025
    Trap, P., Faure, M., Lin, W., et al., 2007. Late Paleoproterozoic (1 900-1 800 Ma) Nappe Stacking and Polyphase Deformation in the Hengshan-Wutaishan Area:Implications for the Understanding of the Trans-North-China Belt, North China Craton. Precambrian Research, 156(1/2):85-106. https://doi.org/10.1016/j.precamres.2007.03.001
    Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen:Toward a Comprehensive Model. Precambrian Research, 222/223:191-211. https://doi.org/10.1016/j.precamres.2011.09.008
    Verma, S. K., Verma, S. P., Oliveira, E. P., et al., 2016. LA-SF-ICP-MS Zircon U-Pb Geochronology of Granitic Rocks from the Central Bundelkhand Greenstone Complex, Bundelkhand Craton, India. Journal of Asian Earth Sciences, 118:125-137. https://doi.org/10.1016/j.jseaes.2015.12.021
    Wan, Y. S., Liu, D. Y., Wang, S. Y., et al., 2009. Early Precambrian Crustal Evolution in the Dengfeng Area, Henan Province (Eastern China):Constraints from Geochemistry and SHRIMP U-Pb Zircon Dating. Acta Geologica Sinica, 83(7):982-999 (in Chinese with English Abstract)
    Wan, Y. S., Liu, D. Y., Wang, W., et al., 2011. Provenance of Meso-to Neoproterozoic Cover Sediments at the Ming Tombs, Beijing, North China Craton:An Integrated Study of U-Pb Dating and Hf Isotopic Measurement of Detrital Zircons and Whole-Rock Geochemistry. Gondwana Research, 20(1):219-242. https://doi.org/10.1016/j.gr.2011.02.009
    Wan, Y. S., Dong, C. Y., Liu, D. Y., et al., 2012. Zircon Ages and Geo-chemistry of Late Neoarchean Syenogranites in the North China Craton:A Review. Precambrian Research, 222/223:265-289. https://doi.org/10.1016/j.precamres.2011.05.001
    Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2015. Some Progress in the Study of Archean Basement of the North China Craton. Acta Geoscientica Sinica, 36(6):685-700 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201506001.htm
    Wang, A. D., Liu, Y. C., 2012. Neoarchean (2.5-2.8 Ga) Crustal Growth of the North China Craton Revealed by Zircon Hf Isotope:A Synthesis. Geoscience Frontiers, 3(2):147-173. https://doi.org/10.1016/j.gsf.2011.10.006
    Wang, G. D., Wang, H. Y. C., Chen, H. X., et al., 2017. Geochronology and Geochemistry of the TTG and Potassic Granite of the Taihua Complex, Mts. Huashan:Implications for Crustal Evolution of the Southern North China Craton. Precambrian Research, 288:72-90. https://doi.org/10.1016/j.precamres.2016.11.006
    Wang, Z. J., Shen, Q. H., Wan, Y. S., 2004. SHRIMP U-Pb Zircon Geo-chronology of the Shipaihe "Metadiorite Mass" from Dengfeng County, Henan Province. Acta Geoscientica Sinica, 25(3):295-298 (in Chinese with English Abstract)
    Watkins, J. M., Clemens, J. D., Treloar, P. J., 2007. Archaean TTGs as Sources of Younger Granitic Magmas:Melting of Sodic Metatonalites at 0.6-1.2 GPa. Contributions to Mineralogy and Petrology, 154(1):91-110. https://doi.org/10.1007/s00410-007-0181-0
    Windley, B. F., 1995. The Evolving Continents (Third Edition). John Wiley and Sons, Chichester. 377-385, 459-462
    Wu, F. Y., Zhao, G. C., Wilde, S. A., et al., 2005. Nd Isotopic Constraints on Crustal Formation in the North China Craton. Journal of Asian Earth Sciences, 24(5):523-545. https://doi.org/10.1016/j.jseaes.2003.10.011
    Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2):105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003
    Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussion on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200706000.htm
    Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites:Recognition and Research. Science China Earth Sciences, 60(7):1201-1219. https://doi.org/10.1007/s11430-016-5139-1
    Xu, H. J., Zhang, J. F., 2018. Zircon Geochronological Evidence for Partic-ipation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. Journal of Earth Science, 29(1):30-42. https://doi.org/10.1007/s12583-017-0805-x
    Yang, Y. H., Zhang, H. F., Chu, Z. Y., et al., 2010. Combined Chemical Separation of Lu, Hf, Rb, Sr, Sm and Nd from a Single Rock Digest and Precise and Accurate Isotope Determinations of Lu-Hf, Rb-Sr and Sm-Nd Isotope Systems Using Multi-Collector ICP-MS and TIMS. In-ternational Journal of Mass Spectrometry, 290(2/3):120-126. https://doi.org/10.1016/j.ijms.2009.12.011
    Yu, S. Q., Liu, S. W., Tian, W., et al., 2006. SHRIMP Zircon U-Pb Chronology and Geochemistry of the Henglingguan and Beiyu Granitoids in the Zhongtiao Mountains, Shanxi Province. Acta Geologica Sinica-English Edition, 80(6):912-924. https://doi.org/10.1111/j.1755-6724.2006.tb00312.x
    Zeh, A., Gerdes, A., Barton, J. M. Jr., 2009. Archean Accretion and Crustal Evolution of the Kalahari Craton-The Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc. Journal of Petrology, 50(5):933-966. https://doi.org/10.1093/petrology/egp027
    Zen, E. A., 1986. Aluminum Enrichment in Silicate Melts by Fractional Crystallization:Some Mineralogic and Petrographic Constraints. Journal of Petrology, 27(5):1095-1117. https://doi.org/10.1093/petrology/27.5.1095
    Zhai, M. G., Bian, A. G., Zhao, T. P., 2000. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and Its Breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China Series D:Earth Sciences, 43(Suppl. 1):219-232. https://doi.org/10.1007/bf02911947
    Zhai, M. G., Guo, J. H., Liu, W. J., 2005. Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton:A Review. Journal of Asian Earth Sciences, 24(5):547-561. https://doi.org/10.1016/j.jseaes.2004.01.018
    Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview. Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005
    Zhai, M. G., 2014. Multi-Stage Crustal Growth and Cratonization of the North China Craton. Geoscience Frontiers, 5(4):457-469. https://doi.org/10.1016/j.gsf.2014.01.003
    Zhang, H., Sun, F. Y., 2012. U-Pb Geochronology and Hf Isotope Geo-chemistry of the Zircon from Huping Complex in Tongshan Area of Zhongtiaoshan Mountains and Its Geologic Implications. Journal of Jilin University (Earth Science Edition), 42(3):733-746 (in Chinese with English Abstract)
    Zhang, J., Zhang, H. F., Lu, X. X., 2013. Zircon U-Pb Age and Lu-Hf Isotope Constraints on Precambrian Evolution of Continental Crust in the Songshan Area, the South-Central North China Craton. Precambrian Research, 226:1-20. https://doi.org/10.1016/j.precamres.2012.11.015
    Zhang, R. Y., Zhang, C. L., Sun, Y., 2013. Crustal Reworking in the North China Craton at ~2.5 Ga:Evidence from Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the TTG Gneisses in the Zhongtiao Mountain. Acta Petrologica Sinica, 29(7):2265-2280 (in Chinese with English Abstract)
    Zhang, R. Y., 2015. The Composition and Evolution of the Sushui Complex in the Zhongtiao Mountains, the South of North China Craton: [Dissertation]. Northwest University, Xi'an. 29-140 (in Chinese with English Abstract)
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Re-view, 40(8):706-721. https://doi.org/10.1080/00206819809465233
    Zhao, G. C., Sun, M., Wilde, S. A., 2002. Major Tectonic Units of the North China Craton and Their Paleoproterozoic Assembly. Science in China (Earth Sciences), 32(7):538-549 (in Chinese) http://d.wanfangdata.com.cn/Periodical_zgkx-ed200301003.aspx
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002
    Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton:Review and Tectonic Implications. Gondwana Research, 23(4):1207-1240. https://doi.org/10.1016/j.gr.2012.08.016
    Zhao, J. H., Zhou, M. F., 2009. Melting of Newly Formed Mafic Crust for the Formation of Neoproterozoic Ⅰ-Type Granite in the Hannan Region, South China. The Journal of Geology, 117(1):54-70. https://doi.org/10.1086/593321
    Zhao, J. H., Zhou, M. F., Zheng, J. P., 2013a. Constraints from Zircon U-Pb Ages, O and Hf Isotopic Compositions on the Origin of Neoproterozoic Peraluminous Granitoids from the Jiangnan Fold Belt, South China. Contributions to Mineralogy and Petrology, 166(5):1505-1519. https://doi.org/10.1007/s00410-013-0940-z
    Zhao, J. H., Zhou, M. F., Zheng, J. P., et al., 2013b. Neoproterozoic Tonalite and Trondhjemite in the Huangling Complex, South China:Crustal Growth and Reworking in a Continental Arc Environment. American Journal of Science, 313(6):540-583. https://doi.org/10.2475/06.2013.02
    Zhao, Y., Li, N. B., Jiang, Y. H., et al., 2017. Petrogenesis of the Late Archean (~2.5 Ga) Na-and K-Rich Granitoids in the Zhongtiao-Wangwu Region and Its Tectonic Significance for the Crustal Evolution of the North China Craton. Precambrian Research, 303:590-603. https://doi.org/10.1016/j.precamres.2017.07.037
    Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2004.3.6 Ga Lower Crust in Central China:New Evidence on the Assembly of the North China Craton. Geology, 32(3):229-232. https://doi.org/10.1130/g20133.1
    Zhou, Y. Y., Zhao, T. P., Zhai, M. G., et al., 2014. Petrogenesis of the Archean Tonalite-Trondhjemite-Granodiorite (TTG) and Granites in the Lushan Area, Southern Margin of the North China Craton:Implications for Crustal Accretion and Transformation. Precambrian Research, 255:514-537. https://doi.org/10.1016/j.precamres.2014.06.023
    Zhou, Y. Y., Zhao, T. P., Sun, Q. Y., et al., 2017. Petrogenesis of the Neoarchean Diorite-Granite Association in the Wangwushan Area, Southern North China Craton:Implications for Continental Crust Evolution. Precambrian Research. https://doi.org/10.1016/j.precamres.2017.12.040
    Zhou, Y. Y., Zhao, T. P., Sun, Q. Y., et al., 2018. Geochronological and Geochemical Constraints on the Petrogenesis of the 2.6-2.5 Ga Amphibolites, Low-and High-Al TTGs in the Wangwushan Area, Southern North China Craton:Implications for the Neoarchean Crustal Evolution. Precambrian Research, 307:93-114. https://doi.org/10.1016/j.precamres.2018.01.013
    Zhu, D. C., Mo, X. X., Wang, L. Q., et al., 2009. Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Zayu Area of Eastern Gangdese, Tibet:Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science in China Series D:Earth Sciences, 52(9):1223-1239. https://doi.org/10.1007/s11430-009-0132-x
    Zhu, X. Y., Zhai, M. G., Chen, F. K., et al., 2013. ~2.7-Ga Crustal Growth in the North China Craton:Evidence from Zircon U-Pb Ages and Hf Isotopes of the Sushui Complex in the Zhongtiao Terrane. Journal of Geology, 121(3):239-254. https://doi.org/10.1086/669977
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(970) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return