Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 4
Aug 2019
Turn off MathJax
Article Contents
Hongzhang Dai, Denghong Wang, Lijun Liu, Yang Yu, Jingjing Dai. Geochronology and Geochemistry of Li(Be)-Bearing Granitic Pegmatites from the Jiajika Superlarge Li-Polymetallic Deposit in Western Sichuan, China. Journal of Earth Science, 2019, 30(4): 707-727. doi: 10.1007/s12583-019-1011-9
Citation: Hongzhang Dai, Denghong Wang, Lijun Liu, Yang Yu, Jingjing Dai. Geochronology and Geochemistry of Li(Be)-Bearing Granitic Pegmatites from the Jiajika Superlarge Li-Polymetallic Deposit in Western Sichuan, China. Journal of Earth Science, 2019, 30(4): 707-727. doi: 10.1007/s12583-019-1011-9

Geochronology and Geochemistry of Li(Be)-Bearing Granitic Pegmatites from the Jiajika Superlarge Li-Polymetallic Deposit in Western Sichuan, China

doi: 10.1007/s12583-019-1011-9
More Information
  • Corresponding author: Denghong Wang
  • Received Date: 12 May 2018
  • Accepted Date: 15 Dec 2018
  • Publish Date: 01 Aug 2019
  • Strategic emerging minerals such as lithium, beryllium, niobium and tantalum are the most important rare metals currently, especially with the increasing demand of emerging industries on rare metals in China. The Jiajika deposit with a complete Li-Be-Nb-Ta metallogenic series is the largest pegmatite type rare metal deposit in China at present. In this paper, systematic researches of geochronology and petrogeochemistry were carried out to understand the genetic relationships between mineralization and magma evolution in the Jiajika deposit, which might be helpful to further rare-element prospecting in Songpan-Garze area. Zircon LA-ICP-MS U-Pb dating yields a concordia age of 217±1.1 Ma and a weighted mean 206Pb/238U age of 217±0.84 Ma for the aplite from the No. 308 pegmatite. Cassiterite LA-MC-ICPMS dating yields concordant ages of 211±4.6 Ma for the No. 308 pegmatite vein and 198±4.4 Ma for the No. 133 pegmatite vein, indicating that the rare metal mineralization mainly occurred in the Late Indosinian Period, further suggesting that the granites, aplites and pegmatites in Jiajika formed during a relatively stable stage after the intense orogeny of the Indosinian cycle. The rare metal-bearing granitic rocks and pegmatites show a clear linear relationship between A/CNK and A/NK and are enriched in total alkalis and depleted in CaO, FeO, MnO, MgO, Ba and Sr. All barren rocks and mineralized rocks feature similar rare earth element and trace element geochemical patterns. Thus, these characteristics indicate that the aplites and pegmatites represent the highly differentiated products of the two-mica granite (MaG) in this area, which is the most likely parent magma. During the evolution of magma, strong alkali metasomatism occurred between the melt phase and the volatile-rich fluid phase; as a result, large-scale rare metal mineralization occurred in certain structural zones of the pegmatite veins in the Jiajika deposit.

     

  • loading
  • Ayres, L. D., Averill, S. A., Wolfe, W. J., 1982. An Archean Molybdenite Occurrence of Possible Porphyry Type at Setting Net Lake, Northwestern Ontario, Canada. Economic Geology, 77(5): 1105-1119. https://doi.org/10.2113/gsecongeo.77.5.1105
    Badanina, E. V., Syritso, L. F., Volkova, E. V., et al., 2010. Composition of Li-F Granite Melt and Its Evolution during the Formation of the Ore-Bearing Orlovka Massif in Eastern Transbaikalia. Petrology, 18(2): 131-157. https://doi.org/10.1134/s0869591110020037
    Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3): 231-234. https://doi.org/10.1130/g37475.1
    Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous System. Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323−333. https://doi.org/10.1007/s004100050159
    Bezmen, N. I., Gorbachev, P. N., 2014. Experimental Investigations of Superliquidus Phase Separation in Phosphorus-Rich Melts of Li-F Granite Cupolas. Petrology, 22(6): 574-587. https://doi.org/10.1134/S0869591114060022
    BGMRSP (Bureau of Geology and Mineral Resources of Sichuan Province), 1991. Regional Geology of Sichuan Province. Geological Publishing House, Beijing (in Chinese)
    Blevin, P. L., 2004. Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold-Rich Ore Systems. Resource Geology, 54(3): 241-252. https://doi.org/10.1111/j.1751-3928.2004.tb00205.x
    Bouseily, A. M., Sokkary, A. A., 1975. The Relation between Rb, Ba and Sr in Granitic Rocks. Chemical Geology, 16(3): 207-219. https://doi.org/10.1016/0009-2541(75)90029-7
    Breaks, F. W., Moore, JR. J. M., 1992. The Ghost Lake Batholith, Superior Province of Northwestern Ontario: A Fertile, S-type, Peraluminous Granite-Rare-Element Pegmatite System. Canadian Mineralogist, 30(3): 835-875 http://cn.bing.com/academic/profile?id=df750bb21b395f976c43d79da5922bc0&encoded=0&v=paper_preview&mkt=zh-cn
    Castro, A., Patiño Douce, A. E., Corretgé, L. G., et al., 1999. Origin of Peraluminous Granites and Granodiorites, Iberian Massif, Spain: An Experimental Test of Granite Petrogenesis. Contributions to Mineralogyand Petrology, 135(2/3): 255-276. https://doi.org/10.1007/s004100050511
    Černý, P., 1982. The Tanco Pegmatite at Bernic Lake, Southeastern Manitoba. In: Černý, P., ed., Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada: Short Course Handbook, 8: 527-543
    Černý, P., 1991a. Rare-Element Granitic Pegmatites. Part Ⅰ: Anatomy and Internal Evolution of Pegmatite Deposits. Geoscience Canada, 18(2): 49-67 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216372126/
    Černý, P., 1991b. Rare-Element Granitic Pegmatites. Part Ⅱ: Regional to Global Environments and Petrogenesis. Geoscience Canada, 18(2): 68-81 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216372126/
    Černý, P., 1991c. Fertile Granites of Precambrian Rare-Element Pegmatite Fields: Is Geochemistry Controlled by Tectonic Setting or Source Lithologies?. Precambrian Research, 51(1/2/3/4): 429-468. https://doi.org/10.1016/0301-9268(91)90111-m
    Černý, P., Blevin, P, L, Cuney M., et al., 2005. Granite-Related Ore Deposits. Economic Geology, 107: 383-384. https://doi.org/10.2113/econgeo. 107.2.383 doi: 10.2113/econgeo.107.2.383
    Černý, P., Ercit, T. S., 2005. The Classification of Granitic Pegmatites Revisited. Canadian Mineralogist, 43(6): 2005-2026. https://doi.org/10.2113/gscanmin.43.6.2005
    Černý. P., Ercit, T. S., Vanstone P. J., 1998. Mineralogy and Petrology of the Tanco Rare-Element Pegmatite Deposit, Southeastern Manitoba. Archives of Biochemistry and Biophysics, 185(1): 156-164 https://www.researchgate.net/publication/270569937_MINERALOGY_AND_PETROLOGY_OF_THE_TANCO_RARE-ELEMENT_PEGMATITE_DEPOSIT_SOUTHEASTERN_MANITOBA
    Chappell, B. W., 1999. Aluminium Saturation in I- And S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
    Chen, Z. H., Wang, D. H., Gong, Y. F., et al., 2013. 40Ar-39Ar Isotope Dating of Muscovite from Jingerquan Pegmatite Rare Metal Deposit in Hami, Xinjiang, and Its Geological Significance. Mineral Deposits, 25(4): 470-476 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200604011
    Clark, G. S., Černý, P., 1987. Radiogenic 87Sr, Its Mobility, and the Interpretation of Rb-Sr Fractionation Trends in Rare-Element Granitic Pegmatites. Geochimica et Cosmochimica Acta, 51(4): 1011-1018. https://doi.org/10.1016/0016-7037(87)90112-8
    Cui, Y. R., Xue, J. R, Chen, F., et al., 2017. The Reseach Advances in LA-(MC)-ICP-MS U-Pb Dating of Cassiterite. Acta Geologica Sinica, 91(6): 1386-1399. https://doi.org/10.3969/j.issn.0001-5717.2017.06.016 (in Chinese with English Abstract)
    Dai, H. Z., Wang, D. H., Liu, L. J., et al., 2018. Geochronology, Geochemistry and Their Geological Significances of No. 308 Pegmatite Vein in the Jiajika Deposit, Western Sichuan, China. Earth Science, 43(10): 3664-3681. https://doi.org/10.3799/dqkx.2018.528 (in Chinese with English Abstract)
    Deng, J. F., Zhao, H. L., Lai, S. C., et al., 1994. Generation of Muscovite/ Two-Mica Granite and Intracontinental Subduction. Earth Science: Journal of China University of Geosciences, 19(2): 139-147 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400042307
    Dill, H. G., 2015. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 69: 417-561. https://doi.org/10.1016/j.oregeorev.2015.02.022
    Du, L, T., 1986. Geochemical Principle of Alkaline Metasomatism. Sciencein China: Series B, 29(7): 754-770
    Eby, G. N., Woolley, A. R., Din, V., et al., 1998. Geochemistry and Petrogenesis of Nepheline Syenites: Kasungu-Chipala, Ilomba, and Ulindi Nepheline Syenite Intrusions, North Nyasa Alkaline Province, Malawi. Journal of Petrology, 39(8): 1405-1424. https://doi.org/10.1093/petroj/39.8.1405
    Ercit, T. S., 2004. REE-Enriched Granitic Pegmatites. In: Linnen, R. L., Samson, I. M., eds., Rare-Element Geochemistry and Ore Deposits. Geological Association of Canada Short Course Notes. 257-296
    Fei, G. C., Yuan, T. J., Tang, W. C., et al., 2014. Classification Analysis of Rare Metal Ore Bearing Pegmatite in Ke'eryin, Sichuan Province. Mineral Deposits, 33: 187-188 (in Chinese with English Abstract)
    Fu, X. F., Hou, L. W., Liang, B., et al., 2017. Metallogenic Model and 3D Prospecting Model for the Jiajika Granitic Pegmatite Type Lithium Deposit. Science Press, Beijing (in Chinese)
    Grasso, V. G., 1968. The TiO2 Frequency in Volcanic Rocks. Geologische Rundschau, 57(3): 930-935. https://doi.org/10.1007/bf01845375
    Hao, X. F., Fu, X. F., Liang, B., et al., 2015. Formation Ages of Granite and X03 Pegmatite Vein in Jiajika, Western Sichuan, and Their Geological Significance. Mineral Deposits, 34(6): 1199-1208. https://doi.org/10.16111/j.0258-7106.2015.06.008 (in Chinese with English Abstract)
    Hou, J. L., Li, J. K., Wang, D. H., et al., 2018a. The Composition and Metallogenic Significance of Micas from Jiajika Two-Mica Granite, Sichuan Province. Earth Science, 43(S2): 119-134. https://doi.org/10.3799/dqkx.2018.108 (in Chinese with English Abstract)
    Hou, J. L., Li, J. K., Zhang, Y. J., et al., 2018b. Li Isotopic Composition and Its Constrains on Rare Metal Mineralization of Jiajika Two-Mica Granite, Sichuan Province. Earth Science, 43(6): 2042-2054. https://doi.org/10.3799/dqkx.2018.000 (in Chinese with English Abstract)
    Hu, S. X., 1980. Metasomatic Altered Rock Petrography. Geological Publishing House, Beijing (in Chinese)
    Imeokparia, E. G., 1983. Geochemical Aspects of the Evolution and Mineralization of the Amo Younger Granite Complex (Northern Nigeria). Chemical Geology, 40(3/4): 293-312. https://doi.org/10.1016/0009- 2541(83)90035-9 doi: 10.1016/0009-2541(83)90035-9
    Jahn, B. M., Capedvila, R., Liu, D., et al., 2004. Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Journal of Asian Earth Sciences, 23(5): 629-653. https://doi.org/10.1016/S1367-9120(03)00125-1
    Jahns, R. H., 1982. Internal Evolution of Pegmatite Bodies. In: Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada: Short Course Handbook, 8: 293-346
    Kalsbeek, F., Jepsen, H. F., Nutman, A. P., 2001. From Source Migmatites to Plutons: Tracking the Origin of Ca. 435 Ma S-Type Granites in the East Greenland Caledonian Orogen. Lithos, 57(1): 1-21. https://doi.org/10.1016/s0024-4937(00)00071-2
    Koester, E., Pawley, A. R., Fernandes, L. A. D., et al., 2002. Experimental Melting of Cordierite Gneiss and the Petrogenesis of Syntranscurrent Peraluminous Granites in Southern Brazil. Journal of Petrology, 43(8): 1595-1616. https://doi.org/10.1093/petrology/43.8.1595
    Lehmann, B., 1990. Metallogeny of Tin. Springer-Verlag, Berlin. 1-211
    Leng, C. B., Wang, S. X., Gou, T. Z, et al., 2007. A Review of the Research on the Koktokay No. 3 Granitic Pegmatite Dyke, Altai, Xinjiang. Geology and Mineral Resources of South China, 89(1): 14-20. https://doi.org/10.3969/j.issn.1007-3701.2007.01.003 (in Chinese with English Abstract)
    Li, H. Q., Chen, F. W., 2004. Geochronology of Regional Metallogeny in Xinjiang, China. Beijing Science and Technology Press, Beijing. 1-391 (in Chinese)
    Li, J. K., 2006. Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China: [Dissertation]. China University of Geosciences, Wuhan (in Chinese)
    Li, J. K., Chou, I. M., 2016. An Occurrence of Metastable Cristobalite in Spodumene-Hosted Crystal-Rich Inclusions from Jiajika Pegmatite Deposit, China. Journal of Geochemical Exploration, 171: 29-36. https://doi.org/10.1016/j.gexplo.2015.10.012
    Li, J. K., Chou, I. M., 2017. Homogenization Experiments of Crystal-Rich Inclusions in Spodumene from Jiajika Lithium Deposit, China, under Elevated External Pressures in a Hydrothermal Diamond-Anvil Cell. Geofluids, 1-12. https://doi.org/10.1155/2017/9252913
    Li, J. K., Chou, I. M., Yuan, S., et al., 2013a. Observations on the Crystallization of Spodumene from Aqueous Solutions in a Hydrothermal Diamond-Anvil Cell. Geofluids, 13: 467-474. https://doi.org/10.1111/gfl.12048
    Li, J. K., Liu, S. B., Wang, D. H., et al., 2007a. Metallogenic Epoch of Xuebaoding W-Sn-Be Deposit in Northwest Sichuan and Its Tectonic Tracing Significance. Mineral Deposits, 26(5): 557-562. https://doi.org/10.3969/j.issn.0258-7106.2007.05.008 (in Chinese with English Abstract)
    Li, J. K., Liu, X. F., Wang, D. H., 2014. The Metallogenetic Regularity of Lithium Deposit in China. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English Abstract) http://cn.bing.com/academic/profile?id=804b60201737f3d1746187ec7ed4ca02&encoded=0&v=paper_preview&mkt=zh-cn
    Li, J. K., Wang, D. H., Chen, Y. C., 2013b. The Ore-Forming, Mechanism of the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan Province: Evidence from Isotope Dating. Acta Geologica Sinica: English Edition, 87(1): 91-101. https://doi.org/10.1111/1755-6724.12033
    Li, J. K., Wang, D. H., Liu, S. B., et al., 2008. SRXRF Microprobe Study of Fluid Incluisions for Pegmatite Deposits in Western Sichuan Province. Geoteconical et Metallogenica, 32(3): 332-337. https://doi.org/10.3969/j.issn.1001-1552.2008.03.010 (in Chinese with English Abstract)
    Li, J. K., Wang, D. H., Zhang, D. H., et al., 2006a. The Source of Ore-Forming Fluid in Jiajika Pegmatite Type Lithium Polymetallic Deposit, Sichuan Province. Acta Petrologoca et Mineralogica, 25(1): 45-52. https://doi.org/10.3969/j.issn.1000-6524.2006.01.006 (in Chinese with English Abstract)
    Li, J. K., Wang, D. H., Zhang, D. H., et al., 2006b. The Discovery of Silicate Daughter Mineral-Bearing Inclusions in the Jiajika Pegmatite Deposit, Western Sichuan, and Its Significance. Mineral Deposits, 25(S1): 131-134 (in Chinese with English Abstract)
    Li, J. K., Wang, D. H., Zhang, D. H., et al., 2007b. Mineralization Mechanism and Continental Dynamics Background of Pegmatite Type Deposit, Southern Sichuan Province. Atomic Energy Press, Beijing. 59-97 (in Chinese)
    Li, X. T., Yan, D. P., Qiu, L., 2018. Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-Alkaline to Alkaline Basalts in Xiqiu Area, Southwest China. Journal of Earth Science, 29(1):57-77. https://doi.org/10.1007/s12583-018-0825-1
    Liu, F., Zhang, Z. X., Li, Q., et al., 2012. New Age Constraints on Koktokay Pegmatite No. 3 Vein, Altay Mountains, Xinjiang: Evidence from Molybdenite Re-Os Dating. Mineral Deposits, 31(5): 1111-1118. https://doi.org/10.3969/j.issn.0258-7106.2012.05.013 (in Chinese with English Abstract)
    Liu, L. J., Fu, X. F., Wang, D. H., et al., 2015. Geological Characteristics and Metallogeny of Jiajika-Style Rare Metal Deposits. Mineral Deposits, 34(6): 1187-1198. https://doi.org/10.16111/j.0258-7106.2015.06.007 (in Chinese with English Abstract)
    Liu, L. J., Wang, D. H., Hou, K. J., et al., 2017a. Application of Lithium Isotope to Jiajika New No. 3 Pegmatite Lithium Polymetallic Vein in Sichuan. Earth Science Frontiers, 24(5): 167-171. https://doi.org/10.13745/j.esf.yx.2017-1-16 (in Chinese with English Abstract)
    Liu, L. J., Wang, D. H., Hou, K. J., et al., 2017b. Geochemical characteristics of REE and Its implications to X03 Super-Large Lithium Pegmatite Vein, Jiajika, Sichuan. Earth Science, 42(10): 1673-1683. https://doi.org/10.3799/dqkx.2017.113 (in Chinese with English Abstract)
    Liu, Y. J.., Ma, D. S., 1993. Vein-Type Tungsten Deposits of China and Adjoining Regions. Ore Geology Reviews, 8(3/4): 233-246. https://doi.org/10.1016/0169-1368(93)90018-t
    Liu, Y. S., Gao S., Hu Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537−571. https://doi.org/10.1093/petrology/egp082
    London, D., 1987. Internal Differentiation of Rare-Element Pegmatites: Effects of Boron, Phosphorus, and Fluorine. Geochimica et Cosmochimica Acta, 51(3): 403−420. https://doi.org/10.1016/0016- 7037(87)90058-5 doi: 10.1016/0016-7037(87)90058-5
    London, D., 1990. Internal Differentiation of Rare-Element Pegmatites: A Synthesis of Recent Research. Geological Society of America Special Papers, 1: 35−50. https://doi.org/10.1130/spe246-p35
    London, D., 2005. Granitic Pegmatites: An Assessment of Current Concepts and Directions for the Future. Lithos, 80(1/2/3/4): 281-303. https://doi.org/10.1016/j.lithos.2004.02.009
    Ludwig, K. R., 2003. Isoplot/Ex Version 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. 1−70
    Martin, R. F., Vito, C. D., 2005. The Patterns of Enrichment in Felsic Pegmatites Ultimately Dependon Tectonic Setting. Canadian Mineralogist, 43(6): 2027−2048. https://doi.org/10.2113/gscanmin.43.6.2027
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth Science Reviews, 37(3/4): 215−224. https://doi.org/10.1016/0012-8252(94)90029-9
    Nguyen, T. A., Yang, X. Y., Thi, H. V., et al., 2019. Piaoac Granites Related W-Sn Mineralization, Northern Vietnam: Evidences from Geochemistry, Zircon Geochronology and Hf Isotopes. Journal of Earth Science, 30(1): 52-69. https://doi.org/10.1007/s12583-018-0865-6
    Nizamoff, J. W., Falster, A. U., Simmons, W. B., et al., 1999. Phosphate Mineralogy of NYF-, LCT-, and Mixed-Type Granitic Pegmatites. Canadian Mineralogist, 37: 853−854. https://doi.org/10.3749/canmin. 50.6.1713 doi: 10.3749/canmin.50.6.1713
    Norton, J. J., 1983. Sequence of Mineral Assemblages in Differentiated Granitic Pegmatites. Economic Geology, 78(5): 854-874. https://doi.org/10.2113/gsecongeo.78.5.854
    Novák, M., Škoda, R., Gadas, P., et al., 2012. Contrasting Origin of the Mixed (NYF+LCT) Signature in Granitic Pegmatites, with Examples from the Moldanubian Zone, Czech Republic. Canadian Mineralogist, 50(4): 1077-1094. https://doi.org/10.3749/canmin.50.4.1077
    Pan, M., Tang, Y., Xiao, R. Q., et al., 2016. The Discovery of the Superlarge Li Ore Vein X03 in the Jiajika Ore District. Acta Geological Sichuan, 36(3): 422−425. https://doi.org/10.3969/j.issn.1006-0995.2016.03.016 (in Chinese with English Abstract)
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/ 25.4.956 doi: 10.1093/petrology/25.4.956
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
    Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/ 37.6.1491 doi: 10.1093/petrology/37.6.1491
    Pezzotta, F., 2001. Madagascar's Rich Pegmatite Districts: A General Classification. In: East Hampton, C. T., ed., Extra Lapis English No. 1, Madagascar. Lapis International. 34-35
    Qin, J. H., Liu, C., Chen, Y. C., et al., 2019. Timing of Lithospheric Extension in Northeastern China: Evidence from the Late Mesozoic Nianzishan A-Type Granitoid Complex. Journal of Earth Science, 30(4): 689-706. https://doi.org/10.1007/s12583-018-0996-9
    Qin, Y. L., Hao, X. F., Xu, Y. F., et al., 2015. Metallogenic Regularity and Prospecting Criteria of Granite Type Rare Metal Deposits in Jiajika Area, Sichuan Province. Geological Survey of China, 2(7): 35-39 (inChinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzdc201507007
    Rittmann, A., 1957. On the Serial Character of Igneous Rocks. Egyptian Journal of Geology, 1: 23-48.
    Roger, F., Jolivet, M., Malavieille, J., 2010. The Tectonic Evolution of the Songpan-Garzê (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 39(4):254-269. https://doi.org/10.1016/j.jseaes.2010.03.008
    Roger, F., Malavieille, J., Leloup, P. H., et al., 2004. Timing of Granite Emplacement and Cooling in the Songpan-Garzê Fold Belt (Eastern Tibetan Plateau) with Tectonic Implications. Journal of Asian Earth Sciences, 22(5): 465-481. https://doi.org/10.1016/s1367-9120(03)00089-0
    Saleh, G. M., 2007. Rare Metal-Bearing Pegmatites from the Southeastern Desert of Egypt. Geology, Geochemical Characteristics, and Petrogenesis. Chinese Journal of Geochemistry, 26(1): 8-22. https://doi.org/10.1007/s11631-007-0008-8
    Shi, C. Y., 2008. Abundance of Chemical Elements of Granitoids in China. Geological Publishing House, Beijing (in Chinese)
    Sigoyer, J. D., Vanderhaeghe, O., Duchêne, S., et al., 2014. Generation and Emplacement of Triassic Granitoids within the Songpan Ganze Accretionary-Orogenic Wedge in a Context of Slab Retreat Accommodated by Tear Faulting, Eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 88: 192-216. https://doi.org/10.1016/j.jseaes. 2014.01.010 doi: 10.1016/j.jseaes.2014.01.010
    Srivastava, P. K., Sinha, A. K., 1997. Geochemical Characterization of Tungsten-Bearing Granites from Rajasthan, India. Journal of Geochemical Exploration, 60(2): 173-184. https://doi.org/10.1016/s0375- 6742(97)00005-8 doi: 10.1016/s0375-6742(97)00005-8
    Stemprok, M., 1979. Mineralized Granites and Their Origin. Episodes, 3: 20-24 https://www.researchgate.net/publication/235918014_Mineralized_granites_and_their_origin
    Su, A. N., Tian, S. H., Hou, Z. Q., et al., 2011. Lithium Isotope and Its Application to Jiajika Pegmatite Type Lithium Polymetallic Deposit in Sichuan. Geoscience, 25(2): 236-242. https://doi.org/10.3969/j.issn. 1000-8527.2011.02.006 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-8527.2011.02.006
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29-44. https://doi.org/10.1016/s0024-4937(98) 00024-3 doi: 10.1016/s0024-4937(98)00024-3
    Tang, G. F., Wu, S. X., 1984. Geological Study Report of Jiajika Granite- Pegmatite Type Li Deposit in Kangding, Sichuan. Inner Report (in Chinese)
    Thomas, R., Förster, H. J., Rickers, K., et al., 2005. Formation of Extremely F-Rich Hydrous Melt Fractions and Hydrothermal Fluids During Differentiation of Highly Evolved Tin-Granite Magmas: A Melt/Fluid-Inclusion Study. Contributions to Mineralogy and Petrology, 148(5): 582-601. https://doi.org/10.1007/s00410-004-0624-9
    Tischendorf, G., 1977. Geochemical and Petrographic Criteria of Silicic Magmatic Rocks Associated with Rare Metal Mineralization. In: Stemprok, M., ed., Metallization Associated With Acid Magmatism. Ustredni Ustav Geologicky, Prague, 2: 41-96
    Tkachev, A. V., 2011. Evolution of Metallogeny of Granitic Pegmatites Associated with Orogens Throughout Geological Time. Geological Society, London, Special Publications, 350(1): 7-23. https://doi.org/10.1144/sp350.2
    Wang, C. Y., Han, W. B., Wu, J. P., et al., 2007. Crustal Structure Beneath the Eastern Margin of the Tibetan Plateau and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 112(B7): B07307. https://doi.org/10.1029/2005JB003873
    Wang, D. H., Chen, Y. C., Xu, Z. G., et al., 2002. Metallogenic Series and Metallogenic Regularity of Altai Metallogenic Province. Atomic Energy Press, Beijing. 1-492 (in Chinese)
    Wang, D. H., Li, J. K., Fu, X. F., 2005. 40Ar/39Ar Dating for the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan and Its Significance. Geochimica, 34(6): 541-547. https://doi.org/10.3321/j.issn: 0379- 1726.2005.06.001 (in Chinese with English Abstract) doi: 10.3321/j.issn:0379-1726.2005.06.001
    Wang, D. H., Liu, L. J., Dai, H. Z., et al., 2017a. Discussion on Particularity and Prospecting Direction of Large and Super-Large Spodumene Deposits. Earth Science, 42(12): 2243-2257. https://doi.org/10.3799/dqkx.2017.142 (in Chinese with English Abstract)
    Wang, D. H., Liu, L. J., Hou, J. L., et al., 2017b. A Prime Review on Application of "Five Levels+Basement" Model for Jiajika-Style Rare Metal Deposits. Earth Science Frontiers, 24(5): 1-7. https:// doi.org/10.13745/j.esf.yx.2017-1-1 (in Chinese with English Abstract)
    Wang, Q. W., Wang, K. M., Kan, Z. Z., et al., 2008. Granite and Its Mineralization Series in Western Sichuan. Geological Publishing House, Beijing (in Chinese)
    Wang, Z. P., Liu, S. B., Ma, S. C., et al., 2018. Metallogenic Regularity, Deep and Periphery Prospecting of Dangba Superlarge Spodumene Deposit in Aba, Sichuan Province. Earth Science. 43(6): 2029-2041. https://doi.org/10.3799/dqkx.2018.604 (in Chinese with English Abstract)
    Weislogel, A. L., 2008. Tectonostratigraphic and Geochronologic Constraints on Evolution of the Northeast Paleotethys from the Songpan- Ganzi Complex, Central China. Tectonophysics, 451(1/2/3/4): 331-345. https://doi.org/10.1016/j.tecto.2007.11.053
    Wen, C. H., Chen, J. F., Luo, X. Y., et al., 2016. Geochemical Features of the Chuanziyuan Rare Metal Pegmatite in Northeastern Hunan, China. Bulletin of Mineralogy, Petrology and Geocheistry, 35(1): 171-177. https://doi.org/10.3969/j.issn.1007-2802.2016.01.020 (in Chinese with English Abstract)
    Yang, X. M., 2007. Using the Rittmann Serial Index to Define the Alkalinity of Igneous Rocks. Neues Jahrbuch für Mineralogie-Abhandlungen. Journal of Mineralogy and Geochemistry, 184(1): 95-103. https://doi.org/10.1127/0077-7757/2007/0082
    Yuan, C., Zhou, M. F, Sun, M., et al., 2010. Triassic Granitoids in the Eastern Songpan Ganzi Fold Belt, SW China: Magmatic Response to Geodynamics of the Deep Lithosphere. Earth and Planetary Science Letters, 290(3/4): 481-492. https://doi.org/10.1016/j.epsl.2010.01.005
    Yuan, S. D., Peng, J. T., Hao, S., et al., 2011. In Situ LA-MC-ICP-MS and ID-TIMS U-Pb Geochronology of Cassiterite in the Giant Furong Tin Deposit, Hunan Province, South China: New Constraints on the Timing of Tin-Polymetallic Mineralization. Ore Geology Reviews, 43(1): 235-242. https://doi.org/10.1016/j.oregeorev.2011.08.002
    Yuan, Z. X, Bai, G., 2001. Temporal and Spatial Distribution of Endogenic Rare and Rare Earth Mineral Deposit of China. Mineral Deposits, 20(4): 347-354. https://doi.org/10.3969/j.issn.0258-7106.2001.04.008 (in Chinese with English Abstract)
    Zhang, H. F., Parrish, R., Zhang, L., et al., 2007. A-Type Granite and Adakitic Magmatism Association in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Implication for Lithospheric Delamination. Lithos, 97(3/4): 323-335. https://doi.org/10.1016/j.lithos.2007.01.002
    Zhang, H. F., Zhang, L., Harris, N., et al., 2006. U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Constraints on Petrogenesis and Tectonic Evolution of the Basement. Contributions to Mineralogy and Petrology, 152(1): 75-88. https://doi.org/10.1007/s00410-006-0095-2
    Zhang, L. F., Zhang, D. Y., Ouyang, H. W., et al., 2016. Technique for Separating Magnesium and Lithium from Salt Lake Brine with High Mg/Li Ratio. Mining and Metaliurgical Engineering, 36(4): 83-87. https://doi.org/10.3969/j.issn.0253-6099.2016.04.022 (in Chinese with English Abstract)
    Zhang, Y., Chen, P. R., 2010. Characteristics of Granitic Pegmatite with High-Purity Quartz in Spruce Pine Region, USA and Altay Region of Xinjiang, China. Geological Journal of China Universities, 16(4): 426-435. https://doi.org/10.3969/j.issn.1006-7493.2010.04.002 (in Chinese with English Abstract)
    Zhao, Y. X., Zhao, G. M., Zeng, Y. F., 2015. Geological Features and Gentic Model for the Granitic Pegmatite Type (Jiajika Type) Li Deposit in West Sichuan--By the Example of the Jiajika Li Deposit. Acta Geologica Sichuan, 35(3): 391-395. https://doi.org/10.3969/j.issn.1006- 0995.2015.03.018 (in Chinese with English Abstract) doi: 10.3969/j.issn.1006-0995.2015.03.018
    Zhou, J. T., Wang, X. Y., Li, Z. M., et al., 2012. Geological Characteristics and Metallogenic Mechanism of the Toupi Granitic Pegmatite Type Spodumene Deposit in Guangchang County Jiangxi Province. Journal of East China Institute of Technology: Natural Science, 35(4): 378-387. https://doi.org/10.3969/j.issn.1674-3504.2012.04.012 (in Chinese with English Abstract)
    Zou, T. R., Li, Q. C., 2006. Rare and Rare Earth Metal Deposits in Xinjiang, China. Geological Publishing House, Beijing (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(1084) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return