Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 2
Apr 2020
Turn off MathJax
Article Contents
Lei Shu, Kun Shen, Renchao Yang, Yingxin Song, Yuqin Sun, Wei Shan, Yuxin Xiong. SEM-CL Study of Quartz Containing Fluid Inclusions in Wangjiazhuang Porphyry Copper (-Molybdenum) Deposit, Western Shandong, China. Journal of Earth Science, 2020, 31(2): 330-341. doi: 10.1007/s12583-019-1025-3
Citation: Lei Shu, Kun Shen, Renchao Yang, Yingxin Song, Yuqin Sun, Wei Shan, Yuxin Xiong. SEM-CL Study of Quartz Containing Fluid Inclusions in Wangjiazhuang Porphyry Copper (-Molybdenum) Deposit, Western Shandong, China. Journal of Earth Science, 2020, 31(2): 330-341. doi: 10.1007/s12583-019-1025-3

SEM-CL Study of Quartz Containing Fluid Inclusions in Wangjiazhuang Porphyry Copper (-Molybdenum) Deposit, Western Shandong, China

doi: 10.1007/s12583-019-1025-3
Funds:

the Special Fund for "Taishan Scholars" Project in Shandong Province 

the National Natural Science Foundation of China 41372086

the Key R & D Program of China 2016YFC0600606

the National Natural Science Foundation of China 41503038

the National Natural Science Foundation of China 41140025

the Key R & D Program of Shandong Province 2017CXGC1603

the National Natural Science Foundation of China 41672084

the Key R & D Program of Shandong Province 2017CXGC1602

the Key R & D Program of Shandong Province 2017CXGC1601

More Information
  • Corresponding author: Renchao Yang, yang100808@126.com
  • Received Date: 28 Dec 2018
  • Accepted Date: 20 May 2019
  • Publish Date: 01 Feb 2020
  • The Wangjiazhuang porphyry copper (-molybdenum) deposit is located at Zouping volcanic basin in Shandong Province, East China and hosted in the Wangjiazhuang intrusive complex emplaced along a late volcanic conduit. There are two types of ores in this deposit:early disseminated and stockwork ores in the ore-bearing intrusion, and late massive sulfide-quartz veins above brecciated quartz monzonite. The ore minerals are mainly pyrite, chalcopyrite, and subordinately magnetite, tennantite, molybdenite with minor bornite, enargite, galena and sphalerite, etc., and gangue minerals including K-feldspar, biotite, quartz, muscovite-sericite, chlorite and calcite. Combined with fluid inclusion study, the scanning electron microscope-cathodoluminescence (SEM-CL) study of quartz in the deposit and wall rocks shows significant differences between the two types of quartz in the ores. In addition, four types of primary-pseudosecondary fluid inclusions in the quartz have been recognized. They are one-or two-phase aqueous inclusions with vapor/liquid ratios less than 30% to 40% (type I); gas-rich inclusions with vapor/liquid ratios more than 50% (type Ⅱ), some of which contain some small opaque minerals, probably chalcopyrite; multiphase fluid inclusions with daughter minerals of halite±anhydrite±opaque (chalcopyrite)±sylvite±hematite±unknown crystal (type Ⅲ); and mica-bearing fluid inclusions (type IV). Quartz containing abundant muscovite-bearing and halite-bearing fluid inclusions in the mineralized quartz monzonite with potassic-silicic alteration, have better oscillatory growth zoning with CL-colors from bright in the core to darker in the rim, indicating variations of element concentrations in the fluid media from which quartz grew during the later period of magmatic-hydrothermal process. In contrast, the quartz in the sulfide-quartz veins contains mainly fluid inclusions of low-to-medium salinities and does not show oscillatory zoning, indicating that there was less fluctuation in composition and element concentrations of the hydrothermal fluids. However, the quartz containing halite-bearing fluid inclusions and being associated with copper-molybdenum mineralization in the sulfide-quartz veins shows zoning in its rims, indicating variations in composition and element concentrations of the hydrothermal fluids.

     

  • loading
  • Audétat, A., Pettke, T., Heinrich, C. A., et al., 2008. Special Paper:The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions. Economic Geology, 103(5):877-908. https://doi.org/10.2113/gsecongeo.103.5.877
    Bernet, M., Bassett, K., 2005. Provenance Analysis by Single-Quartz-Grain SEM-CL/Optical Microscopy. Journal of Sedimentary Research, 75(3):492-500. https://doi.org/10.2110/jsr.2005.038
    Bignall, G., Sekine, K., Tsuchiya, N., 2004. Fluid-Rock Interaction Processes in the Te Kopia Geothermal Field (New Zealand) Revealed by SEM-CL Imaging. Geothermics, 33(5):615-635. https://doi.org/10.1016/j.geothermics.2004.03.001
    Bodnar, R. J., 1994. Synthetic Fluid Inclusions:XII. the System H2O-NaCl. Experimental Determination of the Halite Liquidus and Isochores for a 40 wt.% NaCl Solution. Geochimica et Cosmochimica Acta, 58(3):1053-1063. https://doi.org/10.1016/0016-7037(94)90571-1
    Bodnar, R. J., Student, J. J., 2006. Melt Inclusions in Plutonic Rocks: Petrography and Microthermometry. In: Webster, J. D., ed., Melt Inclusions in Plutonic Rocks. Montreal. Mineralogical Association of Canada, Quebec. 36: 1-25
    Chen, L., Xu, J., Su, L., 2006. Application of Cathodoluminescence to Zircon in FEG-ESIM. Progress in Natural Science, 16(9):919-924. https://doi.org/10.1080/10020070612330089
    Chen, L., Xu, J., Chen, J., 2015. Applications of Scanning Electron Microscopy in Earth Sciences. Science China Earth Sciences, 58(10):1768-1778. https://doi.org/10.1007/s11430-015-5172-9
    Cline, J. S., Bodnar, R. J., 1994. Direct Evolution of Brine from a Crystallizing Silicic Melt at the Questa, New Mexico, Molybdenum Deposit. Economic Geology, 89(8):1780-1802. https://doi.org/10.2113/gsecongeo.89.8.1780
    Eastoe, C. J., 1978. A Fluid Inclusion Study of the Panguna Porphyry Copper Deposit, Bougainville, Papua New Guinea. Economic Geology, 73(5):721-748. https://doi.org/10.2113/gsecongeo.73.5.721
    Demars, C., Pagel, M., Deloule, E., et al., 1996. Cathodoluminescence of Quartz from Sandstones; Interpretation of the UV Range by Determination of Trace Element Distributions and Fluid-Inclusion P-T-X Properties in Authigenic Quartz. American Mineralogist, 81(7/8):891-901. https://doi.org/10.2138/am-1996-7-812
    Götze, J., Plötze, M., Habermann, D., 2001. Origin, Spectral Characteristics and Practical Applications of the Cathodoluminescence (CL) of Quartz-A Review. Mineralogy and Petrology, 71(3/4):225-250. https://doi.org/10.1007/s007100170040
    Halter, W. E., Heinrich, C. A., Pettke, T., 2005. Magma Evolution and the Formation of Porphyry Cu-Au Ore Fluids:Evidence from Silicate and Sulfide Melt Inclusions. Mineralium Deposita, 39(8):845-863. https://doi.org/10.1007/s00126-004-0457-5
    Han, Y. Z., Wang, S. J., Cao, X. H., 2008. Study on Metallogenic Geological Conditions and Typical Deposits of Copper Deposits in Zouping Area, Shandong Province. Land and Resources in Shandong Province, 24(3):21-26 (in Chinese with English Abstract)
    Klemm, L. M., Pettke, T., Heinrich, C. A., et al., 2007. Hydrothermal Evolution of the El Teniente Deposit, Chile:Porphyry Cu-Mo Ore Deposition from Low-Salinity Magmatic Fluids. Economic Geology, 102(6):1021-1045. https://doi.org/10.2113/gsecongeo.102.6.1021
    Klemm, L. M., Pettke, T., Heinrich, C. A., 2008. Fluid and Source Magma Evolution of the Questa Porphyry Mo Deposit, New Mexico, USA. Mineralium Deposita, 43(5):533-552. https://doi.org/10.1007/s00126-008-0181-7
    Lan, T. G., Hu, R. Z., Bi, X. W., et al., 2018. Metasomatized Asthenospheric Mantle Contributing to the Generation of Cu-Mo Deposits within an Intracontinental Setting:A Case Study of the~128 Ma Wangjiazhuang Cu-Mo Deposit, Eastern North China Craton. Journal of Asian Earth Sciences, 160:460-489. https://doi.org/10.1016/j.jseaes.2017.07.014
    Landtwing, M. R., Furrer, C., Redmond, P. B., et al., 2010. The Bingham Canyon Porphyry Cu-Mo-Au Deposit. III. Zoned Copper-Gold Ore Deposition by Magmatic Vapor Expansion. Economic Geology, 105(1):91-118. https://doi.org/10.2113/gsecongeo.105.1.91
    Lecumberri-Sanchez, P., Newton, M. C. III, Westman, E. C., et al., 2013. Temporal and Spatial Distribution of Alteration, Mineralization and Fluid Inclusions in the Transitional High-Sulfidation Epithermal-Porphyry Copper System at Red Mountain, Arizona. Journal of Geochemical Exploration, 125:80-93. https://doi.org/10.1016/j.gexplo.2012.11.017
    Li, B. F., Yuan, S. R., 1991. Geological Characteristics of Porphyry Copper (Molybdenum) Deposits in the Zouping Area, Shandong Province. Geology and Prospecting, (1):7-12 (in Chinese)
    Li, H. Y., Xu, Z. W., Lu, X. C., et al., 2008. Evolution of Mesozoic Volcanic Rocks in the Zouping Basin, Western Shandong Province:Constraints for Mantle Sources. Acta Perologica Sinica, 24(11):2537-2547 (in Chinese with English Abstract) http://cn.bing.com/academic/profile?id=2a70a39733f0ece361ab03db066337d3&encoded=0&v=paper_preview&mkt=zh-cn
    Li, J. K., Li, S. H., 2014. Application of Hydrothermal Diamond Anvil Cell to Homogenization Experiments of Silicate Melt Inclusions. Acta Geologica Sinica-English Edition, 88(3):854-864. https://doi.org/10.1111/1755-6724.12242
    Li, S. H., Li, J. K., Chou, I. M., et al., 2017. The Formation of the Yichun Ta-Nb Deposit, South China, through Fractional Crystallization of Magma Indicated by Fluid and Silicate Melt Inclusions. Journal of Asian Earth Sciences, 137:180-193. https://doi.org/10.1016/j.jseaes.2016.11.016
    Li, Y. Q., She, Z. B., Ma, C. Q., 2011. SEM-CL Analysis of Quartz and Its Application in Petrology. Advances in Earth Science, 26(3):325-331 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201103011
    Liu, P. R., Xiong, Y. X., Ma, X. D., et al., 2013. SHRIMP Zircon U-Pb and Molybdenite Re-Os Age of the Copper Polymetallic Deposit in Zouping Volcanic Basin, Shandong Province. Geological Bulletin of China, 32(10):1621-1630 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201310014
    Lu, H. Z., Fan, H. R., Ni, P., et al., 2004. Fluid Inclusions. Science Publishing House, Beijing. 1-485 (in Chinese)
    Meng, X. J., Hou, Z. Q., Li, Z. Q., 2005. Fluid Inclusions and Ore-Forming Processes of Three Porphyry Copper Deposits in Gangdese Belt, Tibet. Mineral Deposits, 24(4):398-408 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6a38debf3b138a37d8641b65d8a2d07
    Nash, J. T., 1976. Fluid-Inclusion Petrology-Data from Porphyry Copper Deposits and Applications to Exploration. U.S. Geological Survey Professional Paper, Washington. 907-916
    Pagel, M., Barbin, V., Blanc, P., et al., 2000. Cathodoluminescence in Geosciences. Springer, New York. 514
    Pan, X. F., Song, Y. C., Wang, S. X., et al., 2009. Evolution of Hydrothermal Fluid of Dexing Tongchang Copper-Gold Porphyry Deposit. Acta Geologica Sinica, 83(12):1929-1950 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200912010
    Penniston-Dorland, S. C., 2001. Illumination of Vein Quartz Textures in a Porphyry Copper Ore Deposit Using Scanned Cathodoluminescence:Grasberg Igneous Complex, Irian Jaya, Indonesia. American Mineralogist, 86(5/6):652-666. https://doi.org/10.2138/am-2001-5-606
    Redmond, P. B., Einaudi, M. T., Inan, E. E., et al., 2004. Copper Deposition by Fluid Cooling in Intrusion-Centered Systems:New Insights from the Bingham Porphyry Ore Deposit, Utah. Geology, 32(3):217-220. https://doi.org/10.1130/g19986.1
    Roedder, E., 1971. Fluid Inclusion Studies on the Porphyry-Type Ore Deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Economic Geology, 66(1):98-118. https://doi.org/10.2113/gsecongeo.66.1.98
    Roedder, E., 1984. Fluid Inclusions. In:Mineralogical Society of America. Mineralogical Society of America, Chantilly, VA. Reviews in Mineralogy, 12:646 http://d.old.wanfangdata.com.cn/Periodical/dqkx200802015
    Ruffini, R., Borghi, A., Cossio, R., et al., 2002. Volcanic Quartz Growth Zoning Identified by Cathodoluminescence and EPMA Studies. Microchimica Acta, 139(1/2/3/4):151-158. https://doi.org/10.1007/s006040200054
    Rusk, B., Reed, M., 2002. Scanning Electron Microscope-Cathodoluminescence Analysis of Quartz Reveals Complex Growth Histories in Veins from the Butte Porphyry Copper Deposit, Montana. Geology, 30(8):727-730. https://doi.org/10.1130/0091-7613(2002)030<0727:semcao>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0727:semcao>2.0.co;2
    Rusk, B. G., Reed, M. H., Dilles, J. H., et al., 2006. Intensity of Quartz Cathodoluminescence and Trace-Element Content in Quartz from the Porphyry Copper Deposit at Butte, Montana. American Mineralogist, 91(8/9):1300-1312. https://doi.org/10.2138/am.2006.1984
    Rusk, B. G., Reed, M. H., Dilles, J. H., 2008. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. Economic Geology, 103(2):307-334. https://doi.org/10.2113/gsecongeo.103.2.307
    Shen, K., Shu, L., Liu, P. R., et al., 2018. Origin and Significance of Mica-Bearing Fluid Inclusions in the Altered Wall Rocks of Wangjiazhuang Copper-Molybdenum Deposit, Zouping Country, Shandong Province. Acta Petrologica Sinica, 34(12):3509-3524 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812004.htm
    Sobolev, V. S., Kostyuk, V. P., 1975. Magmatic Crystallization Based on a Study of Melt Inclusions. Fluid Inclusion Research, 9:182-235 https://www.researchgate.net/publication/287456254_Magmatic_crystallization_based_on_a_study_of_melt_inclusions
    Tang, L. C., 1990. Geological Characteristics of the Pegmatitic Cu-Au Deposit in the Zouping Volcanic Basin, Shandong Province. Geological Review, 36(1):85-87 (in Chinese)
    van den Kerkhof, A. M., Hein, U. F., 2001. Fluid Inclusion Petrography. Lithos, 55(1/2/3/4):27-47. https://doi.org/10.1016/s0024-4937(00)00037-2
    Wang, H., Fu, B., Xu, Z. W., et al., 2015. Geology, Geochemistry, and Geochronology of the Wangjiazhuang Porphyry-Breccia Cu(-Mo) Deposit in the Zouping Volcanic Basin, Eastern North China Block. Ore Geology Reviews, 67:336-353. https://doi.org/10.1016/j.oregeorev.2014.12.010
    Wark, D. A., Spear, F. S., 2005. Titanium in Quartz:Cathodoluminescence and Thermometry. Geochimica et Cosmochica Acta, 69(Suppl.):A592
    Watt, G. R., Wright, P., Galloway, S., et al., 1997. Cathodoluminescence and Trace Element Zoning in Quartz Phenocrysts and Xenocrysts. Geochimica et Cosmochimica Acta, 61(20):4337-4348. https://doi.org/10.1016/s0016-7037(97)00248-2
    Wiebe, R. A., Wark, D. A., Hawkins, D. P., 2007. Insights from Quartz Cathodoluminescence Zoning into Crystallization of the Vinalhaven Granite, Coastal Maine. Contributions to Mineralogy and Petrology, 154(4):439-453. https://doi.org/10.1007/s00410-007-0202-z
    Yang, D. P., Liu, P. R., Chi, N. J., et al., 2016. The Discovery of Uranium and Platinum Group Minerals in the Wangjiazhuang Copper Deposit, Zouping, Shandong Province, and Its Geological Significance. Acta Petrologica et Mineralogica, 35(5):863-876 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201605009
    Yang, K., Bodnar, R. J., 1994. Magmatic-Hydrothermal Evolution in the "Bottoms" of Porphyry Copper Systems:Evidence from Silicate Melt and Aqueous Fluid Inclusions in Granitoid Intrusions in the Gyeongsang Basin, South Korea. International Geology Review, 36(7):608-628. https://doi.org/10.1080/00206819409465478
    Yuan, S. R., Li, B. F., 1987. The Basic Characteristics of the Volcano Structure of the Zouping Basin, Shandong Province. Geological Review, 33:5-11 (in Chinese)
    Yuan, S. R., Li, B. F., 1988. The Characteristics of Alteration of the Wangjiazhuang Porphyry Deposit, Zouping, Shandong Province. Geological Review, 34(1):36-44 (in Chinese)
    Zhang, J., Xu, Z. W., Li, H. Y., et al., 2008. The Mineralization Geochemistry of the Wangjiazhuang Copper Deposit in Zouping County, Shandong Province, and a Discussion on Its Genesis. Geological Review, 54(4):466-476 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/OA000004520
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(473) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return