Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 5
Oct 2019
Turn off MathJax
Article Contents
Shuhua Fan, Zhaochong Zhang, Changqian Ma, Qiuhong Xie, Lianxun Wang, Yanjie Li, Yuzhe Zhang. Coronas around Olivine in the Miaowan Olivine Norite, Yangtze Craton, South China. Journal of Earth Science, 2019, 30(5): 924-937. doi: 10.1007/s12583-019-1012-8
Citation: Shuhua Fan, Zhaochong Zhang, Changqian Ma, Qiuhong Xie, Lianxun Wang, Yanjie Li, Yuzhe Zhang. Coronas around Olivine in the Miaowan Olivine Norite, Yangtze Craton, South China. Journal of Earth Science, 2019, 30(5): 924-937. doi: 10.1007/s12583-019-1012-8

Coronas around Olivine in the Miaowan Olivine Norite, Yangtze Craton, South China

doi: 10.1007/s12583-019-1012-8
More Information
  • Corresponding author: Zhaochong Zhang
  • Received Date: 03 Nov 2018
  • Accepted Date: 09 Mar 2019
  • Publish Date: 01 Oct 2019
  • Coronitic microstructures have been used to interpret the late-stage solidification history of igneous rocks and to constrain the corresponding chemical and/or physical changes. Coronas with three shells were also recognized in the Miaowan olivine norite, Yangtze Craton, South China. In our study, orthopyroxene intergrowth with vermicular magnetite in the inner shell is in optical continuity with magnetite-free orthopyroxene in the middle shell. In the outer shell of brown amphibole remaining magnetite-free orthopyroxene inclusions sporadically occur. Meanwhile Mg# values of orthopyroxene (76-80) in the inner and middle shells are basically consistent with olivine (78-81). In this paper, we propose a multi-stage genetic model for the formation of coronas in the Miaowan olivine norite. In the first stage, the magnetite-free orthopyroxene shell formed through reaction between primocrystal olivine with the residual Si-rich melt at 990-1 053 ℃ and 6.2-6.5 kbar. In the second stage, the orthopyroxene-magnetite symplectite shell formed when primocrystal olivine reacted with the late-stage residual Fe-rich melt promoted by high oxygen fugacity condition at 927-1 035 ℃ and 6.0-6.5 kbar. In the third stage, the brown amphibole shell formed as the presence of residual hydrous melt and replaced the middle shell at 821-900 ℃ and 5.5-6.0 kbar.

     

  • loading
  • Abily, B., Ceuleneer, G., Launeau, P., 2011. Synmagmatic Normal Faulting in the Lower Oceanic Crust:Evidence from the Oman Ophiolite. Geology, 39(4):391-394. https://doi.org/10.1130/g31652.1
    Acquafredda, P., Caggianelli, A., Piccarreta, G., 1992. Late Magmatic to Subsolidus Coronas in Gabbroic Rocks from the Sila Massif (Calabria, Italy). Mineralogy and Petrology, 46(3):229-238. https://doi.org/10.1007/bf01164648
    Ambler, E. P., Ashley, P. M., 1977. Vermicular Orthopyroxene-Magnetite Symplectites from the Wateranga Layered Mafic Intrusion, Queensland, Australia. Lithos, 10(3):163-172. https://doi.org/10.1016/0024-4937(77)90044-5
    Baltatzis, E., Skounakis, S., 1990. Coronas in Olivine-Gabbros from La-vanovo Village, Northern Pindos, Greece. Chemie der Erde-Geochemistry, 50:297-302
    Barton, M., Gaans, C. V., 1988. Formation of Orthopyroxene-Fe-Ti Oxide Symplectites in Precambrian Intrusives, Rogaland, Southwestern Nor-way. American Mineralogist, 73(9/10):1046-1059 http://www.minsocam.org/ammin/AM73/AM73_1046.pdf
    Bucher, K., Grapes, R., 2009. The Eclogite-Facies Allalin Gabbro of the Zermatt-Saas Ophiolite, Western Alps:A Record of Subduction Zone Hydration. Journal of Petrology, 50(8):1405-1442. https://doi.org/10.1093/petrology/egp035
    Chen, C., Yuan, J. L., Kong, L. Y., et al., 2018. Documentation of Early Paleozoic Mafic Dykes in the Dahongshan Region, Northern Yangze Block and Its Geological Significance. Earth Science, 43(7):2370-2388 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807013.htm
    Chen, S., Li, X. P., Kong, F. M., et al., 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5):1219-1235. https://doi.org/10.1007/s12583-017-0956-9
    Cheng, C., Xia, B., Zheng, H., et al., 2018. Chronology, Geochemistry and Tectonic Significance of Daba Ophiolites in Western Segment of Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4):975-990 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201804004.htm
    Claeson, D. T., 1998. Coronas, Reaction Rims, Symplectites and Emplacement Depth of the Rymmen Gabbro, Transscandinavian Igneous Belt, Southern Sweden. Mineralogical Magazine, 62(6):743-757. https://doi.org/10.1180/002646198548133
    Coombs, M. L., Gardner, J. E., 2004. Reaction Rim Growth on Olivine in Silicic Melts:Implications for Magma Mixing. American Mineralogist, 89(5/6):748-758. https://doi.org/10.2138/am-2004-5-608
    Cruciani, G., Franceschelli, M., Groppo, C., et al., 2008. Formation of Clinopyroxene+Spinel and Amphibole+Spinel Symplectites in Coro-nitic Gabbros from the Sierra de San Luis (Argentina):A Key to Post-Magmatic Evolution. Journal of Metamorphic Geology, 26(7):759-774. https://doi.org/10.1111/j.1525-1314.2008.00786.x
    de Haas, G. J. L., Nijland, T. G., Valbracht, P. J., et al., 2002. Magmatic versus Metamorphic Origin of Olivine-Plagioclase Coronas. Contribu-tions to Mineralogy and Petrology, 143(5):537-550. https://doi.org/10.1007/s00410-002-0362-9
    Deng, H., Peng, S. B., Polat, A., et al., 2017. Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton:Evi-dence for Evolving Tectonic Settings. Precambrian Research, 289:75-94. https://doi.org/10.1016/j.precamres.2016.12.003
    Dirksen, O., Humphreys, M. C. S., Pletchov, P., et al., 2006. The 2001-2004 Dome-Forming Eruption of Shiveluch Volcano, Kamchatka:Observation, Petrological Investigation and Numerical Modelling. Journal of Volcanology and Geothermal Research, 155(3/4):201-226. https://doi.org/10.1016/j.jvolgeores.2006.03.029
    Efimov, A. A., Malitch, K. N., 2012. Magnetite-Orthopyroxene Symplectites in Gabbros of the Urals:A Structural Track of Olivine Oxidation. Geology of Ore Deposits, 54(7):531-539. https://doi.org/10.1134/s1075701511070075
    England, R. N., 1974. Corona Structures Formed by Near-Isochemical Reaction between Olivine and Plagioclase in a Metamorphosed Dolerite. Mineralogical Magazine, 39(307):816-818. https://doi.org/10.1180/minmag.1974.039.307.11
    Faryad, S. W., Kachlík, V., Sláma, J., et al., 2015. Implication of Corona Formation in a Metatroctolite to the Granulite Facies Overprint of HP-UHP Rocks in the Moldanubian Zone (Bohemian Massif). Journal of Metamorphic Geology, 33(3):295-310. https://doi.org/10.1111/jmg.12121
    Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2):153-182. https://doi.org/10.2475/02.2011.03
    Gardner, P. M., Robins, B., 1974. The Olivine-Plagioclase Reaction:Geological Evidence from the Seiland Petrographic Province, Northern Norway. Contributions to Mineralogy and Petrology, 44(2):149-156. https://doi.org/10.1007/bf00385787
    Goode, A. D. T., 1974. Oxidation of Natural Olivines. Nature, 248(5448):500-501. https://doi.org/10.1038/248500a0
    Grant, S. M., 1988. Diffusion Models for Corona Formation in Metagabbros from the Western Grenville Province, Canada. Contributions to Miner-alogy and Petrology, 98(1):49-63. https://doi.org/10.1007/bf00371909
    Hammarstrom, J. M., Zen, E., 1986. Aluminum in Hornblende:An Empirical Igneous Geobarometer. American Mineralogist, 71(11):1297-1313. https://doi.org/10.1180/minmag.1986.050.358.28
    Han, Q. S., Peng, S. B., Kusky, T., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004
    Haselton, J. D., Nash, W. P., 1975. Ilmenite-Orthopyroxene Intergrowths from the Moon and the Skaergaard Intrusion. Earth and Planetary Science Letters, 26(3):287-291. https://doi.org/10.1016/0012-821x(75)90003-5
    Helz, R. T., 1973. Phase Relations of Basalts in Their Melting Range at PH2O=5 kb as a Function of Oxygen Fugacity. Part Ⅰ. Mafic Phases. Journal of Petrology, 14(2):249-302. https://doi.org/10.1093/petrology/14.2.249
    Holness, M. B., Stripp, G., Humphreys, M. C. S., et al., 2011. Silicate Liquid Immiscibility within the Crystal Mush:Late-Stage Magmatic Microstructures in the Skaergaard Intrusion, East Greenland. Journal of Petrology, 52(1):175-222. https://doi.org/10.1093/petrology/egq077
    Ikeda, T., Nishiyama, T., Yamada, S., et al., 2007. Microstructures of Olivine-Plagioclase Corona in Meta-Ultramafic Rocks from Sefuri Mountains, NW Kyushu, Japan. Lithos, 97(3/4):289-306. https://doi.org/10.1016/j.lithos.2006.12.016
    Jiang, X. F., 2014. Genesis and Tectonic Significance of the Miaowan Ophiolite Complex in the Huangling Anticline, Yangtze Craton: [Dis-sertation]. China University of Geosciences, Wuhan. 168 (in Chinese with English Abstract)
    Jiang, X. F., Peng, S. B., Kusky, T. M., et al., 2018. Petrogenesis and Geotectonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton:Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1):93-102. https://doi.org/10.1007/s12583-018-0821-5
    Jiang, X. F., Peng, S. B., Polat, A., et al., 2016. Geochemistry and Geo-chronology of Mylonitic Metasedimentary Rocks Associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze Craton, China:Im-plications for Geodynamic Events. Precambrian Research, 279:37-56. https://doi.org/10.1016/j.precamres.2016.04.004
    Joesten, R., 1986. The Role of Magmatic Reaction, Diffusion and Annealing in the Evolution of Coronitic Microstructure in Troctolitic Gabbro from Risör, Norway. Mineralogical Magazine, 50(357):441-467. https://doi.org/10.1180/minmag.1986.050.357.08
    Keeditse, M., Rajesh, H. M., Belyanin, G. A., et al., 2016. Primary Mag-matic Amphibole in Archaean Meta-Pyroxenite from the Central Zone of the Limpopo Complex, South Africa. South African Journal of Geology, 119(4):607-622. https://doi.org/10.2113/gssajg.119.4.607
    Kendrick, J. L., Jamieson, R. A., 2016. The Fate of Olivine in the Lower Crust:Pseudomorphs after Olivine in Coronitic Metagabbro from the Grenville Orogen, Ontario. Lithos, 260:356-370. https://doi.org/10.1016/j.lithos.2016.06.002
    Kretz, R., 1983. Symbols for Rock Forming Minerals. American Mineralo-gist, 68:277-279. https://doi.org/10.1016/0040-1951(84)90122-7
    Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the Inter-national Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3):623-651. https://doi.org/10.1127/ejm/9/3/0623
    Ma, D. Q., Du, S. H., Xiao, Z. F., 2002. The Origin of Huangling Granite Batholith. Acta Petrologica et Mineralogica, 21(2):151-161 (in Chi-nese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200202008.htm
    Ma, D. Q., Li, Z. C., Xiao, Z. F., 1997. The Constitute, Geochronology and Geologic Evolution of the Kongling Complex, Western Hubei. Acta Geoscientia Sinica, 18(3):233-241 (in Chinese with English Abstract)
    Mason, R., 1967. Electron-Probe Microanalysis of Coronas in a Troctolite from Sulitjelma, Norway. Mineralogical Magazine, 36(280):504-514. https://doi.org/10.1180/minmag.1967.036.280.04
    Mercier, J. C., 1976. Single-Pyroxene Geothermometry and Geobarometry. American Mineralogist, 61:603-615 http://www.minsocam.org/ammin/AM61/AM61_603.pdf
    Meurer, W. P., Claeson, D. T., 2002. Evolution of Crystallizing Interstitial Liquid in an Arc-Related Cumulate Determined by LA ICP-MS Mapping of a Large Amphibole Oikocryst. Journal of Petrology, 43(4):607-629. https://doi.org/10.1093/petrology/43.4.607
    Mongkoltip, P., Ashworth, J. R., 1983. Quantitative Estimation of an Open-System Symplectite-Forming Reaction:Restricted Diffusion of Al and Si in Coronas around Olivine. Journal of Petrology, 24(4):635-661. https://doi.org/10.1093/petrology/24.4.635
    Muir, I. D., Tilley, C. E., 1957. Contribution to the Petrology of Hawaiian Basalts, 1. The Picrite Basalts of Kilauea. American Journal of Science, 255(4):241-253 doi: 10.2475/ajs.255.4.241
    Nilsen, O., 1973. Petrology of the Hyllingen Gabbro Complex, Sør-Trøndelag, Norway. Norsk Geologisk Tidsskrift, 53:213-231
    Otten, M. T., 1984. The Origin of Brown Hornblende in the Artfjället Gabbro and Dolerites. Contributions to Mineralogy and Petrology, 86(2):189-199. https://doi.org/10.1007/bf00381846
    Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton:Impli-cations for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2/3):577-594. https://doi.org/10.1016/j.gr.2011.07.010
    Peng, S. B., Li, C. N., Kusky, T. M., et al., 2010. Discovery and Its Tectonic Significance of the Proterozoic Miaowan Ophiolites in the Southern Huangling Anticline, Western Hubei, China. Geological Bulletin of China, 29(1):8-20 (in Chinese with English Abstract)
    Pognante, U., Kienast, J. R., 1987. Blueschist and Eclogite Transformations in Fe-Ti Gabbros:A Case from the Western Alps Ophiolites. Journal of Petrology, 28(2):271-292. https://doi.org/10.1093/petrology/28.2.271
    Polat, A., Fryer, B. J., Samson, I. M., et al., 2012. Geochemistry of Ultramafic Rocks and Hornblendite Veins in the Fiskenæsset Layered Anorthosite Complex, SW Greenland:Evidence for Hydrous Upper Mantle in the Archean. Precambrian Research, 214/215:124-153. https://doi.org/10.1016/j.precamres.2011.11.013
    Turner, S. P., Stüwe, K., 1992. Low-Pressure Corona Textures between Olivine and Plagioclase in Unmetamorphosed Gabbros from Black Hill, South Australia. Mineralogical Magazine, 56(385):503-509. https://doi.org/10.1180/minmag.1992.056.385.06
    van Lamoen, H., 1979. Coronas in Olivine Gabbros and Iron Ores from Susimäki and Riuttamaa, Finland. Contributions to Mineralogy and Petrology, 68(3):259-268. https://doi.org/10.1007/bf00371546
    Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Pre-cambrian Research, 200-203:26-37. https://doi.org/10.1016/j.precamres.2011.12.015
    Wu, Y., Chen, S. Y., Qin, M. K., et al., 2018. Zircon U-Pb Ages of Dongcuo Ophiolite in Western Bangonghu-Nujiang Suture Zone and Their Geo-logical Significance. Earth Science, 43(4):1070-1087 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dqkx201804010
    Xia, B., Yang, Q., Chen, N. S., et al., 2018. Phase Equilibrium Modeling of Retrograded Eclogite at the Kekesu Valley, Eastern Segment of SW Tianshan Orogen and Tectonic Implications. Journal of Earth Science, 29(5):1060-1073. https://doi.org/10.1007/s12583-018-0844-y
    Xie, Q. H., Zhang, Z. C., Cheng, Z. G., et al., 2017. Interstitial Microstructures in Ji'nan Mafic Intrusion, North China Craton:Magmatic or Hydrothermal Origin?. European Journal of Mineralogy, 29(5):839-850. https://doi.org/10.1127/ejm/2017/0029-2656
    Zeck, H. P., Shenouda, H. H., Rønsbo, J. G., et al., 1982. Hypersthene-Ilmenite (Magnetite) Symplectites in Coronitic Olivine-Gabbronorites. Lithos, 15(3):173-182. https://doi.org/10.1016/0024-4937(82)90008-1
    Zhang, L. J., Ma, C. Q., Wang, L. X., et al., 2011. Discovery of Paleoproterozoic Rapakivi Granite on the Northern Margin of the Yangtze Block and Its Geological Significance. Chinese Science Bulletin, 56(3):306-318. https://doi.org/10.1007/s11434-010-4236-7
    Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4):1241-1260. https://doi.org/10.1016/j.gr.2012.09.005
    Zhang, Z. C., Hou, T., Li, H. M., et al., 2014. Enrichment Mechanism of Iron in Magmatic-Hydrothermal System. Acta Petrologica Sinica, 30 (5):1189-1204 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201405001.htm
    Zhong, X., Xi, A. H., Ge, Y. H. et al., 2018. Crystallization Sequence of Minerals and Origin of the Fe-Ti-V Oxide Ores from the Baima Layered Intrusion in the Panxi Area. Acta Mineralogica Sinica, 38(4):449-461 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB201804012.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views(1287) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return