Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 2
Apr 2019
Turn off MathJax
Article Contents
Shereef A. Bankole, Jim Buckman, Dorrik Stow, Helen Lever. Automated Image Analysis of Mud and Mudrock Microstructure and Characteristics of Hemipelagic Sediments:IODP Expedition 339. Journal of Earth Science, 2019, 30(2): 407-421. doi: 10.1007/s12583-019-1210-4
Citation: Shereef A. Bankole, Jim Buckman, Dorrik Stow, Helen Lever. Automated Image Analysis of Mud and Mudrock Microstructure and Characteristics of Hemipelagic Sediments:IODP Expedition 339. Journal of Earth Science, 2019, 30(2): 407-421. doi: 10.1007/s12583-019-1210-4

Automated Image Analysis of Mud and Mudrock Microstructure and Characteristics of Hemipelagic Sediments:IODP Expedition 339

doi: 10.1007/s12583-019-1210-4
More Information
  • Corresponding author: Shereef A. Bankole
  • Received Date: 23 Feb 2017
  • Accepted Date: 11 Jul 2017
  • Publish Date: 01 Apr 2019
  • The microstructural analysis of muds and mudrocks requires very high-resolution measurement. Recent advances in electron microscopy have contributed significantly to the improved characterisation of mudrock microstructures and their consequent petrophysical properties. However, imaging through electron microscopy is limited to small areas of coverage such that upscaling of these properties is a great challenge. In this paper, we develop a new methodology for multiple large-area imaging using scanning electron microscopy through automated acquisition and stitching from polished thin-sections and ion-milled samples. The process is fast, efficient and minimises user-input and bias. It can provide reliable, quantifiable data on sediment grain size, grain orientation, pore size and porosity. Limitations include the time involved for individual runs and manual segmentation, the large amount of computer memory required, and instrument resolution at the nano-scale. This method is applied to selected samples of Quaternary muddy sediments from the Iberian margin at IODP Site 1385. The section comprises finegrained (very fine clayey silts), mixed-composition, biogenic-terrigenous hemipelagites, with a pronounced but non-regular colour cyclicity. There is a multi-tiered and diverse trace fossil assemblage of the deep-water Zoophycos ichnofacies. The sediment microstructures show small-scale heterogeneity in all properties, and an overall random fabric with secondary preferred grain-alignment. These results on the fabric differ, in part, from previous studies of hemipelagic muds. Further work is underway on their comparison with other deep-water sediment facies.

     

  • loading
  • Aplin, A. C., Macquaker, J. H. S., 2011. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12): 2031-2059. https://doi.org/10.1306/03281110162
    Bankole, S. A., Buckman, J., Stow, D., et al., 2019. Grain-Size Analysis of Mudrocks: A New Semi-Automated Method from SEM Images. Journal of Petroleum Science and Engineering, 174: 244-256. https://doi.org/10.1016/j.petrol.2018.11.027
    Bankole, S. A., Stow, D. A. V., Lever, H., et al., 2016. Microstructure of Mudrock and the Choice of Representative Sample, In: Fifth EAGE Shale Workshop. EAGE, Catania, Italy
    Berens, P., 2009. CircStat: AMATLAB Toolbox for Circular Statistics. Journal of Statistical Software, 31(10): 1-21. https://doi.org/10.18637/jss.v031.i10
    Bosl, W. J., Dvorkin, J., Nur, A., 1998. A Study of Porosity and Permeability Using a Lattice Boltzmann Simulation. Geophysical Research Letters, 25(9): 1475-1478. https://doi.org/10.1029/98gl00859
    Buckman, J., 2014. Use of Automated Image Acquisition and Stitching in Scanning Electron Microscopy: Imaging of Large Scale Areas of Materials at High Resolution. Microscopy and Analysis, 28: 13-15 https://core.ac.uk/display/29128462
    Buckman, J., Bankole, S., Zihms, S., et al., 2017. Quantifying Porosity through Automated Image Collection and Batch Image Processing: Case Study of Three Carbonates and an Aragonite Cemented Sandstone. Geosciences, 7(3): 70. https://doi.org/10.3390/geosciences7030070
    Camp, W. K., Diaz, E., Wawak, B. E., 2013. Electron Microscopy of Shale Hydrocarbon Reservoirs. Association of Petroleum Geologists, Tulsa
    Chambers, J. M., Cleveland, W. S., Kleiner, B., et al., 1984. Graphical Methods for Data Analysis. Journal of the Royal Statistical Society, 147(3): 513. https://doi.org/s10.2307/2981587 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1202.6515
    Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., et al., 2012. Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging. AAPG Bulletin, 96(4): 665-677. https://doi.org/10.1306/08151110188
    Curtis, M. E., Ambrose, R. J., Sondergeld, C. H., et al., 2010. Structural Characterization of Gas Shales on the Micro- and Nano-Scales, Society of Petroleum Engineers—Canadian Unconventional Resources and International Petroleum Conference, Calgary
    Davis, J. C., 1986. Statistics and Data Analysis in Geology, Wiley India. 656.
    Desbois, G., Urai, J. L., Kukla, P. A., 2009. Morphology of the Pore Space in Claystones—Evidence from BIB/FIB Ion Beam Sectioning and Cryo-SEM Observations. eEarth, 4(1): 15-22. https://doi.org/10.5194/ee-4-15-2009
    DeVasto, M. A., Czeck, D. M., Bhattacharyya, P., 2012. Using Image Analysis and ArcGIS® to Improve Automatic Grain Boundary Detection and Quantify Geological Images. Computers & Geosciences, 49: 38-45. https://doi.org/10.1016/j.cageo.2012.06.005
    Fisher, N. I., 1993. Statistical Analysis of Circular Data. Cambridge University Press, New York, 277. https: //doi.org/10.1017/CBO9780511564345
    Francus, P., Pirard, E., 2004. Testing for Sources of Errors in Quantitative Image Analysis. In: Francus, P., ed., Image Analysis, Sediments and Paleoenvironments. Springer Netherlands, Dordrecht. 87-102. https: //doi.org/10.1007/1-4020-2122-4_5
    Grove, C., Jerram, D. A., 2011. JPOR: An ImageJ Macro to Quantify Total Optical Porosity from Blue-Stained Thin Sections. Computers & Geosciences, 37(11): 1850-1859. https://doi.org/10.1016/j.cageo.2011.03.002
    Hemes, S., Desbois, G., Urai, J. L., et al., 2013. Variations in the Morphology of Porosity in the Boom Clay Formation: Insights from 2D High Resolution BIB-SEM Imaging and Mercury Injection Porosimetry. Netherlands Journal of Geosciences, 92(4): 275-300. https://doi.org/10.1017/s0016774600000214
    Hesse, R., 1975. Turbiditic and Non-Turbiditic Mudstone of Cretaceous Flysch Sections of the East Alps and other Basins. Sedimentology, 22(3): 387-416. https://doi.org/10.1111/j.1365-3091.1975.tb01638.x
    Hodell, D. A., Lourens, L., Stow, D. A. V., et al., 2013. The "Shackleton Site" (IODP Site U1385) on the Iberian Margin. Scientific Drilling, 16: 13-19. https://doi.org/10.5194/sd-16-13-2013
    Hodell, D. A., Lourens, L., Crowhurst, S., et al., 2015. A Reference Time Scale for Site U1385 (Shackleton Site) on the SW Iberian Margin. Global and Planetary Change, 133: 49-64. https://doi.org/10.1016/j.gloplacha.2015.07.002
    Hoogakker, B. A. A., Rothwell, R. G., Rohling, E. J., et al., 2004. Variations in Terrigenous Dilution in Western Mediterranean Sea Pelagic Sediments in Response to Climate Change during the Last Glacial Cycle. Marine Geology, 211(1/2): 21-43. https://doi.org/10.1016/j.margeo.2004.07.005
    Houben, M. E., Desbois, G., Urai, J. L., 2013. Pore Morphology and Distribution in the Shaly Facies of Opalinus Clay (Mont Terri, Switzerland): Insights from Representative 2D BIB-SEM Investigations on mm to nm Scale. Applied Clay Science, 71: 82-97. https://doi.org/10.1016/j.clay.2012.11.006
    Janssen, C., Kanitpanyacharoen, W., Wenk, H. R., et al., 2012. Clay Fabrics in SAFOD Core Samples. Journal of Structural Geology, 43: 118-127. https://doi.org/http://dx.doi.org/10.1016/j.jsg.2012.07.004
    Josh, M., Esteban, L., Delle Piane, C., et al., 2012. Laboratory Characterisation of Shale Properties. Journal of Petroleum Science and Engineering, 88-89: 107-124. https://doi.org/http://dx.doi.org/10.1016/j.petrol.2012.01.023
    Kameda, A., Dvorkin, J., Keehm, Y., et al., 2006. Permeability-Porosity Transforms from Small Sandstone Fragments. Geophysics, 71(1): N11-N19. https://doi.org/10.1190/1.2159054
    Keller, L. M., Schuetz, P., Erni, R., et al., 2013. Characterization of Multi-Scale Microstructural Features in Opalinus Clay. Microporous and Mesoporous Materials, 170: 83-94. https://doi.org/10.1016/j.micromeso.2012.11.029
    Kuila, U., Prasad, M., 2013. Specific Surface Area and Pore-Size Distribution in Clays and Shales. Geophysical Prospecting, 61(2): 341-362. https://doi.org/10.1111/1365-2478.12028
    Lemmens, H., Richards, D., 2013. Multiscale Imaging of Shale Samples in the Scanning Electron Microscope. American Association of Petroleum Geologists Memoir, 27-35. https://doi.org/10.1306/13391702M1023582
    Lonardelli, I., Wenk, H. R., Ren, Y., 2007. Preferred Orientation and Elastic Anisotropy in Shales. Geophysics, 72(2): D33-D40. https://doi.org/10.1190/1.2435966
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
    Lovie, S., 2005. Empirical Quantile-Quantile Plots. In: Encyclopedia of Statistics in Behavioral Science. John Wiley and Sons, Ltd., Chichester. 543-545. https: //doi.org/10.1002/0470013192.bsa192
    Macquaker, J. H. S., Howell, J. K., 1999. Small-Scale (< 5.0 M) Vertical Heterogeneity in Mudstones: Implications for High-Resolution Stratigraphy in Siliciclastic Mudstone Successions. Journal of the Geological Society, 156(1): 105-112. https://doi.org/10.1144/gsjgs.156.1.0105
    Mardia, K. V., Jupp, P. E., 2008. Directional Statistics, Directional Statistics. John Wiley and Sons, Inc. 432. https: //doi.org/10.1002/9780470316979
    Martínez-Nistal, A., Veniale, F., Setti, M., et al., 1999. A Scanning Electron Microscopy Image Processing Method for Quantifying Fabric Orientation of Clay Geomaterials. Applied Clay Science, 14(4): 235-243. https://doi.org/10.1016/s0169-1317(98)00055-6
    Moon, C. F., Hurst, C. W., 1984. Fabric of Muds and Shales: An Overview. Geological Society, London, Special Publications, 15(1): 579-593. https://doi.org/10.1144/gsl.sp.1984.015.01.36
    Munson, E. O., Chalmers, G. R. L., Bustin, R. M., et al., 2016. Utilizing Smear Mounts for X-Ray Diffraction as a Fully Quantitative Approach in Rapidly Characterizing the Mineralogy of Shale Gas Reservoirs. Journal of Unconventional Oil and Gas Resources, 14: 22-31. https://doi.org/10.1016/j.juogr.2016.01.001
    Nishida, N., 2016. Microstructure of Muddy Contourites from the Gulf of Cádiz. Marine Geology, 377: 110-117. https://doi.org/10.1016/j.margeo.2015.08.017
    Nishida, N., Ito, M., Inoue, A., et al., 2013. Clay Fabric of Fluid-Mud Deposits from Laboratory and Field Observations: Potential Application to the Stratigraphic Record. Marine Geology, 337: 1-8. https://doi.org/ 10.1016/j.margeo.2012.12.006
    Pal, N. R., Pal, S. K., 1993. A Review on Image Segmentation Techniques. Pattern Recognition, 26(9): 1277-1294. https://doi.org/10.1016/0031-3203(93)90135-j
    Pickering, K. T., Hiscott, R. N., 2015. Deep Marine Systems: Processes, Deposits, Environments, Tectonics and Sedimentation. John Wiley and Sons, Chichester. 657
    Piper, D. J. W., 1977. Manual of Sedimentological Techniques. Departments of Geology and Oceanography, Dalhousie University, Halifax
    Rodríguez-Tovar, F. J., Dorador, J., 2014. Ichnological Analysis of Pleistocene Sediments from the IODP Site U1385 "Shackleton Site" on the Iberian Margin: Approaching Paleoenvironmental Conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 409: 24-32. https://doi.org/ 10.1016/j.palaeo.2014.04.027
    Rodríguez-Tovar, F. J., Dorador, J., Grunert, P., et al., 2015. Deep-Sea Trace Fossil and Benthic Foraminiferal Assemblages across Glacial Terminations 1, 2 and 4 at the "Shackleton Site" (IODP Expedition 339, Site U1385). Global and Planetary Change, 133: 359-370. https://doi.org/10.1016/j.gloplacha.2015.05.003
    Saraji, S., Piri, M., 2015. The Representative Sample Size in Shale Oil Rocks and Nano-Scale Characterization of Transport Properties. International Journal of Coal Geology, 146: 42-54. https://doi.org/ 10.1016/j.coal.2015.04.005
    Schindelin, J., Arganda-Carreras, I., Frise, E., et al., 2012. Fiji: An Open-Source Platform for Biological-Image Analysis. Nature Methods, 9: 676-682. https://doi.org/10.1038/nmeth.2019
    Schindelin, J., Rueden, C. T., Hiner, M. C., et al., 2015. The ImageJ Ecosystem: An Open Platform for Biomedical Image Analysis. Molecular Reproduction and Development, 82(7/8): 518-529. https://doi.org/ 10.1002/mrd.22489
    Schneider, C. A., Rasband, W. S., Eliceiri, K. W., 2012. NIH Image to ImageJ: 25 Years of Image Analysis. Nature Methods, 9(7): 671-675. https://doi.org/10.1038/nmeth.2089
    Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al., 1985. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984). Pure Applied Chemistry, 57: 603-619. https://doi.org/10.1351/pac198557040603
    Sokolov, V. N., O'Brien, N. R., 1990. A Fabric Classification of Argillaceous Rocks, Sediments, Soils. Applied Clay Science, 5(4): 353-360. https://doi.org/10.1016/0169-1317(90)90030-s
    Stow, D. A. V., 1985. Fine-Grained Sediments in Deep Water: An Overview of Processes and Facies Models. Geo-Marine Letters, 5(1): 17-23. https://doi.org/10.1007/bf02629792
    Stow, D. A. V., Hernández-Molina, F. J., Llave, E., et al., 2013. The Cadiz Contourite Channel: Sandy Contourites, Bedforms and Dynamic Current Interaction. Marine Geology, 343: 99-114. https://doi.org/10.1016/j.margeo.2013.06.013
    Stow, D. A. V., Huc, A. Y., Bertrand, P., 2001. Depositional Processes of Black Shales in Deep Water. Marine and Petroleum Geology, 18(4): 491-498. https://doi.org/10.1016/s0264-8172(01)00012-5
    Stow, D. A. V., Tabrez, A. R., 1998. Hemipelagites: Processes, Facies and Model. Geological Society, London, Special Publications, 129(1): 317-337. https://doi.org/10.1144/gsl.sp.1998.129.01.19
    Stow, D. A. V., 2005. Sedimentary Rocks in the Field: A Color Guide. Taylor and Francis Group, Florida. 320
    Suttle, M. D., Genge, M. J., Russell, S. S., 2017. Shock Fabrics in Fine-Grained Micrometeorites. Meteoritics & Planetary Science, 52(10): 2258-2274. https://doi.org/10.13039/501100000271
    Tovey, N. K., Smart, P., Hounslow, M. W., et al., 1992. Automatic Orientation Mapping of Some Types of Soil Fabric. Geoderma, 53(3/4): 179-200. https://doi.org/10.1016/0016-7061(92)90054-b
    Uchman, A., Wetzel, A., 2011. Deep-Sea Ichnology: The Relationships between Depositional Environment and Endobenthic Organisms, Developments in Sedimentology, 63: 517-556. https://doi.org/10.1016/B978-0-444-53000-4.00008-1
    Vanden-Bygaart, A. J., Protz, R., 1999. The Representative Elementary Area (REA) in Studies of Quantitative Soil Micromorphology. Geoderma, 89(3/4): 333-346. https://doi.org/10.1016/s0016-7061(98)00089-5
    Wang, Y., Zhu, Y. M., et al., 2014. Characteristics of the Nanoscale Pore Structure in Northwestern Hunan Shale Gas Reservoirs Using Field Emission Scanning Electron Microscopy, High-Pressure Mercury Intrusion, and Gas Adsorption. Energy & Fuels, 28(2): 945-955. https://doi.org/10.1021/ef402159e
    Wenk, H. R., Houtte, P. V., 2004. Texture and Anisotropy. Reports on Progress in Physics, 67(8): 1367-1428. https://doi.org/10.1088/0034-4885/67/8/r02
    Wenk, H. R., Lutterotti, L., Kaercher, P., et al., 2014. Rietveld Texture Analysis from Synchrotron Diffraction Images. Ⅱ. Complex Multiphase Materials and Diamond Anvil Cell Experiments. Powder Diffraction, 29(3): 220-232. https://doi.org/10.1017/s0885715614000360
    Wenk, H. R., Voltolini, M., Martin, M., et al., 2008. Preferred Orientations and Anisotropy in Shales: Callovo-Oxfordian Shale (France) and Opalinus Clay (Switzerland). Clays and Clay Minerals, 56(3): 285-306. https://doi.org/10.1346/ccmn.2008.0560301
    Yang, F., Ning, Z. F., Liu, H. Q., 2014. Fractal Characteristics of Shales from a Shale Gas Reservoir in the Sichuan Basin, China. Fuel, 115: 378-384. https://doi.org/10.1016/j.fuel.2013.07.040
    Zaitoun, N. M., Aqel, M. J., 2015. Survey on Image Segmentation Techniques. Procedia Computer Science, 65: 797-806. https://doi.org/10.1016/j.procs.2015.09.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(9)

    Article Metrics

    Article views(138) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return