Aplin, A. C., Macquaker, J. H. S., 2011. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12): 2031-2059. https://doi.org/10.1306/03281110162 |
Bankole, S. A., Buckman, J., Stow, D., et al., 2019. Grain-Size Analysis of Mudrocks: A New Semi-Automated Method from SEM Images. Journal of Petroleum Science and Engineering, 174: 244-256. https://doi.org/10.1016/j.petrol.2018.11.027 |
Bankole, S. A., Stow, D. A. V., Lever, H., et al., 2016. Microstructure of Mudrock and the Choice of Representative Sample, In: Fifth EAGE Shale Workshop. EAGE, Catania, Italy |
Berens, P., 2009. CircStat: AMATLAB Toolbox for Circular Statistics. Journal of Statistical Software, 31(10): 1-21. https://doi.org/10.18637/jss.v031.i10 |
Bosl, W. J., Dvorkin, J., Nur, A., 1998. A Study of Porosity and Permeability Using a Lattice Boltzmann Simulation. Geophysical Research Letters, 25(9): 1475-1478. https://doi.org/10.1029/98gl00859 |
Buckman, J., 2014. Use of Automated Image Acquisition and Stitching in Scanning Electron Microscopy: Imaging of Large Scale Areas of Materials at High Resolution. Microscopy and Analysis, 28: 13-15 https://core.ac.uk/display/29128462 |
Buckman, J., Bankole, S., Zihms, S., et al., 2017. Quantifying Porosity through Automated Image Collection and Batch Image Processing: Case Study of Three Carbonates and an Aragonite Cemented Sandstone. Geosciences, 7(3): 70. https://doi.org/10.3390/geosciences7030070 |
Camp, W. K., Diaz, E., Wawak, B. E., 2013. Electron Microscopy of Shale Hydrocarbon Reservoirs. Association of Petroleum Geologists, Tulsa |
Chambers, J. M., Cleveland, W. S., Kleiner, B., et al., 1984. Graphical Methods for Data Analysis. Journal of the Royal Statistical Society, 147(3): 513. https://doi.org/s10.2307/2981587 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1202.6515 |
Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., et al., 2012. Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging. AAPG Bulletin, 96(4): 665-677. https://doi.org/10.1306/08151110188 |
Curtis, M. E., Ambrose, R. J., Sondergeld, C. H., et al., 2010. Structural Characterization of Gas Shales on the Micro- and Nano-Scales, Society of Petroleum Engineers—Canadian Unconventional Resources and International Petroleum Conference, Calgary |
Davis, J. C., 1986. Statistics and Data Analysis in Geology, Wiley India. 656. |
Desbois, G., Urai, J. L., Kukla, P. A., 2009. Morphology of the Pore Space in Claystones—Evidence from BIB/FIB Ion Beam Sectioning and Cryo-SEM Observations. eEarth, 4(1): 15-22. https://doi.org/10.5194/ee-4-15-2009 |
DeVasto, M. A., Czeck, D. M., Bhattacharyya, P., 2012. Using Image Analysis and ArcGIS® to Improve Automatic Grain Boundary Detection and Quantify Geological Images. Computers & Geosciences, 49: 38-45. https://doi.org/10.1016/j.cageo.2012.06.005 |
Fisher, N. I., 1993. Statistical Analysis of Circular Data. Cambridge University Press, New York, 277. https: //doi.org/10.1017/CBO9780511564345 |
Francus, P., Pirard, E., 2004. Testing for Sources of Errors in Quantitative Image Analysis. In: Francus, P., ed., Image Analysis, Sediments and Paleoenvironments. Springer Netherlands, Dordrecht. 87-102. https: //doi.org/10.1007/1-4020-2122-4_5 |
Grove, C., Jerram, D. A., 2011. JPOR: An ImageJ Macro to Quantify Total Optical Porosity from Blue-Stained Thin Sections. Computers & Geosciences, 37(11): 1850-1859. https://doi.org/10.1016/j.cageo.2011.03.002 |
Hemes, S., Desbois, G., Urai, J. L., et al., 2013. Variations in the Morphology of Porosity in the Boom Clay Formation: Insights from 2D High Resolution BIB-SEM Imaging and Mercury Injection Porosimetry. Netherlands Journal of Geosciences, 92(4): 275-300. https://doi.org/10.1017/s0016774600000214 |
Hesse, R., 1975. Turbiditic and Non-Turbiditic Mudstone of Cretaceous Flysch Sections of the East Alps and other Basins. Sedimentology, 22(3): 387-416. https://doi.org/10.1111/j.1365-3091.1975.tb01638.x |
Hodell, D. A., Lourens, L., Stow, D. A. V., et al., 2013. The "Shackleton Site" (IODP Site U1385) on the Iberian Margin. Scientific Drilling, 16: 13-19. https://doi.org/10.5194/sd-16-13-2013 |
Hodell, D. A., Lourens, L., Crowhurst, S., et al., 2015. A Reference Time Scale for Site U1385 (Shackleton Site) on the SW Iberian Margin. Global and Planetary Change, 133: 49-64. https://doi.org/10.1016/j.gloplacha.2015.07.002 |
Hoogakker, B. A. A., Rothwell, R. G., Rohling, E. J., et al., 2004. Variations in Terrigenous Dilution in Western Mediterranean Sea Pelagic Sediments in Response to Climate Change during the Last Glacial Cycle. Marine Geology, 211(1/2): 21-43. https://doi.org/10.1016/j.margeo.2004.07.005 |
Houben, M. E., Desbois, G., Urai, J. L., 2013. Pore Morphology and Distribution in the Shaly Facies of Opalinus Clay (Mont Terri, Switzerland): Insights from Representative 2D BIB-SEM Investigations on mm to nm Scale. Applied Clay Science, 71: 82-97. https://doi.org/10.1016/j.clay.2012.11.006 |
Janssen, C., Kanitpanyacharoen, W., Wenk, H. R., et al., 2012. Clay Fabrics in SAFOD Core Samples. Journal of Structural Geology, 43: 118-127. https://doi.org/http://dx.doi.org/10.1016/j.jsg.2012.07.004 |
Josh, M., Esteban, L., Delle Piane, C., et al., 2012. Laboratory Characterisation of Shale Properties. Journal of Petroleum Science and Engineering, 88-89: 107-124. https://doi.org/http://dx.doi.org/10.1016/j.petrol.2012.01.023 |
Kameda, A., Dvorkin, J., Keehm, Y., et al., 2006. Permeability-Porosity Transforms from Small Sandstone Fragments. Geophysics, 71(1): N11-N19. https://doi.org/10.1190/1.2159054 |
Keller, L. M., Schuetz, P., Erni, R., et al., 2013. Characterization of Multi-Scale Microstructural Features in Opalinus Clay. Microporous and Mesoporous Materials, 170: 83-94. https://doi.org/10.1016/j.micromeso.2012.11.029 |
Kuila, U., Prasad, M., 2013. Specific Surface Area and Pore-Size Distribution in Clays and Shales. Geophysical Prospecting, 61(2): 341-362. https://doi.org/10.1111/1365-2478.12028 |
Lemmens, H., Richards, D., 2013. Multiscale Imaging of Shale Samples in the Scanning Electron Microscope. American Association of Petroleum Geologists Memoir, 27-35. https://doi.org/10.1306/13391702M1023582 |
Lonardelli, I., Wenk, H. R., Ren, Y., 2007. Preferred Orientation and Elastic Anisotropy in Shales. Geophysics, 72(2): D33-D40. https://doi.org/10.1190/1.2435966 |
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092 |
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061 |
Lovie, S., 2005. Empirical Quantile-Quantile Plots. In: Encyclopedia of Statistics in Behavioral Science. John Wiley and Sons, Ltd., Chichester. 543-545. https: //doi.org/10.1002/0470013192.bsa192 |
Macquaker, J. H. S., Howell, J. K., 1999. Small-Scale (< 5.0 M) Vertical Heterogeneity in Mudstones: Implications for High-Resolution Stratigraphy in Siliciclastic Mudstone Successions. Journal of the Geological Society, 156(1): 105-112. https://doi.org/10.1144/gsjgs.156.1.0105 |
Mardia, K. V., Jupp, P. E., 2008. Directional Statistics, Directional Statistics. John Wiley and Sons, Inc. 432. https: //doi.org/10.1002/9780470316979 |
Martínez-Nistal, A., Veniale, F., Setti, M., et al., 1999. A Scanning Electron Microscopy Image Processing Method for Quantifying Fabric Orientation of Clay Geomaterials. Applied Clay Science, 14(4): 235-243. https://doi.org/10.1016/s0169-1317(98)00055-6 |
Moon, C. F., Hurst, C. W., 1984. Fabric of Muds and Shales: An Overview. Geological Society, London, Special Publications, 15(1): 579-593. https://doi.org/10.1144/gsl.sp.1984.015.01.36 |
Munson, E. O., Chalmers, G. R. L., Bustin, R. M., et al., 2016. Utilizing Smear Mounts for X-Ray Diffraction as a Fully Quantitative Approach in Rapidly Characterizing the Mineralogy of Shale Gas Reservoirs. Journal of Unconventional Oil and Gas Resources, 14: 22-31. https://doi.org/10.1016/j.juogr.2016.01.001 |
Nishida, N., 2016. Microstructure of Muddy Contourites from the Gulf of Cádiz. Marine Geology, 377: 110-117. https://doi.org/10.1016/j.margeo.2015.08.017 |
Nishida, N., Ito, M., Inoue, A., et al., 2013. Clay Fabric of Fluid-Mud Deposits from Laboratory and Field Observations: Potential Application to the Stratigraphic Record. Marine Geology, 337: 1-8. https://doi.org/ 10.1016/j.margeo.2012.12.006 |
Pal, N. R., Pal, S. K., 1993. A Review on Image Segmentation Techniques. Pattern Recognition, 26(9): 1277-1294. https://doi.org/10.1016/0031-3203(93)90135-j |
Pickering, K. T., Hiscott, R. N., 2015. Deep Marine Systems: Processes, Deposits, Environments, Tectonics and Sedimentation. John Wiley and Sons, Chichester. 657 |
Piper, D. J. W., 1977. Manual of Sedimentological Techniques. Departments of Geology and Oceanography, Dalhousie University, Halifax |
Rodríguez-Tovar, F. J., Dorador, J., 2014. Ichnological Analysis of Pleistocene Sediments from the IODP Site U1385 "Shackleton Site" on the Iberian Margin: Approaching Paleoenvironmental Conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 409: 24-32. https://doi.org/ 10.1016/j.palaeo.2014.04.027 |
Rodríguez-Tovar, F. J., Dorador, J., Grunert, P., et al., 2015. Deep-Sea Trace Fossil and Benthic Foraminiferal Assemblages across Glacial Terminations 1, 2 and 4 at the "Shackleton Site" (IODP Expedition 339, Site U1385). Global and Planetary Change, 133: 359-370. https://doi.org/10.1016/j.gloplacha.2015.05.003 |
Saraji, S., Piri, M., 2015. The Representative Sample Size in Shale Oil Rocks and Nano-Scale Characterization of Transport Properties. International Journal of Coal Geology, 146: 42-54. https://doi.org/ 10.1016/j.coal.2015.04.005 |
Schindelin, J., Arganda-Carreras, I., Frise, E., et al., 2012. Fiji: An Open-Source Platform for Biological-Image Analysis. Nature Methods, 9: 676-682. https://doi.org/10.1038/nmeth.2019 |
Schindelin, J., Rueden, C. T., Hiner, M. C., et al., 2015. The ImageJ Ecosystem: An Open Platform for Biomedical Image Analysis. Molecular Reproduction and Development, 82(7/8): 518-529. https://doi.org/ 10.1002/mrd.22489 |
Schneider, C. A., Rasband, W. S., Eliceiri, K. W., 2012. NIH Image to ImageJ: 25 Years of Image Analysis. Nature Methods, 9(7): 671-675. https://doi.org/10.1038/nmeth.2089 |
Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al., 1985. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984). Pure Applied Chemistry, 57: 603-619. https://doi.org/10.1351/pac198557040603 |
Sokolov, V. N., O'Brien, N. R., 1990. A Fabric Classification of Argillaceous Rocks, Sediments, Soils. Applied Clay Science, 5(4): 353-360. https://doi.org/10.1016/0169-1317(90)90030-s |
Stow, D. A. V., 1985. Fine-Grained Sediments in Deep Water: An Overview of Processes and Facies Models. Geo-Marine Letters, 5(1): 17-23. https://doi.org/10.1007/bf02629792 |
Stow, D. A. V., Hernández-Molina, F. J., Llave, E., et al., 2013. The Cadiz Contourite Channel: Sandy Contourites, Bedforms and Dynamic Current Interaction. Marine Geology, 343: 99-114. https://doi.org/10.1016/j.margeo.2013.06.013 |
Stow, D. A. V., Huc, A. Y., Bertrand, P., 2001. Depositional Processes of Black Shales in Deep Water. Marine and Petroleum Geology, 18(4): 491-498. https://doi.org/10.1016/s0264-8172(01)00012-5 |
Stow, D. A. V., Tabrez, A. R., 1998. Hemipelagites: Processes, Facies and Model. Geological Society, London, Special Publications, 129(1): 317-337. https://doi.org/10.1144/gsl.sp.1998.129.01.19 |
Stow, D. A. V., 2005. Sedimentary Rocks in the Field: A Color Guide. Taylor and Francis Group, Florida. 320 |
Suttle, M. D., Genge, M. J., Russell, S. S., 2017. Shock Fabrics in Fine-Grained Micrometeorites. Meteoritics & Planetary Science, 52(10): 2258-2274. https://doi.org/10.13039/501100000271 |
Tovey, N. K., Smart, P., Hounslow, M. W., et al., 1992. Automatic Orientation Mapping of Some Types of Soil Fabric. Geoderma, 53(3/4): 179-200. https://doi.org/10.1016/0016-7061(92)90054-b |
Uchman, A., Wetzel, A., 2011. Deep-Sea Ichnology: The Relationships between Depositional Environment and Endobenthic Organisms, Developments in Sedimentology, 63: 517-556. https://doi.org/10.1016/B978-0-444-53000-4.00008-1 |
Vanden-Bygaart, A. J., Protz, R., 1999. The Representative Elementary Area (REA) in Studies of Quantitative Soil Micromorphology. Geoderma, 89(3/4): 333-346. https://doi.org/10.1016/s0016-7061(98)00089-5 |
Wang, Y., Zhu, Y. M., et al., 2014. Characteristics of the Nanoscale Pore Structure in Northwestern Hunan Shale Gas Reservoirs Using Field Emission Scanning Electron Microscopy, High-Pressure Mercury Intrusion, and Gas Adsorption. Energy & Fuels, 28(2): 945-955. https://doi.org/10.1021/ef402159e |
Wenk, H. R., Houtte, P. V., 2004. Texture and Anisotropy. Reports on Progress in Physics, 67(8): 1367-1428. https://doi.org/10.1088/0034-4885/67/8/r02 |
Wenk, H. R., Lutterotti, L., Kaercher, P., et al., 2014. Rietveld Texture Analysis from Synchrotron Diffraction Images. Ⅱ. Complex Multiphase Materials and Diamond Anvil Cell Experiments. Powder Diffraction, 29(3): 220-232. https://doi.org/10.1017/s0885715614000360 |
Wenk, H. R., Voltolini, M., Martin, M., et al., 2008. Preferred Orientations and Anisotropy in Shales: Callovo-Oxfordian Shale (France) and Opalinus Clay (Switzerland). Clays and Clay Minerals, 56(3): 285-306. https://doi.org/10.1346/ccmn.2008.0560301 |
Yang, F., Ning, Z. F., Liu, H. Q., 2014. Fractal Characteristics of Shales from a Shale Gas Reservoir in the Sichuan Basin, China. Fuel, 115: 378-384. https://doi.org/10.1016/j.fuel.2013.07.040 |
Zaitoun, N. M., Aqel, M. J., 2015. Survey on Image Segmentation Techniques. Procedia Computer Science, 65: 797-806. https://doi.org/10.1016/j.procs.2015.09.027 |