Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Zhichao Zhou, Lianfu Mei, Hesheng Shi, Yu Shu. Evolution of Low-Angle Normal Faults in the Enping Sag, the Northern South China Sea: Lateral Growth and Vertical Rotation. Journal of Earth Science, 2019, 30(6): 1326-1340. doi: 10.1007/s12583-019-0899-4
Citation: Zhichao Zhou, Lianfu Mei, Hesheng Shi, Yu Shu. Evolution of Low-Angle Normal Faults in the Enping Sag, the Northern South China Sea: Lateral Growth and Vertical Rotation. Journal of Earth Science, 2019, 30(6): 1326-1340. doi: 10.1007/s12583-019-0899-4

Evolution of Low-Angle Normal Faults in the Enping Sag, the Northern South China Sea: Lateral Growth and Vertical Rotation

doi: 10.1007/s12583-019-0899-4
Funds:  The authors wish to thank two anonymous reviewers for their constructive reviews and suggestions, which greatly helped to improve this paper. We thank the editors for the detailed and impartial comments. This study was supported by the Major National Science and Technology Programs, China (Nos. 2016ZX05026-003-001 and 2011ZX05023-001-015)
More Information
  • Corresponding author: Lianfu Mei
  • Received Date: 17 Oct 2017
  • Accepted Date: 25 Feb 2018
  • Publish Date: 01 Dec 2019
  • Low-angle normal faults (dip < 30°,LANFs) are widespread in the northern margin of the South China Sea where the maximum crust thickness is approximately 30.0 km. Based on 3D seismic survey data and drilling wells in the Enping sag,evidences for LANFs that initially formed at high-angles are discussed. After a detailed investigation of extensional fault system and description of 3D fault geometry,the initial fault dips under the model of distributed vertical simple shear are also calculated. The results indicate that the present-day dip angles of the LANFs are in the range of 12° to 29°,and the initial fault dip angles are in the range of 39° to 49°. Deep seismic imaging suggests that the upper crust in the footwall block of the LANFs was tilted at an angle of~14° to 22° due to the isostatic rebound during rifting. Moreover,the temporal and spatial sequences of the lateral growth of the LANFs have been investigated by the seismic interpretation of four isochronous stratigraphic interfaces,which demonstrates that two individual fault segments propagated towards each other and subsequently,were hard-linked during the Early Eocene.

     

  • loading
  • Anderson, E. M., 1951. The Dynamics of Faulting, 2nd Ed. Oliver and Boyd, Edinburgh. 206
    Axen, G. J., 2004. Mechanics of Low-Angle Normal Faults. In: Karner, G., Taylor, B., Driscoll, N., eds., Rheology and Deformation of the Lithosphere at Continental Margins. Columbia University Press, New York. 46-91. https://doi.org/10.7312/karn12738-004
    Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280
    Buck, W. R., 1988. Flexural Rotation of Normal Faults. Tectonics, 7(5): 959-973. https://doi.org/10.1029/tc007i005p00959
    Cartwright, J. A., Mansfield, C. S., 1998. Lateral Displacement Variation and Lateral Tip Geometry of Normal Faults in the Canyonlands National Park, Utah. Journal of Structural Geology, 20(1): 3-19. https://doi.org/10.1016/s0191-8141(97)00079-5
    Childs, C., Watterson, J., Walsh, J. J., 1995. Fault Overlap Zones within Developing Normal Fault Systems. Journal of the Geological Society, 152(3): 535-549. https://doi.org/10.1144/gsjgs.152.3.0535
    Collettini, C., 2011. The Mechanical Paradox of Low-Angle Normal Faults: Current Understanding and Open Questions. Tectonophysics, 510(3/4): 253-268. https://doi.org/10.1016/j.tecto.2011.07.015
    Davis, D. W., Sewell, R. J., Campbell, S. D. G., 1997. U-Pb Dating of Mesozoic Igneous Rocks from Hong Kong. Journal of the Geological Society, 154(6): 1067-1076. https://doi.org/10.1144/gsjgs.154.6.1067
    Dawers, N. H., Anders, M. H., 1995. Displacement-Length Scaling and Fault Linkage. Journal of Structural Geology, 17(5): 607-614. https://doi.org/10.1016/0191-8141(94)00091-d
    Expedition 349 Scientists, 2014. South China Sea Tectonics: Opening of the South China Sea and Its Implications for Southeast Asian Tectonics, Climates, and Deep Mantle Processes Since the Late Mesozoic. International Ocean Discovery Program Preliminary Report, International Ocean Discovery Program. 349. https://doi.org/10.14379/iodp.pr.349.2014
    Fyhn, M. B. W., Pedersen, S. A. S., Boldreel, L. O., et al., 2010. Palaeocene-Early Eocene Inversion of the Phuquoc-Kampot Som Basin: SE Asian Deformation Associated with the Suturing of Luconia. Journal of the Geological Society, 167(2): 281-295. https://doi.org/10.1144/0016-76492009-039
    Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367-9120(01)00069-4
    Hall, R., 2012. Late Jurassic-Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean. Tectonophysics, 570/571: 1-41. https://doi.org/10.1016/j.tecto.2012.04.021
    Holloway, N., 1982. North Palwan Block, Philippines—Its Relation to Asian Mainland and Role in Evolution of South China Sea. American Association of Petroleum Geologists, 66(9): 1355-1383
    Huang, C. J., Zhou, D., Sun, Z., et al., 2005. Deep Crustal Structure of Baiyun Sag, Northern South China Sea Revealed from Deep Seismic Reflection Profile. Chinese Science Bulletin, 50(11): 1131-1138. https://doi.org/10.1360/04wd0207
    Jackson, J. A., 1987. Active Normal Faulting and Crustal Extension. In: Coward, M. P., Dewey, J. F., Hancock, P. L., eds., Continental Extensional Tectonics. Geological Society, London, Special Publications, 28(1): 3-17. https://doi.org/10.1144/gsl.sp.1987.028.01.02
    Jahn, B. M., Chen, P. Y., Yen, T. P., 1976. Rb-Sr Ages of Granitic Rocks in Southeastern China and Their Tectonic Significance. Geological Society of America Bulletin, 87(5): 763-776. https://doi.org/10.1130/0016-7606(1976)87<763:raogri>2.0.co;2 doi: 10.1130/0016-7606(1976)87<763:raogri>2.0.co;2
    Kapp, P., Taylor, M., Stockli, D., et al., 2008. Development of Active Low-Angle Normal Fault Systems during Orogenic Collapse: Insight from Tibet. Geology, 36(1): 7-10. https://doi.org/10.1130/g24054a.1
    Lecomte, E., Jolivet, L., Lacombe, O., et al., 2010. Geometry and Kinematics of Mykonos Detachment, Cyclades, Greece: Evidence for Slip at Shallow Dip. Tectonics, 29(5): 1-22. https://doi.org/10.1029/2009tc002564
    Lee, T. Y., Lawver, L. A., 1994. Cenozoic Plate Reconstruction of the South China Sea Region. Tectonophysics, 235(1/2): 149-180. https://doi.org/10.1016/0040-1951(94)90022-1
    Leyla, B. H., Zhang, J. X., Yang, L. L., 2018. Quantitative Analysis of Faults in Huizhou Sub-Basin, Pearl River Mouth Basin. Journal of Earth Science, 29(1): 169-181. https://doi.org/10.1007/s12583-018-0823-3
    Li, P. L., Liang, H. X., Dai, Y. D., et al., 1999. Origin and Tectonic Setting of the Yanshanian Igneous Rocks in the Pearl River Mouth Basin. Guangdong Geology, 14(1): 1-8 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gddz199901001
    Liu, Q. H., Zhu, H. T., Shu, Y., et al., 2016. Effects of Low- to High-Angle Normal Faults on Sedimentary Architectures in the Eocene Wenchang Formation, Enping Sag, Pearl River Mouth Basin, South China Sea. Australian Journal of Earth Sciences, 63(7): 903-922. https://doi.org/10.1080/08120099.2016.1257512
    Marchal, D., Guiraud, M., Rives, T., 2003. Geometric and Morphologic Evolution of Normal Fault Planes and Traces from 2D to 4D Data. Journal of Structural Geology, 25(1): 135-158. https://doi.org/10.1016/s0191-8141(02)00011-1
    McClay, K., Khalil, S., 1998. Extensional Hard Linkages, Eastern Gulf of Suez, Egypt. Geology, 26(6): 563-566. https://doi.org/10.1130/0091-7613(1998)026<0563:ehlego>2.3.co;2 doi: 10.1130/0091-7613(1998)026<0563:ehlego>2.3.co;2
    Morley, C. K., 2002. A Tectonic Model for the Tertiary Evolution of Strike-Slip Faults and Rift Basins in SE Asia. Tectonophysics, 347(4): 189-215. https://doi.org/10.1016/s0040-1951(02)00061-6
    Morley, C. K., 2009. Geometry and Evolution of Low-Angle Normal Faults (LANF) within a Cenozoic High-Angle Rift System, Thailand: Implications for Sedimentology and the Mechanisms of LANF Development. Tectonics, 28(5): 1-30. https://doi.org/10.1029/2007tc002202
    Morley, C. K., 2012. Late Cretaceous-Early Palaeogene Tectonic Development of SE Asia. Earth-Science Reviews, 115(1/2): 37-75. https://doi.org/10.1016/j.earscirev.2012.08.002
    Morley, C. K., 2014. The Widespread Occurrence of Low-Angle Normal Faults in a Rift Setting: Review of Examples from Thailand, and Implications for Their Origin and Evolution. Earth-Science Reviews, 133(2): 18-42. https://doi.org/10.1016/j.earscirev.2014.02.007
    Nguyen, T., Satir, M., Siebel, W., et al., 2004. Granitoids in the Dalat Zone, Southern Vietnam: Age Constraints on Magmatism and Regional Geological Implications. International Journal of Earth Sciences, 93(3): 329-340. https://doi.org/10.1007/s00531-004-0387-6
    Nissen, S. S., Hayes, D. E., Buhl, P., et al., 1995. Deep Penetration Seismic Soundings Across the Northern Margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 100(B11): 22407-22433. https://doi.org/10.1029/95jb01866
    Proffett, J. M., 1977. Cenozoic Geology of the Yerington District, Nevada, and Implications for the Nature and Origin of Basin and Range Faulting. Geological Society of America Bulletin, 88(2): 247-266. https://doi.org/10.1130/0016-7606(1977)88<247:cgotyd>2.0.co;2 doi: 10.1130/0016-7606(1977)88<247:cgotyd>2.0.co;2
    Rotevatn, A., Fossen, H., Hesthammer, J., et al., 2007. Are Relay Ramps Conduits for Fluid Flow? Structural Analysis of a Relay Ramp in Arches National Park, Utah. Geological Society, London, Special Publications, 270(1): 55-71. https://doi.org/10.1144/gsl.sp.2007.270.01.04
    Ru, K., Pigott, J. D., 1986. Episodic Rifting and Subsidence in the South China Sea. American Association of Petroleum Geologists Bulletin, 70(9): 1136-1155
    Schlüter, H. U., Hinz, K., Block, M., 1996. Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea. Marine Geology, 130(1/2): 39-78. https://doi.org/10.1016/0025-3227(95)00137-9
    Sewell, R. J., Campbell, S. D. G., 1997. Geochemistry of Coeval Mesozoic Plutonic and Volcanic Suites in Hong Kong. Journal of the Geological Society, 154(6): 1053-1066. https://doi.org/10.1144/gsjgs.154.6.1053
    Smith, S. A. F., Faulkner, D. R., 2010. Laboratory Measurements of the Frictional Properties of the Zuccale Low-Angle Normal Fault, Elba Island, Italy. Journal of Geophysical Research, 115(B2): 1-17. https://doi.org/10.1029/2008jb006274
    Smith, S. A. F., Holdsworth, R. E., Collettini, C., et al., 2007. Using Footwall Structures to Constrain the Evolution of Low-Angle Normal Faults. Journal of the Geological Society, 164(6): 1187-1191. https://doi.org/10.1144/0016-76492007-009
    Soliva, R., Benedicto, A., 2004. A Linkage Criterion for Segmented Normal Faults. Journal of Structural Geology, 26(12): 2251-2267. https://doi.org/10.1016/j.jsg.2004.06.008
    Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanics of the Collision between India and Asia. In: Coward, M. P., Ries, A. C., eds., Collision Tectonics. Geological Society, Special Publications, London, 115-157. https://doi.org/10.1144/GSL.SP.1986.019.01.07
    Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of Southeast Asia Seas Islands: Part 2. Geophysical Monograph. American Geophysical Union, Washington, DC. 23-56. https://doi.org/10.1029/GM027p0023
    Taylor, S. K., Bull, J. M., Lamarche, G., et al., 2004. Normal Fault Growth and Linkage in the Whakatane Graben, New Zealand, during the Last 1.3 Myr. Journal of Geophysical Research: Solid Earth, 109(B2): 1-22. https://doi.org/10.1029/2003jb002412
    Thuy, N. T. B., Satir, M., Siebel, W., et al., 2004. Geochemical and Isotopic Constraints on the Petrogenesis of Granitoids from the Dalat Zone, Southern Vietnam. Journal of Asian Earth Sciences, 23(4): 467-482. https://doi.org/10.1016/j.jseaes.2003.06.001
    Trudgill, B., Cartwright, J., 1994. Relay-Ramp Forms and Normal-Fault Linkages, Canyonlands National Park, Utah. Geological Society of America Bulletin, 106(9): 1143-1157. https://doi.org/10.1130/0016-7606(1994)106<1143:rrfanf>2.3.co;2 doi: 10.1130/0016-7606(1994)106<1143:rrfanf>2.3.co;2
    Walsh, J. J., Bailey, W. R., Childs, C., et al., 2003. Formation of Segmented Normal Faults: A 3-D Perspective. Journal of Structural Geology, 25(8): 1251-1262. https://doi.org/10.1016/s0191-8141(02)00161-x
    Wang, X. Y., Yang, Z., Chen, N. S., et al., 2018. Petrogenesis and Ore Genesis of the Late Yanshanian Granites and Associated Porphyry-Skarn W-Mo Deposits from the Yunkai Area of South China: Evidence from the Zircon U-Pb Ages, Hf Isotopes and Sulfide S-Fe Isotopes. Journal of Earth Science, 29(4): 939-959. https://doi.org/10.1007/s12583-017-0901-1
    Wernicke, B., 1995. Low-Angle Normal Faults and Seismicity: A Review. Journal of Geophysical Research: Solid Earth, 100(B10): 20159-20174. https://doi.org/10.1029/95jb01911
    Wernicke, B., Axen, G. J., 1988. On the Role of Isostasy in the Evolution of Normal Fault Systems. Geology, 16(9): 848-851. https://doi.org/10.1130/0091-7613(1988)016<0848:otroii>2.3.co;2 doi: 10.1130/0091-7613(1988)016<0848:otroii>2.3.co;2
    Wernicke, B., Walker, J. D., Beaufait, M. S., 1985. Structural Discordance between Neogene Detachments and Frontal Sevier Thrusts, Central Mormon Mountains, Southern Nevada. Tectonics, 4(2): 213-246. https://doi.org/10.1029/tc004i002p00213
    Westaway, R., 1999. The Mechanical Feasibility of Low-Angle Normal Faulting. Tectonophysics, 308(4): 407-443. https://doi.org/10.1016/S0040-1951(99)00148-1
    Westaway, R., 2005. Active Low-Angle Normal Faulting in the Woodlark Extensional Province, Papua New Guinea: A Physical Model. Tectonics, 24(6): 1-25. https://doi.org/10.1029/2004tc001744
    Westaway, R., Kusznir, N., 1993. Fault and Bed 'Rotation' during Continental Extension: Block Rotation or Vertical Shear?. Journal of Structural Geology, 15(6): 753-770. https://doi.org/10.1016/0191-8141(93)90060-n
    Whitney, D. L., Teyssier, C., Rey, P., et al., 2013. Continental and Oceanic Core Complexes. Geological Society of America Bulletin, 125(3/4): 273-298. https://doi.org/10.1130/b30754.1
    Willemse, E. J. M., 1997. Segmented Normal Faults: Correspondence between Three-Dimensional Mechanical Models and Field Data. Journal of Geophysical Research: Solid Earth, 102(B1): 675-692. https://doi.org/10.1029/96jb01651
    Xu, C. H., Shi, H. S., Barnes, C. G., et al., 2016. Tracing a Late Mesozoic Magmatic Arc along the Southeast Asian Margin from the Granitoids Drilled from the Northern South China Sea. International Geology Review, 58(1): 71-94. https://doi.org/10.1080/00206814.2015.1056256
    Yan, Q. S., Shi, X. F., Li, N. S., 2011. Oxygen and Lead Isotope Characteristics of Granitic Rocks from the Nansha Block (South China Sea): Implications for Their Petrogenesis and Tectonic Affinity. Island Arc, 20(2): 150-159. https://doi.org/10.1111/j.1440-1738.2010.00754.x
    Yan, Q. S., Shi, X. F., Castillo, P. R., 2014. The Late Mesozoic-Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective. Journal of Asian Earth Sciences, 85: 178-201. https://doi.org/10.1016/j.jseaes.2014.02.005
    Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. A Low-Angle Normal Fault and Basement Structures within the Enping Sag, Pearl River Mouth Basin: Insights into Late Mesozoic to Early Cenozoic Tectonic Evolution of the South China Sea Area. Tectonophysics, 731/732: 1-16. https://doi.org/10.1016/j.tecto.2018.03.003
    Zahirovic, S., Seton, M., Müller, R. D., 2014. The Cretaceous and Cenozoic Tectonic Evolution of Southeast Asia. Solid Earth, 5(1): 227-273. https://doi.org/10.5194/se-5-227-2014
    Zhou, D., Ru, K., Chen, H. Z., 1995. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region. Tectonophysics, 251(1/2/3/4): 161-177. https://doi.org/10.1016/0040-1951(95)00018-6
    Zhou, D., Yao, B. C., 2009. Tectonics and Sedimentary Basins of the South China Sea: Challenges and Progresses. Journal of Earth Science, 20(1): 1-12. https://doi.org/10.1007/s12583-009-0001-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views(667) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return