Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 5
Oct 2019
Turn off MathJax
Article Contents
Wenda Zhou, Shuyun Xie, Zhengyu Bao, Emmanuel John M. Carranza, Lei Lei, Zhenzhen Ma. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 2019, 30(5): 879-892. doi: 10.1007/s12583-019-1013-7
Citation: Wenda Zhou, Shuyun Xie, Zhengyu Bao, Emmanuel John M. Carranza, Lei Lei, Zhenzhen Ma. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 2019, 30(5): 879-892. doi: 10.1007/s12583-019-1013-7

Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China

doi: 10.1007/s12583-019-1013-7
More Information
  • Corresponding author: Shuyun Xie
  • Received Date: 03 Nov 2018
  • Accepted Date: 24 Feb 2019
  • Publish Date: 01 Oct 2019
  • Shale gas resources have been regarded as a viable energy source, and it is of great significance to characterize the shale composition of different cements, such as quartz and dolomite. In this research, chemical analysis and the multifractal method have been used to study the mineral compositions and petrophysical structures of cements in shale samples from the Longmaxi Formation, China. X-ray diffraction, electron microprobe, field emission scanning electron microscopy, cathodoluminescence microscopy and C-O isotope analyses confirmed that cements in the Longmaxi Formation shales are mainly composed of Fe-bearing dolomite and quartz. Fe-bearing dolomite cements concentrate around dolomite as annuli, filling micron-sized inorganic primary pores. Quartz cements in the form of nanoparicles fill primary inter-crystalline pores among clay minerals. Theoretical calculation shows that the Fe-bearing dolomite cements formed slightly earlier than the quartz cements, but both were related to diagenetic illitization of smectite. Moreover, multifractal analysis reveals that the quartz cements are more irregularly distributed in pores than the Fe-bearing dolomite cements. These results suggest that the plugging effect of the quartz cements on the primary inoraganic pore structures is the dominant factor resulting in low interconnected porosity of shales, which are unfavorable for the enrichment of shale gas.

     

  • loading
  • Al-Aasm, I. S., Packard, J. J., 2000. Stabilization of Early-Formed Dolomite:A Tale of Divergence from Two Mississippian Dolomites. Sedimentary Geology, 131(3/4):97-108. https://doi.org/10.1016/s0037-0738(99)00132-3
    Abramoff, M. D., Magelhaes, P. J., Ram, S. J., 2004. Image Processing with ImageJ. Biophotonics International, 11(5/6):36-42. https://doi.org/10.3233/isu-1991-115-601
    Ajdukiewicz, J. M., Larese, R. E., 2012. How Clay Grain Coats Inhibit Quartz Cement and Preserve Porosity in Deeply Buried Sandstones:Observations and Experiments. AAPG Bulletin, 96(11):2091-2119. https://doi.org/10.1306/02211211075
    Baig, M. O., Harris, N. B., Ahmed, H., et al., 2016. Controls on Reservoir Diagenesis in the Lower Goru Sandstone Formation, Lower Indus Basin, Pakistan. Journal of Petroleum Geology, 39(1):29-47. https://doi.org/10.1111/jpg.12626
    Bao, H. M., Thiemens, M. H., 2000. Generation of O2 from BaSO4 Using a CO2-Laser Fluorination System for Simultaneous Analysis of δ18O and δ17O. Analytical Chemistry, 72(17):4029-4032. https://doi.org/10.1021/ac000086e
    Bettison-Varga, L., Mackinnon, I. D. R., Schiffman, P., 1991. Integrated TEM, XRD and Electron Microprobe Investigation of Mixed-Layer Chlorite-Smectite from the Point Sal Ophiolite, California. Journal of Metamorphic Geology, 9(6):697-710. https://doi.org/10.1111/j.1525-1314.1991.tb00559.x
    Bird, N., Díaz, M. C., Saa, A., et al., 2006. Fractal and Multifractal Analysis of Pore-Scale Images of Soil. Journal of Hydrology, 322(1/2/3/4):211-219. https://doi.org/10.1016/j.jhydrol.2005.02.039
    Bjorkum, P. A., Walderhaug, O., Aase, N. E., 1993. A Model for the Effect of Illitization on Porosity and Quartz Cementation of Sandstones. Journal of Sedimentary Research, 63(6):1089-1091. https://doi.org/10.2110/jsr.63.1089
    Boles, J. R., Franks, S. G., 1979. Clay Diagenesis in Wilcox Sandstones of Southwest Texas:Implications of Smectite Diagenesis on Sandstone Cementation. SEPM Journal of Sedimentary Research, 49(1):55-70 https://pubs.geoscienceworld.org/sepm/jsedres/article-abstract/49/1/55/113540/clay-diagenesis-in-wilcox-sandstones-of-southwest
    Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129:173-181. https://doi.org/10.1016/j.fuel.2014.03.058
    Chen, S. B., Han, Y. F., Fu, C. Q., et al., 2016. Micro and Nano-Size Pores of Clay Minerals in Shale Reservoirs:Implication for the Accumulation of Shale Gas. Sedimentary Geology, 342:180-190. https://doi.org/10.1016/j.sedgeo.2016.06.022
    Chen, Q., Kang, Y. L., You, L. J., et al., 2017. Change in Composition and Pore Structure of Longmaxi Black Shale during Oxidative Dissolution. International Journal of Coal Geology, 172:95-111. https://doi.org/10.1016/j.coal.2017.01.011
    Curtis, M. E., Ambrose, R. J., Sondergeld, C. H., 2010. Structural Charac-terization of Gas Shales on the Micro- and Nano-Scales. Canadian Unconventional Resources and International Petroleum Conference, October 19-21, Calgary, Alberta. https://doi.org/10.2118/137693-MS
    Dai, J. X., Zou, C. N., Liao, S. M., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Si-chuan Basin. Organic Geochemistry, 74:3-12. https://doi.org/10.1016/j.orggeochem.2014.01.018
    Dowey, P. J., Taylor, K. G., 2017. Extensive Authigenic Quartz Overgrowths in the Gas-Bearing Haynesville-Bossier Shale, USA. Sedimentary Ge-ology, 356:15-25. https://doi.org/10.1016/j.sedgeo.2017.05.001
    Evertsz, C. J. G., Mandelbrot, B. B., 1992. Multifractal Measures (Appendix B). In: Peitgen, H.-O., Jurgens, H., Saupe, D., eds. Chaos and Fractals. Springer Verlag, New York. 922-953
    Gasparrini, M., Bechstädt, T., Boni, M., 2006. Massive Hydrothermal Dolomites in the Southwestern Cantabrian Zone (Spain) and Their Relation to the Late Variscan Evolution. Marine and Petroleum Geology, 23(5):543-568. https://doi.org/10.1016/j.marpetgeo.2006.05.003
    Ge, X. M., Fan, Y. R., Li, J. T., et al., 2015. Pore Structure Characterization and Classification Using Multifractal Theory-An Application in San-tanghu Basin of Western China. Journal of Petroleum Science and En-gineering, 127:297-304. https://doi.org/10.1016/j.petrol.2015.01.004
    Geng, Y. K., Jin, Z. K., Zhao, J. H., et al., 2016. Composition and Origin of Clay Minerals in the Lower Silurian Longmaxi Formation in Eastern Sichuan Basin. Natural Gas Geoscience, 27(10):1933-1941. https://doi.org/10.11764/j.issn.1672-1926.2016.10.1933
    Gipson, M. Jr., 1963. Ultrasonic Disaggregation of Shale. Journal of Sedi-mentary Research, 33(4):955-958 doi: 10.1306/74D70FA1-2B21-11D7-8648000102C1865D
    Goldsmith, J. R., Graf, D. L., 1958. Structural and Compositional Variations in some Natural Dolomites. The Journal of Geology, 66(6):678-693. https://doi.org/10.1086/626547
    Halsey, T. C., Jensen, M. H., Kadanoff, L. P., et al., 1986. Fractal Measures and Their Singularities:The Characterization of Strange Sets. Physical Review A, 33(2):1141-1151. https://doi.org/10.1016/0920-5632(87)90036-3
    Hu, H. Y., Hao, F., Lin, J. F., et al., 2017. Organic Matter-Hosted Pore System in the Wufeng-Longmaxi (O3W-S11) Shale, Jiaoshiba Area, Eastern Sichuan Basin, China. International Journal of Coal Geology, 173:40-50. https://doi.org/10.1016/j.coal.2017.02.004
    Jacobs, B. W., Ayres, V. M., Petkov, M. P., et al., 2007. Electronic and Structural Characteristics of Zinc-Blende Wurtzite Biphasic Homo-structure GaN Nanowires. Nano Letters, 7(5):1435-1438. https://doi.org/10.1021/nl062871y
    Jiang, C. Q., Chen, Z. H., Lavoie, D., et al., 2017. Mineral Carbon MinC(%) from Rock-Eval Analysis as a Reliable and Cost-Effective Measurement of Carbonate Contents in Shale Source and Reservoir Rocks. Marine and Petroleum Geology, 83:184-194. https://doi.org/10.1016/j.marpetgeo.2017.03.017
    Jones, B., Luth, R. W., MacNeil, A. J., 2001. Powder X-Ray Diffraction Analysis of Homogeneous and Heterogeneous Sedimentary Dolostones. Journal of Sedimentary Research, 71(5):790-799 doi: 10.1306/2DC40968-0E47-11D7-8643000102C1865D
    Kong, L. M., Wan, M. X., Yan, Y. X., et al., 2016. Reservoir Diagenesis Research of Silurian Longmaxi Formation in Sichuan Basin, China. Journal of Natural Gas Geoscience, 1(3):203-211. https://doi.org/10.1016/j.jnggs.2016.08.001
    Korolyuk, V. N., 2008. JXA-8100 Microanalyzer:Accuracy of Analysis of Rock-Forming Minerals. Russian Geology and Geophysics, 49(3):165-168. https://doi.org/10.1016/j.rgg.2007.07.005
    Land, L. S., 1985. The Origin of Massive Dolomite. Journal of Geological Education, 33(2):112-125. https://doi.org/10.5408/0022-1368-33.2.112
    Lavrent'Ev, Y. G., Korolyuk, V. N., Usova, L. V., et al., 2015. Electron Probe Microanalysis of Rock-Forming Minerals with a JXA-8100 Electron Probe Microanalyzer. Russian Geology and Geophysics, 56(10):1428-1436. https://doi.org/10.1016/j.rgg.2015.09.005
    Li, F. X., Wang, Y., Wang, D. Z., et al., 2004. Characterization of Single-Wall Carbon Nanotubes by N2 Adsorption. Carbon, 42(12/13):2375-2383. https://doi.org/10.1016/j.carbon.2004.02.025
    Li, J., Yu, B. S., Liu, C., et al., 2012. Clay Minerals of Black Shale and Their Effects on Physical Properties of Shale Gas Reservoirs in the Southeast of Chongqing:A Case Study from Lujiao Outcrop Section in Pengshui, Chongqing. Geoscience, 26(4):732-740. https://doi.org/10.1007/s11783-011-0280-z
    Li, W. H., Lu, S. F., Xue, H. T., et al., 2016. Microscopic Pore Structure in Shale Reservoir in the Argillaceous Dolomite from the Jianghan Basin. Fuel, 181:1041-1049. https://doi.org/10.1016/j.fuel.2016.04.140
    Li, X. Q., Bao, H. M., Gan, Y. Q., et al., 2013. Multiple Oxygen and Sulfur Isotope Compositions of Secondary Atmospheric Sulfate in a Mega-City in Central China. Atmospheric Environment, 81(4):591-599. https://doi.org/10.1016/j.atmosenv.2013.09.051
    Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2016. Deep-Water Depositional Mechanisms and Significance for Unconventional Hydrocarbon Ex-ploration:A Case Study from the Lower Silurian Longmaxi Shale in the Southeastern Sichuan Basin. AAPG Bulletin, 100(5):773-794. https://doi.org/10.1306/02031615002
    Liu, K. Q., Ostadhassan, M., 2017. Multi-Scale Fractal Analysis of Pores in Shale Rocks. Journal of Applied Geophysics, 140:1-10. https://doi.org/10.1016/j.jappgeo.2017.02.028
    Liang, L. I., Pan, R., Yang, Y., et al., 2017. Characteristics of Pores and the Controlling Factors in Longmaxi Formation of Silurian Changing Area, Sichuan Basin. Journal of Geology, 41(1):39-44. https://doi.org/10.3969/j.issn.1674-3636.2017.01.39 (in Chinese with English Abstract)
    Liu, J. K., Peng, J., Liu, J. J., et al., 2009. Pore-Preserving Mechanism of Chlorite Rims in Tight Sandstone——An Example from the T3x Formation of Baojie Area in the Transitional Zone from the Central to Southern Sichuan Basin. Oil and Gas Geology, 30(1):53-58. https://doi.org/10.3923/ijps.2008.223.233 (in Chinese with English Abstract)
    Liu, H. M., Zhang, S., Song, G. Q., et al., 2017. A Discussion on the Origin of Shale Reservoir Inter-Laminar Fractures in the Shahejie Formation of Paleogene, Dongying Depression. Journal of Earth Science, 28(6):1064-1077. https://doi.org/10.1007/s12583-016-0946-3
    Luo, L., Meng, W. B., Feng, M. S., et al., 2015. Silica Source of Quartz Cements and Its Effects on the Reservoir in Tight Sandstones:A Case Study on the 2th Member of the Xujiahe Formation in Xinchang Structural Belt, Western Sichuan Depression. Natural Gas Geoscience, 26(3):435-443. https://doi.org/10.11764/j.issn.1672-1926.2015.03.0435 (in Chinese with English Abstract)
    Lupan, O., Chow, L., Chai, G., et al., 2008. Biopolymer-Assisted Self-Assembly of ZnO Nanoarchitectures from Nanorods. Superlattices and Microstructures, 43(4):292-302. https://doi.org/10.1016/j.spmi.2007.12.003
    Machel, H. G., 1997. Recrystallization Versus Neomorphism, and the Concept of 'Significant Recrystallization' in Dolomite Research. Sedimentary Geology, 113(3/4):161-168. https://doi.org/10.1016/s0037-0738(97)00078-x
    Mandelbrot, B. B., 1977. Fractals: Form, Chance and Dimension. W.H. Freeman, San Francisco
    Midtbø, R. E. A., Rykkje, J. M., Ramm, M., 2000. Deep Burial Diagenesis and Reservoir Quality along the Eastern Flank of the Viking Graben. Evidence for Illitization and Quartz Cementation after Hydrocarbon Emplacement. Clay Minerals, 35(1):227-237. https://doi.org/10.1180/000985500546602
    Moore, D. M., Reynolds, R. C. J., 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford. 210-211
    Mountjoy, E. W., Achel, H. G. M., Green, D., et al., 1999. Devonian Matrix Dolomites and Deep Burial Carbonate Cements:A Comparison between the Rimbey-Meadowbrook Reef Trend and the Deep Basin of West-Central Alberta. Bulletin of Canadian Petroleum Geology, 47(4):487-509. https://doi.org/10.1007/bf00992913
    Ouyang, C., Xi, X., Cao, J., 2015. Multifractal Characteristics of Metallo-genic Elements of Pingguo Accumulated Bauxite in Guangxi. Geolog-ical Science and Technology Information, 34(5): 114-119. https://doi.org/1000-7849(2015)05-0114-06 (in Chinese with English Abstract)
    Peltonen, C., Marcussen, Ø., Bjørlykke, K., et al., 2009. Clay Mineral Diagenesis and Quartz Cementation in Mudstones:The Effects of Smectite to Illite Reaction on Rock Properties. Marine and Petroleum Geology, 26(6):887-898. https://doi.org/10.1016/j.marpetgeo.2008.01.021
    Porten, K. W., Walderhaug, O., Torkildsen, G., 2015. Apatite Overgrowth Cement as a Possible Diagenetic Temperature-History Indicator. Journal of Sedimentary Research, 85(12):1478-1491. https://doi.org/10.2110/jsr.2015.99
    Puphaiboon, K., Arjeneh, M., Markvardsen, A. J., 2013. Jpowder Version 2:For the Display and Examination of Powder Diffraction Data Using Stack Plot. Journal of Software Engineering and Applications, 6(4):168-173. https://doi.org/10.4236/jsea.2013.64021
    Ramm, M., Forsberg, A. W., Jahren, J. S., 1997. Porosity-Depth Trends in Deeply Buried Upper Jurassic Reservoirs in the Norwegian Central Graben:An Example of Porosity Preservation beneath the Normal Economic Basement by Grain-Coating Microquartz. AAPG Bulletin, 66:177-199
    Rusk, B., Reed, M., 2002. Scanning Electron Microscope-Cathodoluminescence Analysis of Quartz Reveals Complex Growth Histories in Veins from the Butte Porphyry Copper Deposit, Montana. Geology, 30(8):727. https://doi.org/10.1130/0091-7613(2002)030 < 0727:semcao > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0727:semcao>2.0.co;2
    Samtani, M., Skrzypczak-Janktun, E., Dollimore, D., et al., 2001. Thermal Analysis of Ground Dolomite, Confirmation of Results Using an X-Ray Powder Diffraction Methodology. Thermochimica Acta, 367/368:297-309. https://doi.org/10.1016/s0040-6031(00)00663-8
    Sliaupa, S., Cyziene, J., Molenaar, N., et al., 2008. Ferroan Dolomite Cement in Cambrian Sandstones:Burial History and Hydrocarbon Generation of the Baltic Sedimentary Basin. Acta Geologica Polonica, 58(1):27-41. https://doi.org/10.3986/ags48106
    Steins, P., Poulesquen, A., Frizon, F., et al., 2014. Effect of Aging and Alkali Activator on the Porous Structure of a Geopolymer. Journal of Applied Crystallography, 47(1):316-324. https://doi.org/10.1107/s160057671303197x
    Stevens, S. M., Loiola, A. R., Cubillas, P., et al., 2011. Hierarchical Porous Materials:Internal Structure Revealed by Argon Ion-Beam Cross-Section Polishing, HRSEM and AFM. Solid State Sciences, 13(4):745-749. https://doi.org/10.1016/j.solidstatesciences.2010.04.027
    Tan, L. L., Ong, W. J., Chai, S. P., et al., 2015. Visible-Light-Active Oxygen-Rich TiO2 Decorated 2D Graphene Oxide with Enhanced Photocatalytic Activity Toward Carbon Dioxide Reduction. Applied Catalysis B:Environmental, 179:160-170. https://doi.org/10.1016/j.apcatb.2015.05.024
    Torre, I. G., Losada, J. C., Heck, R. J., et al., 2018. Multifractal Analysis of 3D Images of Tillage Soil. Geoderma, 311:167-174. https://doi.org/10.1016/j.geoderma.2017.02.013
    Towe, K. M., 1962. Clay Mineral Diagenesis as a Possible Source of Silica Cement in Sedimentary Rocks. SEPM Journal of Sedimentary Research, 32(1):26-28
    Thyberg, B., Jahren, J., Winje, T., et al., 2010. Quartz Cementation in Late Cretaceous Mudstones, Northern North Sea:Changes in Rock Properties Due to Dissolution of Smectite and Precipitation of Micro-Quartz Crystals. Marine and Petroleum Geology, 27(8):1752-1764. https://doi.org/10.1016/j.marpetgeo.2009.07.005
    Ukar, E., Lopez, R. G., Laubach, S. E., et al., 2017. Microfractures in Bed-Parallel Veins (Beef) as Predictors of Vertical Macrofractures in Shale:Vaca Muerta Formation, Agrio Fold-and-Thrust Belt, Argentina. Journal of South American Earth Sciences, 79:152-169. https://doi.org/10.1016/j.jsames.2017.07.015
    Vega, S., Jouini, M. S., 2015. 2D Multifractal Analysis and Porosity Scaling Estimation in Lower Cretaceous Carbonates. Geophysics, 80(6):D575-D586. https://doi.org/10.1190/geo2014-0596.1
    Wang, J. L., Liu, G. J., Wang, W. Z., et al., 2013. Characteristics of Pore-Fissure and Permeability of Shales in the Longmaxi Formation in Southeastern Sichuan Basin. Journal of China Coal Society, 38(5):772-777. https://doi.org/10.13225/j.cnki.jccs.2013.05.009 (in Chinese with English Abstract)
    Walderhaug, O., Eliassen, A., Aase, N. E., 2012. Prediction of Permeability in Quartz-Rich Sandstones:Examples from the Norwegian Continental Shelf and the Fontainebleau Sandstone. Journal of Sedimentary Research, 82(12):899-912. https://doi.org/10.2110/jsr.2012.79
    Walderhaug, O., Ler, R. H., Bjørkum, P. A., et al., 2009. Modelling Quartz Cementation and Porosity in Reservoir Sandstones:Examples from the Norwegian Continental Shelf. Spec. Publs. Int. Ass. Sediment, 29:39-49 https://www.mendeley.com/catalogue/modelling-quartz-cementation-porosity-reservoir-sandstones-examples-norwegian-continental-shelf/
    Wang, Y. M., Dong, D. Z., Li, X. J., et al., 2015. Stratigraphic Sequence and Sedimentary Characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and Its Peripheral Areas. Natural Gas Industry B, 2(2/3):222-232. https://doi.org/10.1016/j.ngib.2015.07.014
    Weinberg, A. C., Huang, L., Jiang, H., et al., 2011. Size and Distribution of Shocked Mineral Grains in the Pierre Shale (Late Cretaceous) of South Dakota Related to the Manson, Iowa, Impact Event. Journal of the American College of Surgeons, 212(5):768-78. https://doi.org/10.1016/j.jamcollsurg.2011.02.006
    Worden, R. H., Charpentier, D., Fisher, Q. J., et al., 2005. Fabric Development and the Smectite to Illite Transition in Upper Cretaceous Mudstones from the North Sea:An Image Analysis Approach. Geological Society, London, Special Publications, 249(1):103-114. https://doi.org/10.1144/gsl.sp.2005.249.01.09
    Wu, X. Y., Ling, S. X., Ren, Y., et al., 2016. Elemental Migration Characteristics and Chemical Weathering Degree of Black Shale in Northeast Chongqing, China. Earth Science, 41(2):218-233. https://doi.org/10.3799/dqkx.2016.017 (in Chinese with English Ab-stract)
    Xie, S. Y., Bao, Z. Y., 2004. Fractal and Multifractal Properties of Geo-chemical Fields. Mathematical Geology, 36(7):847-864. https://doi.org/10.1023/b:matg.0000041182.70233.47
    Xie, S. Y., Cheng, Q. M., Xing, X. T., et al., 2010. Geochemical Multifractal Distribution Patterns in Sediments from Ordered Streams. Geoderma, 160(1):36-46. https://doi.org/10.1016/j.geoderma.2010.01.009
    Xie, S. Y., Cheng, Q. M., Ling, Q. C., et al., 2010. Fractal and Multifractal Analysis of Carbonate Pore-Scale Digital Images of Petroleum Reser-voirs. Marine and Petroleum Geology, 27(2):476-485. https://doi.org/10.1016/j.marpetgeo.2009.10.010
    Yang, Y. N., Wang, J., Guo, X. M., et al., 2017. Mineralogical Characteristics and Petroleum Geological Significance of Wufeng-Longmaxi Formation Shales in the Tianba Area, Northeast of Chongqing. Acta Sedimentologica Sinica, 35(4):772-781. https://doi.org/10.14027/j.cnki.cjxb.2017.04.011 (in Chinese with English Abstract)
    Ye, Y. H., Liu, S. G., Ran, B., et al., 2017. Characteristics of Black Shale in the Upper Ordovician Wufeng and Lower Silurian Longmaxi Formations in the Sichuan Basin and Its Periphery, China. Australian Journal of Earth Sciences, 64(5):667-687. https://doi.org/10.1080/08120099.2017.1321581
    Zhang, X. M., Shi, W. Z., Xu, Q. H., et al., 2015. Reservoir Characteristics and Controlling Factors of Shale Gas in Jiaoshiba Area, Sichuan Basin. Acta Petrolei Sinica, 36(8):926-941. https://doi.org/10.7623/syxb201508004 (in Chinese with English Ab-stract)
    Zhao, J. H., Jin, Z. J., Jin, Z. K., et al., 2017. Mineral Types and Organic Matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China:Implications for Pore Systems, Diagenetic Pathways, and Reservoir Quality in Fine-Grained Sedimentary Rocks. Marine and Petroleum Geology, 86:655-674. https://doi.org/10.1016/j.marpetgeo.2017.06.031
    Zhou, B., Komulainen, S., Vaara, J., et al., 2017. Characterization of Pore Structures of Hydrated Cements and Natural Shales by 129 Xe NMR Spectroscopy. Microporous and Mesoporous Materials, 253:49-54. https://doi.org/10.1016/j.micromeso.2017.06.038
    Zhou, S. W., Xue, H. Q., Ning, Y., et al., 2018. Experimental Study of Supercritical Methane Adsorption in Longmaxi Shale:Insights into the Density of Adsorbed Methane. Fuel, 211:140-148. https://doi.org/10.1016/j.fuel.2017.09.065
    Zhou, T., Zhang, S. C., Feng, Y., et al., 2016. Experimental Study of Permeability Characteristics for the Cemented Natural Fractures of the Shale Gas Formation. Journal of Natural Gas Science and Engineering, 29:345-354. https://doi.org/10.1016/j.jngse.2016.01.005
    Zhu, W., Tang, D., Yu, T., et al., 2015. The Accurate Determination Method for BET Specific Surface Based on Nitrogen Adsorption of Shale Sample. Science Technology and Engineering, 15(29): 29-33. https://doi.org/1671-1815(2015)29-0029-05 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(899) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return