Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 3
Jun 2019
Turn off MathJax
Article Contents
Guisheng Zhou, Jianxin Zhang, Yunshuai Li, Zenglong Lu, Xiaohong Mao, Xia Teng. Metamorphic Evolution and Tectonic Implications of the Granulitized Eclogites from the Luliangshan Terrane in the North Qaidam Ultrahigh Pressure Metamorphic Belt, NW China: New Constraints from Phase Equilibrium Modeling. Journal of Earth Science, 2019, 30(3): 585-602. doi: 10.1007/s12583-019-0897-6
Citation: Guisheng Zhou, Jianxin Zhang, Yunshuai Li, Zenglong Lu, Xiaohong Mao, Xia Teng. Metamorphic Evolution and Tectonic Implications of the Granulitized Eclogites from the Luliangshan Terrane in the North Qaidam Ultrahigh Pressure Metamorphic Belt, NW China: New Constraints from Phase Equilibrium Modeling. Journal of Earth Science, 2019, 30(3): 585-602. doi: 10.1007/s12583-019-0897-6

Metamorphic Evolution and Tectonic Implications of the Granulitized Eclogites from the Luliangshan Terrane in the North Qaidam Ultrahigh Pressure Metamorphic Belt, NW China: New Constraints from Phase Equilibrium Modeling

doi: 10.1007/s12583-019-0897-6
Funds:

China Geological Survey DD20160022

This work was financially supported by the National Natural Science Foundation of China 41572180

This work was financially supported by the National Natural Science Foundation of China 41630207

More Information
  • Corresponding author: Jianxin Zhang
  • Received Date: 12 Nov 2018
  • Accepted Date: 05 Jan 2019
  • Publish Date: 01 Jun 2019
  • The granulitized eclogites from the Luliangshan terrane of the North Qaidam UHP metamorphic belt occur as lenses within pelitic gneisses and orthogneisses. Combined petrologic data and phase equilibrium modeling indicate a multi-stage metamorphic history of the granulitized eclogites:(1) an earlier eclogite facies metamorphism (P>18.5 kbar, T> 830℃) is deduced from omphacite relics in the matrix and rare omphacite inclusions within garnet. The possible assemblage is garnet+omphacite+rutile+ quartz; (2) the early stage of high pressure granulite facies assemblages (garnet+clinopyroxene+ plagioclase+rutile+quartz+liquid) developed in the early decompression process has a P-T regime of 17.5 kbar and 852-858℃, constrained by plagioclase and clinopyroxene inclusions in garnet. The late stage of high pressure granulite assemblages (garnet+clinopyroxene+amphibole+plagioclase+rutile+quartz+liquid) records an isothermal decompression process with the pressure successively declining from 17.5 to 14.7 kbar and to 11.3 kbar at 858℃; (3) the later medium pressure granulite facies assemblage (garnet+ orthopyroxene+clinopyroxene+amphibole+plagioclase+ilmenite+liquid+quartz) indicates a drop in pressure and rise in temperature at P-T conditions of 7.6-7.7 kbar and 878-883℃; (4) retrogressive amphibolite facies stage, which is represented by amphibole+plagioclase kelyphitic rims around garnet, formed under conditions of < 5 kbar and < 650℃. The preservation of medium pressure granulite facies assemblage and the garnet composition feature constrain a following isobaric cooling path during late exhumation. This process suggests a clockwise P-T path and indicates that the granulitized eclogites record a high grade "Barrovian" metamorphic overprint at the middle-lower crust during exhumation. The present data show that the Luliangshan terrane is a "hot" HP-UHP terrane.

     

  • loading
  • Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphib-olites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2):365-401. https://doi.org/10.1093/petrology/32.2.365
    Cai, J., Liu, F. L., Liu, P. H., et al., 2014. Metamorphic P-T Path and Tectonic Implications of Pelitic Granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 241:161-184. https://doi.org/10.1016/j.precamres.2013.11.012
    Cao, Y. T., Liu, L., Chen, D. L., et al., 2017. Partial Melting during Exhumation of Paleozoic Retrograde Eclogite in North Qaidam, Western China. Journal of Asian Earth Sciences, 148:223-240. https://doi.org/10.1016/j.jseaes.2017.09.009
    Chen, D. L., Sun, Y., Liu, L., et al., 2005. Metamorphic Evolution of the Yuka Eclogite in the North Qaidam, NW China:Evidences from the Compositional Zonation of Garnet and Reaction Texture in the Rock. Acta Petrologica Sinica, 21(4):1039-1048 (In Chinese with English Abstract) http://cn.bing.com/academic/profile?id=bab5cb8f6eee7a6e34f27e7ab9ace373&encoded=0&v=paper_preview&mkt=zh-cn
    Chen, X., Xu, R. K., Zheng, Y. Y., et al., 2018. Petrology and Geochemistry of High Niobium Eclogite in the North Qaidam Orogen, Western China:Implications for an Eclogite Facies Metamorphosed Island Arc Slice. Journal of Asian Earth Sciences, 164:380-397. https://doi.org/10.1016/j.jseaes.2018.07.003
    Cruciani, G., Franceschelli, M., Groppo, C., et al., 2012. Metamorphic Evolution of Non-Equilibrated Granulitized Eclogite from Punta de Li Tulchi (Variscan Sardinia) Determined through Texturally Controlled Thermodynamic Modelling. Journal of Metamorphic Geology, 30(7):667-685. https://doi.org/10.1111/j.1525-1314.2012.00993.x
    Frost, B. R., Chacko, T., 1989. The Granulite Uncertainty Principle:Limitations on Thermobarometry in Granulites. Journal of Geology, 97(4):435-450. https://doi.org/10.1086/629321
    Green, D. H., Ringwood, A. E., 1967. An Experimental Investigation of the Gabbro to Eclogite Transformation and Its Petrological Applications. Geochimica et Cosmochimica Acta, 31(5):767-833. https://doi.org/10.1016/s0016-7037(67)80031-0
    Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9):845-869. https://doi.org/10.1111/jmg.12211
    Groppo, C., Lombardo, B., Rolfo, F., et al., 2007. Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range (Eastern Himalayas). Journal of Metamorphic Geology, 25(1):51-75. https://doi.org/10.1111/j.1525-1314.2006.00678.x
    Groppo, C., Rolfo, F., Liu, Y. C., et al., 2015. P-T Evolution of Elusive UHP Eclogites from the Luotian Dome (North Dabie Zone, China):How far can the Thermodynamic Modeling Lead Us?. Lithos, 226:183-200. https://doi.org/10.1016/j.lithos.2014.11.013
    Harley, S. L., 1989. The Origins of Granulites:A Metamorphic Perspective. Geological Magazine, 126(3):215-247. https://doi.org/10.1017/s0016756800022330
    Hensen, B. J., Green, D. H., 1971. Experimental Study of the Stability of Cordierite and Garnet in Pelitic Compositions at High Pressures and Temperatures. Contributions to Mineralogy and Petrology, 33(4):309-330. https://doi.org/10.1007/bf00382571
    Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3):309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
    Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3):333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
    Holland, T. J. B., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations:An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4):492-501. https://doi.org/10.1007/s00410-003-0464-z
    Korhonen, F. J., Brown, M., Clark, C., et al., 2013. Osumilite-Melt Interactions in Ultrahigh Temperature Granulites:Phase Equilibria Modelling and Implications for the P-T-t Evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31(8):881-907. https://doi.org/10.1111/jmg.12049
    Korhonen, F. J., Powell, R., Stout, J. H., 2012. Stability of Sapphirine+Quartz in the Oxidized Rocks of the Wilson Lake Terrane, Labrador:Calculated Equilibria in NCKFMASHTO. Journal of Metamorphic Geology, 30(1):21-36. https://doi.org/10.1111/j.1525-1314.2011.00954.x
    Korhonen, F. J., Saw, A. K., Clark, C., et al., 2011. New Constraints on UHT Metamorphism in the Eastern Ghats Province through the Application of Phase Equilibria Modelling and in situ Geochronology. Gondwana Re-search, 20(4):764-781. https://doi.org/10.1016/j.gr.2011.05.006
    Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles; Report of the Subcommittee on Amphiboles of the Inter-national Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(405):295-310. https://doi.org/10.1180/minmag.1997.061.405.13
    Li, X. W., Wei, C. J., 2016. Phase Equilibria Modelling and Zircon Age Dating of Pelitic Granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 34(6):595-615. https://doi.org/10.1111/jmg.12195
    Li, Y. S., Zhang, J. X., Mostofa, K. M. G., et al., 2018. Petrogenesis of Carbonatites in the Luliangshan Region, North Qaidam, Northern Tibet, China:Evidence for Recycling of Sedimentary Carbonate and Mantle Metasomatism within a Subduction Zone. Lithos, 322:148-165. https://doi.org/10.1016/j.lithos.2018.10.010
    Liao, X. Y., Liu, L., Wang, Y. W., et al., 2016. Multi-Stage Metamorphic Evolution of Retrograde Eclogite with a Granulite-Facies Overprint in the Zhaigen Area of the North Qinling Belt, China. Gondwana Research, 30:79-96. https://doi.org/10.1016/j.gr.2015.09.012
    Meng, F. C., Zhang, J. X., 2008. Contemporaneous of Early Palaeozoic Granite and High Temperature Metamorphism, North Qaidam Mountains, Western China. Acta Petrologica Sinica, 24(7):1585-1594 (in Chinese with English Abstract) http://cn.bing.com/academic/profile?id=c4758872b2cdd9d8315d64bd6f05f2f9&encoded=0&v=paper_preview&mkt=zh-cn
    Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1):55-76. https://doi.org/10.1007/bf01226262
    Morrissey, L. J., Hand, M., Raimondo, T., et al., 2014. Long-Lived High-T, Low-P Granulite Facies Metamorphism in the Arunta Region, Central Australia. Journal of Metamorphic Geology, 32(1):25-47. https://doi.org/10.1111/jmg.12056
    Nakamura, D., Hirajima, T., 2000. Granulite-Facies Overprinting of Ultrahigh-Pressure Metamorphic Rocks, Northeastern Su-Lu Region, Eastern China. Journal of Petrology, 41(4):563-582. https://doi.org/10.1093/petrology/41.4.563
    O'Brien, P. J., 1999. Asymmetric Zoning Profiles in Garnet from HP-HT Granulite and Implications for Volume and Grain-Boundary Diffusion. Mineralogical Magazine, 63(2):227-238. https://doi.org/10.1180/002646199548457
    O'Brien, P. J., 1997. Garnet Zoning and Reaction Textures in Overprinted Eclogites, Bohemian Massif, European Variscides:A Record of Their Thermal History during Exhumation. Lithos, 41(1/2/3):119-133. https://doi.org/10.1016/s0024-4937(97)82008-7
    Powell, R., Holland, T. J. B., 2008. On Thermobarometry. Journal of Metamorphic Geology, 26(2):155-179. https://doi.org/10.1111/j.1525-1314.2007.00756.x
    Powell, R., Holland, T. J. B., Worley, B., 1998. Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations, with Examples Using THERMOCALC. Journal of Metamorphic Geology, 16(4):577-588. https://doi.org/10.1111/j.1525-1314.1998.00157.x
    Rapp, R. P., Shimizu, N., Norman, M. D., 2003. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425(6958):605-609. https://doi.org/10.1038/nature02031
    Ren, Y. F., Chen, D. L., Kelsey, D. E., et al., 2018. Metamorphic Evolution of a Newly Identified Mesoproterozoic Oceanic Slice in the Yuka Terrane and Its Implications for a Multi-Cyclic Orogenic History of the North Qaidam UHPM Belt. Journal of Metamorphic Geology, 36(4):463-488. https://doi.org/10.1111/jmg.12300
    Ren, Y. F., Chen, D. L., Kelsey, D. E., et al., 2017. Petrology and Geochemistry of the Lawsonite (Pseudomorph)-Bearing Eclogite in Yuka Terrane, North Qaidam UHPM Belt:An Eclogite Facies Metamorphosed Oceanic Slice. Gondwana Research, 42:220-242. https://doi.org/10.1016/j.gr.2016.10.011
    Rushmer, T., 1991. Partial Melting of Two Amphibolites:Contrasting Experimental Results under Fluid-Absent Conditions. Contributions to Mineralogy and Petrology, 107(1):41-59. https://doi.org/10.1007/bf00311184
    Rushmer, T., 1993. Experimental High-Pressure Granulites:Some Applications to Natural Mafic Xenolith Suites and Archean Granulite Terranes. Geology, 21(5):411-414.https://doi.org/10.1130/0091-7613(1993)021<0411:ehpgsa>2.3.co;2 doi: 10.1130/0091-7613(1993)021<0411:ehpgsa>2.3.co;2
    Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa:Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4):394-409. https://doi.org/10.1007/bf00307273
    Shimizu, H., Tsunogae, T., Santosh, M., et al., 2013. Phase Equilibrium Modelling of Palaeoproterozoic Ultrahigh-Temperature Sapphirine Granulite from the Inner Mongolia Suture Zone, North China Craton:Implications for Counterclockwise P-T Path. Geological Journal, 48(5):456-466. https://doi.org/10.1002/gj.2504
    Song, S. G., Yang, J. S., Xu, Z. Q., et al., 2003. Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 21(6):631-644. https://doi.org/10.1046/j.1525-1314.2003.00469.x
    Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2006. Evolution from Oceanic Subduction to Continental Collision:A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3):435-455. https://doi.org/10.1093/petrology/egi080
    Song, S. G., Niu, Y. L., Su, L., et al., 2014. Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling:The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 129:59-84. https://doi.org/10.1016/j.earscirev.2013.11.010
    Song, S. G., Su, L., Li, X. H., et al., 2012. Grenville-Age Orogenesis in the Qaidam-Qilian Block:The Link between South China and Tarim. Pre-cambrian Research, 220/221:9-22. https://doi.org/10.1016/j.precamres.2012.07.007
    Song, S. G., Su, L., Li, X. H., et al., 2010. Tracing the 850-Ma Continental Flood Basalts from a Piece of Subducted Continental Crust in the North Qaidam UHPM Belt, NW China. Precambrian Research, 183(4):805-816. https://doi.org/10.1016/j.precamres.2010.09.008
    Song, S. G., zhang, L. F., Niu, Y. L., 2004. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China. American Mineralogist, 89(8/9):1330-1336. https://doi.org/10.2138/am-2004-8-922
    Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2005. Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau:A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1/2):99-118. https://doi.org/10.1016/j.epsl.2005.02.036
    Walsh, E. O., Hacker, B. R., 2004. The Fate of Subducted Continental Margins:Two-Stage Exhumation of the High-Pressure to Ultrahigh-Pressure Western Gneiss Region, Norway. Journal of Metamorphic Geology, 22(7):671-687. https://doi.org/10.1111/j.1525-1314.2004.00541.x
    Wei, C. J., Guan, X., Dong, J., 2017. HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGs. Acta Petrologica Sinica, 33(5):1381-1404 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705002
    White, R. W., Powell, R., 2002. Melt Loss and the Preservation of Granulite Facies Mineral Assemblages. Journal of Metamorphic Geology, 20(7):621-632. https://doi.org/10.1046/j.1525-1314.2002.00206_20_7.x
    White, R. W., Powell, R., Holland, T. J. B., et al., 2014. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3):261-286. https://doi.org/10.1111/jmg.12071
    White, R. W., Powell, R., Holland, T. J. B., et al., 2000. The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions:Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5):497-511. https://doi.org/10.1046/j.1525-1314.2000.00269.x
    Yang, J. J., Zhu, H., Deng, J. F., et al., 1994. The Discovery of Garnet Peridotite in Northem Chaidam Mountains and Its Significance. Acta Petrrologica et Mineralogica, 13(2):97-105 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400551919
    Yang, J. S., Xu, Z. Q., Zhang, J. X., et al., 2002. Early Palaeozoic North Qaidam UHP Metamorphic Belt on the North-Eastern Tibetan Plateau and a Paired Subduction Model. Terra Nova, 14(5):397-404. https://doi.org/10.1046/j.1365-3121.2002.00438.x
    Yang, J. S., Xu, Z. Q., Li, H. B., et al., 1998. The Eclogites have been Found in the Northern Qaidam Basin, Western China. Chinese Science Bulletin, 43(14):1544-1549 (in Chinese)
    Yang, J. S., Xu, Z. Q., Song, S. G., et al., 2001. Discovery of Coesite in the North Qaidam Early Palaeozoic Ultrahigh Pressure (UHP) Metamorphic Belt, NW China. Acta Geologica Sinica, 75(2):175-179 (in Chinese with English Abstract) http://cn.bing.com/academic/profile?id=38beaced98ef2d1d75771c8dcd5ebc56&encoded=0&v=paper_preview&mkt=zh-cn
    Yang, J. Z., Liu, X. C., Wu, Y. B., et al., 2015. Zircon Record of Ocean-Continent Subduction Transition Process of Dulan UHPM Belt, North Qaidam. Journal of Earth Science, 26(5):617-625. https://doi.org/10.1007/s12583-015-0585-0
    Yin, C. Q., Zhao, G. C., Wei, C. J., et al., 2014. Metamorphism and Partial Melting of High-Pressure Pelitic Granulites from the Qianlishan Com-plex:Constraints on the Tectonic Evolution of the Khondalite Belt in the North China Craton. Precambrian Research, 242:172-186. https://doi.org/10.1016/j.precamres.2013.12.025
    Yu, S. Y., Zhang, J. X., Li, H. K., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Eclogites and Their Host Gneisses in the Dulan Area, North Qaidam UHP Terrane:New Evidence for Deep Continental Subduction. Gondwana Research, 23(3):901-919. https://doi.org/10.1016/j.gr.2012.07.018
    Zhang, C., Holtz, F., Koepke, J., et al., 2013. Constraints from Experimental Melting of Amphibolite on the Depth of Formation of Garnet-Rich Restites, and Implications for Models of Early Archean Crustal Growth. Precambrian Research, 231:206-217. https://doi.org/10.1016/j.precamres.2013.03.004
    Zhang, C., van Roermund, H., Zhang, L. F., et al., 2012. A Polyphase Metamorphic Evolution for the Xitieshan Paragneiss of the North Qai-dam UHP Metamorphic Belt, Western China:In-situ EMP Monazite-and U-Pb Zircon SHRIMP Dating. Lithos, 136-139:27-45. https://doi.org/10.1016/j.lithos.2011.07.024
    Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2009. UHP Metamorphic Evolution of Coesite-Bearing Eclogite from the Yuka Terrane, North Qaidam UHPM Belt, NW China. European Journal of Mineralogy, 21(6):1287-1300. https://doi.org/10.1127/0935-1221/2009/0021-1989
    Zhang, J. X., Meng, F. C., Yang, J. S., 2004. Eclogitic Metapelites in the Western Segment of the North Qaidam Mountains:Evidence on "in situ" Relationship between Eclogite and Its Country Rock. Science in China Series D:Earth Sciences, 47(12):1102-1112. https://doi.org/10.1360/02yd0311
    Zhang, J. X., Yang, J. S., Mattinson, C. G., et al., 2005. Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China:Petrological and Isotopic Constraints. Lithos, 84(1/2):51-76. https://doi.org/10.1016/j.lithos.2005.02.002
    Zhang, J. X., Meng, F. C., Yu, S. Y., 2007. Metamorphic History Recorded in High Pressure Mafic Granulites in the Luliangshan Mountains to the North of Qaidam Basin, Northwest China:Evidence from Petrology and Zircon SHRIMP Geochronology. Earth Science Frontiers, 14(1):85-97 (in Chinese with English Abstract) https://www.researchgate.net/publication/284578796_Metamorphic_history_recorded_in_high_pressure_mafic_granulites_in_the_Luliangshan_Mountains_to_the_north_of_Qaidam_Basin_northwest_China_evidence_from_petrology_and_zircon_SHRIMP_geochronology
    Zhang, J. X., Mattinson, C. G., Meng, F., et al., 2008. Polyphase Tectonothermal History Recorded in Granulitized Gneisses from the North Qaidam HP/UHP Metamorphic Terrane, Western China:Evidence from Zircon U-Pb Geochronology. Geological Society of America Bul-letin, 120(5/6):732-749. https://doi.org/10.1130/b26093.1
    Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al., 2010. U-Pb Zircon Geochronology of Coesite-Bearing Eclogites from the Southern Dulan Area of the North Qaidam UHP Terrane, Northwestern China:Spatially and Temporally Extensive UHP Metamorphism during Continental Subduction. Journal of Metamorphic Geology, 28(9):955-978. https://doi.org/10.1111/j.1525-1314.2010.00901.x
    Zhang, J. X., Yu, S. Y., Mattinson, C. G., 2017. Early Paleozoic Polyphase Metamorphism in Northern Tibet, China. Gondwana Research, 41:267-289. https://doi.org/10.1016/j.gr.2015.11.009
    Zhang, Y. H., Wei, C. J., Lu, M. J., et al., 2018. P-T-t Evolution of the High-Pressure Mafic Granulites from Northern Hengshan, North China Craton:Insights from Phase Equilibria and Geochronology. Precambrian Research, 312:1-15. https://doi.org/10.1016/j.precamres.2018.04.022
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2001. High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton:Petrology and Tectonic Implications. Journal of Petrol-ogy, 42(6):1141-1170. https://doi.org/10.1093/petrology/42.6.1141
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(571) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return