Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Wei Zhao, Keqing Zong, Yongsheng Liu, Zhaochu Hu, Haihong Chen, Ming Li. An Effective Oxide Interference Correction on Sc and REE for Routine Analyses of Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. Journal of Earth Science, 2019, 30(6): 1302-1310. doi: 10.1007/s12583-019-0898-5
Citation: Wei Zhao, Keqing Zong, Yongsheng Liu, Zhaochu Hu, Haihong Chen, Ming Li. An Effective Oxide Interference Correction on Sc and REE for Routine Analyses of Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. Journal of Earth Science, 2019, 30(6): 1302-1310. doi: 10.1007/s12583-019-0898-5

An Effective Oxide Interference Correction on Sc and REE for Routine Analyses of Geological Samples by Inductively Coupled Plasma-Mass Spectrometry

doi: 10.1007/s12583-019-0898-5
Funds:

the National Natural Science Foundation of China 41530211

the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan MSFGPMR01

the National Natural Science Foundation of China 41473031

More Information
  • Corresponding author: Keqing Zong
  • Received Date: 15 Sep 2017
  • Accepted Date: 25 Feb 2018
  • Publish Date: 01 Dec 2019
  • Oxide interference correction plays a vital role in the accurate determination of trace element compositions of geological samples by inductively coupled plasma-mass spectrometry (ICP-MS). In this study,we found that the oxide production is mainly controlled by the gas flow of the ICP-MS and a constant oxide correction factor (OCF) can be measured during a routine analysis. Thus,we can obtain the oxide production by just investigating the gas flow for a fixed ICP-MS system with monitoring of OCF. Si,Ba and LREE oxide interferences on the Sc,Eu and Gd of four geological standard samples GSP-2,JP-1,GBW03112 and GBW03113 were corrected by such method and the results were in good agreement with the recommended values. Therefore,the present study provides a simple and fast correction method for the oxide interferences of the geological samples during the routine analyses. Furthermore,a Microsoft Excel spreadsheet template integrating the correction equations was devel-oped in an in-house software (ICPMSDataCal) for effective calibration.

     

  • loading
  • Ammann, A. A., 2007. Inductively Coupled Plasma Mass Spectrometry (ICP MS): A Versatile Tool. Journal of Mass Spectrometry, 42(4): 419–427. https://doi.org/10.1002/jms.1206
    Aries, S., Valladon, M., Polvé, M., et al., 2000. A Routine Method for Oxide and Hydroxide Interference Corrections in ICP-MS Chemical Analysis of Environmental and Geological Samples. Geostandards and Geoanalytical Research, 24(1): 19–31. https://doi.org/10.1111/j.1751-908x.2000.tb00583.x
    Augustithis, S. S., Minatidis, D. G., 1979. The Significance of Trace Elements in Solving Petrogenetic Problems and Controversies. Chemical Geology, 25(3): 213–218. https://doi.org/10.1016/0009-2541(79)90142-6
    Barrat, J. A., Keller, F., Amossé, J., et al., 1996. Determination of Rare Earth Elements in Sixteen Silicate Reference Samples by ICP-MS after TM Addition and Ion Exchange Separation. Geostandards and Geoanalytical Research, 20(1): 133–139. https://doi.org/10.1111/j.1751-908x.1996.tb00177.x
    Bayon, G., Barrat, J. A., Etoubleau, J., et al., 2009. Determination of Rare Earth Elements, Sc, Y, Zr, Ba, Hf and Th in Geological Samples by ICP-MS after Tm Addition and Alkaline Fusion. Geostandards and Geoanalytical Research, 33(1): 51–62. https://doi.org/10.1111/j.1751-908x.2008.00880.x
    Brown, R. J. C., Milton, M. J. T., 2005. Analytical Techniques for Trace Element Analysis: An Overview. TrAC Trends in Analytical Chemistry, 24(3): 266–274. https://doi.org/10.1016/j.trac.2004.11.010
    Cao, X. D., Yin, M., Wang, X. R., 2001. Elimination of the Spectral Interference from Polyatomic Ions with Rare Earth Elements in Inductively Coupled Plasma Mass Spectrometry by Combining Algebraic Correction with Chromatographic Separation. Spectrochimica Acta Part B: Atomic Spectroscopy, 56(4): 431–441. https://doi.org/10.1016/s0584-8547(01)00170-7
    Chen, W., Zhang, W. Q., Simonetti, A., et al., 2016. Mineral Chemistry of Melanite from Calcitic Ijolite, the Oka Carbonatite Complex, Canada: Implications for Multi-Pulse Magma Mixing. Journal of Earth Science, 27(4): 599–610. https://doi.org/10.1007/s12583-016-0715-3
    Condie, K. C., Bowling, G. P., Allen, P., 1985. Missing Eu Anomaly and Archean High-Grade Granites. Geology, 13(9): 633–636. https://doi.org/10.1130/0091-7613(1985)13<633:meaaah>2.0.co;2 doi: 10.1130/0091-7613(1985)13<633:meaaah>2.0.co;2
    Dai, M. N., Bao, Z., Chen, K. Y., et al., 2017. Simultaneous Measurement of Major, Trace Elements and Pb Isotopes in Silicate Glasses by Laser Ablation Quadrupole and Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Earth Science, 28(1): 92–102. https://doi.org/10.1007/s12583-017-0742-8
    Dams, R. F. J., Goossens, J., Moens, L., 1995. Spectral and Non-Spectral Interferences in Inductively Coupled Plasma Mass-Spectrometry. Mikrochimica Acta, 119(3/4): 277–286. https://doi.org/10.1007/bf01244007
    Ding, R. X., Zou, H. P., Min, K., et al., 2017. Detrital Zircon U-Pb Geochronology of Sinian-Cambrian Strata in the Eastern Guangxi Area, China. Journal of Earth Science, 28(2): 295–304. https://doi.org/10.1007/s12583-017-0723-y
    Dulski, P., 1994. Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. Freseniusʼ Journal of Analytical Chemistry, 350(4/5): 194–203. https://doi.org/10.1007/bf00322470
    Dulski, P., 2001. Reference Materials for Geochemical Studies: New Analytical Data by ICP-MS and Critical Discussion of Reference Values. Geostandards and Geoanalytical Research, 25(1): 87–125. https://doi.org/10.1111/j.1751-908x.2001.tb00790.x
    Durrant, S. F., 1993. Alternatives to All-Argon Plasmas in Inductively Coupled Plasma Mass Spectrometry (ICP-MS): An Overview. Freseniusʼ Journal of Analytical Chemistry, 347(10/11): 389–392. https://doi.org/10.1007/bf00635462
    Evans, E. H., Giglio, J. J., 1993. Interferences in Inductively Coupled Plasma Mass Spectrometry: A Review. Journal of Analytical Atomic Spectrometry, 8(1): 1–18. https://doi.org/10.1039/ja9930800001
    Gao, S., Wedepohl, K. H., 1995. The Negative Eu Anomaly in Archean Sedimentary Rocks: Implications for Decomposition, Age and Importance of Their Granitic Sources. Earth and Planetary Science Letters, 133(1/2): 81–94. https://doi.org/10.1016/0012-821x(95)00077-p
    Gray, A. L., Williams, J. G., 1987. System Optimisation and the Effect on Polyatomic, Oxide and Doubly Charged Ion Response of a Commercial Inductively Coupled Plasma Mass Spectrometry Instrument. Journal of Analytical Atomic Spectrometry, 2(6): 599–606. https://doi.org/10.1039/ja9870200599
    Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627–630. https://doi.org/10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2
    Houk, R. S., Fassel, V. A., Flesch, G. D., et al., 1980. Inductively Coupled Argon Plasma as an Ion Source for Mass Spectrometric Determination of Trace Elements. Analytical Chemistry, 52(14): 2283–2289. https://doi.org/10.1021/ac50064a012
    Hu, Z. C., Hu, S. H., Gao, S., et al., 2004. Volatile Organic Solvent-Induced Signal Enhancements in Inductively Coupled Plasma-Mass Spectrometry: A Case Study of Methanol and Acetone. Spectrochimica Acta Part B: Atomic Spectroscopy, 59(9): 1463–1470. https://doi.org/10.1016/j.sab.2004.07.007
    Ionov, D. A., Savoyant, L., Dupuy, C., 1992. Application of the ICP-MS Technique to Trace Element Analysis of Peridotites and Their Minerals. Geostandards and Geoanalytical Research, 16(2): 311–315. https://doi.org/10.1111/j.1751-908x.1992.tb00494.x
    Jarvis, K. E., Gray, A. L., Houk, R. S., 1992. Handbook of Inductively Coupled Plasma Mass Spectrometry. Springer Netherlands, New York
    Jenner, G. A., Longerich, H. P., Jackson, S. E., et al., 1990. ICP-MS—A Powerful Tool for High-Precision Trace-Element Analysis in Earth Sciences: Evidence from Analysis of Selected U.S.G.S. Reference Samples. Chemical Geology, 83(1/2): 133–148. https://doi.org/10.1016/0009-2541(90)90145-w
    Ketterer, M. E., Biddle, D. A., 1992. Multivariate Calibration in Inductively Coupled Plasma Mass Spectrometry. 2. Effect of Changes in Abundances of Interfering Polyatomic Ions. Analytical Chemistry, 64(17): 1819–1823. https://doi.org/10.1021/ac00041a014
    Lam, J. W. H., Horlick, G., 1990. A Comparison of Argon and Mixed Gas Plasmas for Inductively Coupled Plasma-Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 45(12): 1313–1325. https://doi.org/10.1016/0584-8547(90)80185-l
    Lee, C. T. A., Leeman, W. P., Canil, D., et al., 2005. Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of Their Mantle Source Regions. Journal of Petrology, 46(11): 2313–2336. https://doi.org/10.1093/petrology/egi056
    Lichte, F. E., Meier, A. L., Crock, J. G., 1987. Determination of the Rare-Earth Elements in Geological Materials by Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 59(8): 1150–1157. https://doi.org/10.1021/ac00135a018
    Linge, K. L., Jarvis, K. E., 2009. Quadrupole ICP-MS: Introduction to Instrumentation, Measurement Techniques and Analytical Capabilities. Geostandards and Geoanalytical Research, 33(4): 445–467. https://doi.org/10.1111/j.1751-908x.2009.00039.x
    Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008a. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1/2): 133–153. https://doi.org/10.1016/j.chemgeo.2007.10.016
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008b. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
    Long, S. E., Browner, R. F., 1988. Influence of Water on Conditions in the Inductively Coupled Argon Plasma. Spectrochimica Acta Part B: Atomic Spectroscopy, 43(12): 1461–1471. https://doi.org/10.1016/0584-8547(88)80185-x
    Longerich, H. P., Fryer, B. J., Strong, D. F., et al., 1987. Effects of Operating Conditions on the Determination of the Rare Earth Elements by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Spectrochimica Acta Part B: Atomic Spectroscopy, 42(1/2): 75–92. https://doi.org/10.1016/0584-8547(87)80051-4
    Longerich, H. P., 1989. Mass Spectrometric Determination of the Temperature of an Argon Inductively Coupled Plasma from the Formation of the Singly Charged Monoxide Rare Earths and Their Known Dissociation Energies. Journal of Analytical Atomic Spectrometry, 4(6): 491–497. https://doi.org/10.1039/ja9890400491
    Louie, H., Soo, S. Y. P., 1992. Use of Nitrogen and Hydrogen in Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 7(3): 557–564. https://doi.org/10.1039/ja9920700557
    Makishima, A., Nakamura, E., 2006. Determination of Major/Minor and Trace Elements in Silicate Samples by ICP-QMS and ICP-SFMS Applying Isotope Dilution-Internal Standardisation (ID-IS) and Multi-Stage Internal Standardisation. Geostandards and Geoanalytical Research, 30(3): 245–271. https://doi.org/10.1111/j.1751-908x.2006.tb01066.x
    Merten, D., Büchel, G., 2004. Determination of Rare Earth Elements in Acid Mine Drainage by Inductively Coupled Plasma Mass Spectrometry. Microchimica Acta, 148(3/4): 163–170. https://doi.org/10.1007/s00604-004-0260-0
    Minnich, M. G., Houk, R. S., 1998. Comparison of Cryogenic and Membrane Desolvation for Attenuation of Oxide, Hydride and Hydroxide Ions and Ions Containing Chlorine in Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 13(3): 167–174. https://doi.org/10.1039/a704274d
    Nakamura, K., Chang, Q., 2007. Precise Determination of Ultra-Low (sub-ng g-1) Level Rare Earth Elements in Ultramafic Rocks by Quadrupole ICP-MS. Geostandards and Geoanalytical Research, 31(3): 185–197. https://doi.org/10.1111/j.1751-908x.2007.00859.x
    Niu, H. S., Houk, R. S., 1996. Fundamental Aspects of Ion Extraction in Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 51(8): 779–815. https://doi.org/10.1016/0584-8547(96)01506-6
    Poussel, E., Mermet, J. M., Deruaz, D., 1994. Dissociation of Analyte Oxide Ions in Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 9(2): 61–66. https://doi.org/10.1039/ja9940900061
    Prasad, M. N. V., 2008. Trace Elements as Contaminants and Nutrients: Consequences in Ecosystems and Human Health. John Wiley & Sons. 778
    Pretorius, W., Weis, D., Williams, G., et al., 2006. Complete Trace Elemental Characterisation of Granitoid (USGS G-2, GSP-2) Reference Materials by High Resolution Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 30(1): 39–54. https://doi.org/10.1111/j.1751-908x.2006.tb00910.x
    Qi, L., Zhou, M. F., Malpas, J., et al., 2005. Determination of Rare Earth Elements and Y in Ultramafic Rocks by ICP-MS after Preconcentration Using Fe(OH)3 and Mg(OH)2 Coprecipitation. Geostandards and Geoanalytical Research, 29(1): 131–141. https://doi.org/10.1111/j.1751-908x.2005.tb00660.x
    Qian, Q., Chung, S. L., Lee, T. Y., et al., 2003. Mesozoic High-Ba-Sr Granitoids from North China: Geochemical Characteristics and Geological Implications. Terra Nova, 15(4): 272–278. https://doi.org/10.1046/j.1365-3121.2003.00491.x
    Qing, C., Shibata, T., Shinotsuka, K., et al., 2003. Precise Determination of Trace Elements in Geological Standard Rocks Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Frontier Research on Earth Evolution, 1: 357–362
    Raut, N. M., Huang, L. S., Aggarwal, S. K., et al., 2003. Determination of Lanthanides in Rock Samples by Inductively Coupled Plasma Mass Spectrometry Using Thorium as Oxide and Hydroxide Correction Standard. Spectrochimica Acta Part B: Atomic Spectroscopy, 58(5): 809–822. https://doi.org/10.1016/s0584-8547(03)00016-8
    Raut, N. M., Huang, L. S., Aggarwal, S. K., et al., 2005. Mathematical Correction for Polyatomic Isobaric Spectral Interferences in Determination of Lanthanides by Inductively Coupled Plasma Mass Spectrometry. Journal of the Chinese Chemical Society, 52(4): 589–597. https://doi.org/10.1002/jccs.200500087
    Reed, N. M., Cairns, R. O., Hutton, R. C., et al., 1994. Characterization of Polyatomic Ion Interferences in Inductively Coupled Plasma Mass Spectrometry Using a High Resolution Mass Spectrometer. Journal of Analytical Atomic Spectrometry, 9(8): 881–896. https://doi.org/10.1039/ja9940900881
    Robinson, P., Townsend, A. T., Yu, Z. S., et al., 1999. Determination of Scandium, Yttrium and Rare Earth Elements in Rocks by High Resolution Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 23(1): 31–46. https://doi.org/10.1111/j.1751-908x.1999.tb00557.x
    Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Taylor & Francis Group, London. 352
    Rowan, J. T., Houk, R. S., 1989. Attenuation of Polyatomic Ion Interferences in Inductively Coupled Plasma Mass Spectrometry by Gas-Phase Collisions. Applied Spectroscopy, 43(6): 976–980. https://doi.org/10.1366/0003702894204065
    Russo, R. E., Mao, X., Liu, H., et al., 2002. Laser Ablation in Analytical Chemistry—A Review. Talanta, 57(3): 425–451. https://doi.org/10.1016/s0039-9140(02)00053-x
    Shibata, N., Fudagawa, N., Kubota, M., 1991. Electrothermal Vaporization Using a Tungsten Furnace for the Determination of Rare-Earth Elements by Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 63(6): 636–640. https://doi.org/10.1021/ac00006a016
    Shibata, N., Fudagawa, N., Kubota, M., 1993. Oxide Formation in Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 48(9): 1127–1137. https://doi.org/10.1016/0584-8547(93)80103-2
    Shinotsuka, K., Hidaka, H., Ebihara, M., et al., 1996. ICP-MS Analysis of Geological Standard Rocks for Yttrium, Lanthanoids, Thorium and Uranium. Analytical Sciences, 12(6): 917–922. https://doi.org/10.2116/analsci.12.917
    Snook, R. D., 1992. Handbook of Inductively Coupled Plasma Mass Spectrometry. Chromatographia, 34(9/10): 546–546. https://doi.org/10.1007/bf02290251
    Stetzenbach, K. J., Amano, M., Kreamer, D. K., et al., 1994. Testing the Limits of ICP-MS: Determination of Trace Elements in Ground Water at the Part-Per-Trillion Level. Ground Water, 32(6): 976–985. https://doi.org/10.1111/j.1745-6584.1994.tb00937.x
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Van Veen, E. H., Bosch, S., De Loos-Vollebregt, M. T. C., 1994. Spectral Interpretation and Interference Correction in Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 49(12/13/14): 1347–1361. https://doi.org/10.1016/0584-8547(94)80114-2
    Vanhaecke, F., Vandecasteele, C., Vanhoe, H., et al., 1992. Study of the Intensity of M+, M2+ and MO+ Signals in ICP-MS as a Function of Instrumental Parameters. Mikrochimica Acta, 108(1/2): 41–51. https://doi.org/10.1007/bf01240370
    Vaughan, M. A., Horlick, G., 1990a. Effect of Sampler and Skimmer Orifice Size on Analyte and Analyte Oxide Signals in Inductively Coupled Plasma-Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 45(12): 1289–1299. https://doi.org/10.1016/0584-8547(90)80183-j
    Vaughan, M. A., Horlick, G., 1990b. Correction Procedures for Rare Earth Element Analyses in Inductively Coupled Plasma-Mass Spectrometry. Applied Spectroscopy, 44(4): 587–593. https://doi.org/10.1366/0003702904087488
    Vaughan, M. A., Horlick, G., 1986. Oxide, Hydroxide, and Doubly Charged Analyte Species in Inductively Coupled Plasma/Mass Spectrometry. Applied Spectroscopy, 40(4): 434–445. https://doi.org/10.1366/0003702864509006
    Vaughan, M. A., Templeton, D. M., 1990. Determination of Ni by ICP-MS: Correction of Calcium Oxide and Hydroxide Interferences Using Principal Components Analysis. Applied Spectroscopy, 44(10): 1685–1689. https://doi.org/10.1366/0003702904417634
    Wang, Q., 2012. Membrane Desolvation Coupled to ICP-QMS for Accurate Determination of Rare Earth Elements in Geological Samples: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views(788) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return