Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 5
Oct 2019
Turn off MathJax
Article Contents
Binlong Ye, Jun Huang, Joseph Michalski, Long Xiao. Geomorphologic Characteristics of Polygonal Features on Chloride-Bearing Deposits on Mars: Implications for Martian Hydrology and Astrobiology. Journal of Earth Science, 2019, 30(5): 1049-1058. doi: 10.1007/s12583-019-1212-2
Citation: Binlong Ye, Jun Huang, Joseph Michalski, Long Xiao. Geomorphologic Characteristics of Polygonal Features on Chloride-Bearing Deposits on Mars: Implications for Martian Hydrology and Astrobiology. Journal of Earth Science, 2019, 30(5): 1049-1058. doi: 10.1007/s12583-019-1212-2

Geomorphologic Characteristics of Polygonal Features on Chloride-Bearing Deposits on Mars: Implications for Martian Hydrology and Astrobiology

doi: 10.1007/s12583-019-1212-2
More Information
  • Corresponding author: Jun Huang
  • Received Date: 10 May 2018
  • Accepted Date: 11 Sep 2018
  • Publish Date: 01 Oct 2019
  • Over 600 chloride-bearing deposits (chlorides) have been identified on the southern highlands of Mars. These chlorides have critical implications for hydrology and astrobiology:they are indicators of an evaporating super saturated solution, and they could have provided habitat environments for halophilic microorganisms and preserved organic matter. One of the prominent geomorphology characteristics of these chloride- bearing regions is the polygonal features within them. The origin of these polygonal features is still in debate. In this study, we have surveyed 153 locations of chlorides using 441 high resolution imaging science experiment (HiRISE) images to characterize the geomorphology of polygonal features. We identified 3 types of polygonal features of distinct geomorphologic characteristics:fractures, raised ridges, and transitional polygons between fractures and raised ridges. We evaluate previously proposed hypotheses of the formation of the polygonal features, and suggest that the 3 types of polygonal features are indicators of different stages of salt crust formation. Salt crust is usually formed through multiple groundwater activities, and it often occurs in playa environment on Earth. The unique hydrological and astrobiological implications of the chlorides with polygonal features make these deposits of high priority for future landed on and/or sample return exploration missions of Mars.

     

  • loading
  • Andrews-Hanna, J. C., Lewis, K. W., 2011. Early Mars Hydrology: 2. Hydrological Evolution in the Noachian and Hesperian Epochs. Journal of Geophysical Research, 116(E2): E02007. https://doi.org/10.1029/2010je003709
    Anglés, A., Li, Y. L., 2017. The Western Qaidam Basin as a Potential Martian Environmental Analogue: An Overview. Journal of Geophysical Research: Planets, 122(5): 856–888. https://doi.org/10.1002/2017je005293
    Bandfield, J. L., 2004. Atmospheric Correction and Surface Spectral Unit Mapping Using Thermal Emission Imaging System Data. Journal of Geophysical Research, 109(E10): E10008. https://doi.org/10.1029/2004je002289
    Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., 2001. Mars Global Surveyor Thermal Emission Spectrometer Experiment: Investigation Description and Surface Science Results. Journal of Geophysical Research: Planets, 106(E10): 23823–23871. https://doi.org/10.1029/2000je001370
    Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al., 2004. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110(1/2): 85–130. https://doi.org/10.1023/b:spac.0000021008.16305.94
    Christiansen, F. W., 1963. Polygonal Fracture and Fold Systems in the Salt Crust, Great Salt Lake Desert, Utah. Science, 139(3555): 607–609. https://doi.org/10.1126/science.139.3555.607
    Davila, A. F., Duport, L. G., Melchiorri, R., et al., 2010. Hygroscopic Salts and the Potential for Life on Mars. Astrobiology, 10(6): 617–628, https://doi.org/10.1089/ast.2009.0421.
    Ebinger, E., Mustard, J., 2015. Linear Ridges in the Nilosyrtis Region of Mars: Implications for Subsurface Fluid Flow. Lunar and Planetary Science Conference, The Woodlands
    Edwards, C. S., Christensen, P. R., Hill, J., 2011. Mosaicking of Global Planetary Image Datasets: 2. Modeling of Wind Streak Thicknesses Observed in Thermal Emission Imaging System (THEMIS) Daytime and Nighttime Infrared Data. Journal of Geophysical Research, 116(E10): E10005. https://doi.org/10.1029/2011je003857
    Ehlmann, B. L., Swayze, G. A., Milliken, R. E., et al., 2016. Discovery of Alunite in Cross Crater, Terra Sirenum, Mars: Evidence for Acidic, Sulfurous Waters. American Mineralogist, 101(7): 1527–1542. https://doi.org/10.2138/am-2016-5574
    El-Maarry, M. R., Pommerol, A., Thomas, N., 2013. Analysis of Polygonal Cracking Patterns in Chloride-Bearing Terrains on Mars: Indicators of Ancient Playa Settings. Journal of Geophysical Research: Planets, 118(11): 2263–2278. https://doi.org/10.1002/2013je004463
    El-Maarry, M. R., Watters, W., McKeown, N. K., et al., 2014. Potential Desiccation Cracks on Mars: A Synthesis from Modeling, Analogue-Field Studies, and Global Observations. Icarus, 241: 248–268. https://doi.org/10.1016/j.icarus.2014.06.033
    Fassett, C. I., Head, J. W. III, 2008. Valley Network-Fed, Open-Basin Lakes on Mars: Distribution and Implications for Noachian Surface and Subsurface Hydrology. Icarus, 198(1): 37–56. https://doi.org/10.1016/j.icarus.2008.06.016
    Fish, S. A., Shepherd, T. J., McGenity, T. J., et al., 2002. Recovery of 16S Ribosomal RNA Gene Fragments from Ancient Halite. Nature, 417(6887): 432–436. https://doi.org/10.1038/417432a
    Gillespie, A. R., Kahle, A. B., Walker, R. E., 1986. Color Enhancement of Highly Correlated Images. Ⅰ. Decorrelation and HSI Contrast Stretches. Remote Sensing of Environment, 20(3): 209–235. https://doi.org/10.1016/0034-4257(86)90044-1
    Glotch, T. D., Bandfield, J. L., Tornabene, L. L., et al., 2010. Distribution and Formation of Chlorides and Phyllosilicates in Terra Sirenum, Mars. Geophysical Research Letters, 37(16): 127–137. https://doi.org/10.1029/2010gl044557
    Glotch, T. D., Bandfield, J. L., Wolff, M. J., et al., 2016. Constraints on the Composition and Particle Size of Chloride Salt-Bearing Deposits on Mars. Journal of Geophysical Research: Planets, 121(3): 454–471. https://doi.org/10.1002/2015je004921
    Griffith, J. D., Willcox, S., Powers, D. W., et al., 2008. Discovery of Abundant Cellulose Microfibers Encased in 250 Ma Permian Halite: A Macromolecular Target in the Search for Life on other Planets. Astrobiology, 8(2): 215–228. https://doi.org/10.1089/ast.2007.0196
    Head, J. W., Mustard, J. F., 2006. Breccia Dikes and Crater-Related Faults in Impact Craters on Mars: Erosion and Exposure on the Floor of a Crater 75 km in Diameter at the Dichotomy Boundary. Meteoritics & Planetary Science, 41(10): 1675–1690. https://doi.org/10.1111/j.1945-5100.2006.tb00444.x
    Herkenhoff, K. E., Byrne, S., Russell, P. S., et al., 2007. Meter-Scale Morphology of the North Polar Region of Mars. Science, 317(5845): 1711–1715. https://doi.org/10.1126/science.1143544
    Huang, J., Salvatore, M., Edwards, C., et al., 2018. A Complex Fluviolacustrine Environment on Early Mars and Its Astrobiological Potentials. Astrobiology, 18(8): 1081–1091. https://doi.org/10.1089/ast.2017.1757
    Hynek, B. M., Beach, M., Hoke, M. R. T., 2010. Updated Global Map of Martian Valley Networks and Implications for Climate and Hydrologic Processes. Journal of Geophysical Research, 115(E9): E9008. https://doi.org/10.1029/2009je003548
    Hynek, B. M., Osterloo, M. K., Kierein-Young, K. S., 2015. Late-Stage Formation of Martian Chloride Salts through Ponding and Evaporation. Geology, 43(9): 787–790. https://doi.org/10.1130/g36895.1
    Jensen, H. B., Glotch, T. D., 2011. Investigation of the Near-Infrared Spectral Character of Putative Martian Chloride Deposits. Journal of Geophysical Research, 116(E12): E00J03. https://doi.org/10.1029/2011je003887
    Kerber, L., Dickson, J. L., Head, J. W., et al., 2017. Polygonal Ridge Networks on Mars: Diversity of Morphologies and the Special Case of the Eastern Medusae Fossae Formation. Icarus, 281: 200–219. https://doi.org/10.1016/j.icarus.2016.08.020
    Kirk, R. L., Howington-Kraus, E., Rosiek, M. R., et al., 2008. Ultrahigh Resolution Topographic Mapping of Mars with MRO HiRISE Stereo Images: Meter-Scale Slopes of Candidate Phoenix Landing Sites. Journal of Geophysical Research, 113(E12): E00A24. https://doi.org/10.1029/2007je003000
    Krinsley, D. B., 1970. A Geomorphological and Paleoclimatological Study of the Playas of Iran. Journal of Hydrology, 16(1): 66. https://doi.org/10.1016/0022-1694(72)90188-6
    Levy, J. S., Head, J. W., Marchant, D. R., 2009b. Concentric Crater Fill in Utopia Planitia: History and Interaction between Glacial "Brain Terrain" and Periglacial Mantle Processes. Icarus, 202(2): 462–476. https://doi.org/10.1016/j.icarus.2009.02.018
    Levy, J., Head, J., Marchant, D., 2009a. Thermal Contraction Crack Polygons on Mars: Classification, Distribution, and Climate Implications from HiRISE Observations. Journal of Geophysical Research, 114(E1): E01007. https://doi.org/10.1029/2008je003273
    Malin, M. C., Bell, J. F. III, Cantor, B. A., et al., 2007. Context Camera Investigation on Board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 112(E5): E05S04. https://doi.org/10.1029/2006je002808
    Mangold, N., 2005. High Latitude Patterned Grounds on Mars: Classification, Distribution and Climatic Control. Icarus, 174(2): 336–359. https://doi.org/10.1016/j.icarus.2004.07.030
    Mangold, N., Poulet, F., Mustard, J. F., et al., 2007. Mineralogy of the Nili Fossae Region with OMEGA/Mars Express Data: 2. Aqueous Alteration of the Crust. Journal of Geophysical Research: Planets, 112(E8): E08S04. https://doi.org/10.1029/2006je002835
    McEwen, A. S., Eliason, E. M., Bergstrom, J. W., et al., 2007. Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 112(E5): E05S02. https://doi.org/10.1029/2005je002605
    Mellon, M. T., Arvidson, R. E., Marlow, J. J., et al., 2008. Periglacial Landforms at the Phoenix Landing Site and the Northern Plains of Mars. Journal of Geophysical Research, 113(E4): E00A23. https://doi.org/10.1029/2007je003039
    Mellon, M. T., Feldman, W. C., Prettyman, T. H., 2004. The Presence and Stability of Ground Ice in the Southern Hemisphere of Mars. Icarus, 169(2): 324–340. https://doi.org/10.1016/j.icarus.2003.10.022
    Mellon, M. T., Jakosky, B. M., 1995. The Distribution and Behavior of Martian Ground Ice during Past and Present Epochs. Journal of Geophysical Research, 100(E6): 11781–11799. https://doi.org/10.1029/95je01027
    Morgenstern, A., Hauber, E., Reiss, D., et al., 2007. Deposition and Degradation of a Volatile-Rich Layer in Utopia Planitia and Implications for Climate History on Mars. Journal of Geophysical Research, 112(E6): E06010. https://doi.org/10.1029/2006je002869
    Mormile, M. R., Biesen, M. A., Gutierrez, M. C., et al., 2003. Isolation of Halobacterium Salinarum Retrieved Directly from Halite Brine Inclusions. Environmental Microbiology, 5(11): 1094–1102. https://doi.org/10.1046/j.1462-2920.2003.00509.x
    Murchie, S. L., Mustard, J. F., Ehlmann, B. L., et al., 2009. A Synthesis of Martian Aqueous Mineralogy after 1 Mars Year of Observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 114(E2): E00D06. https://doi.org/10.1029/2009je003342
    Mutch, T. A., Binder, A. B., Huck, F. O., et al., 1976. The Surface of Mars: The View from the Viking 1 Lander. Science, 193(4255): 791–801. https://doi.org/10.1126/science.193.4255.791
    Okubo, C. H., McEwen, A. S., 2007. Fracture-Controlled Paleo-Fluid Flow in Candor Chasma, Mars. Science, 315(5814): 983–985. https://doi.org/10.1126/science.1136855
    Osterloo, M. M., Anderson, F. S., Hamilton, V. E., et al., 2010. Geologic Context of Proposed Chloride-Bearing Materials on Mars. Journal of Geophysical Research, 115(E10): E10012. https://doi.org/10.1029/2010je003613
    Osterloo, M. M., Hamilton, V. E., Bandfield, J. L., et al., 2008. Chloride-Bearing Materials in the Southern Highlands of Mars. Science, 319(5870): 1651–1654. https://doi.org/10.1126/science.1150690
    Park, J. S., Vreeland, R. H., Cho, B. C., et al., 2009. Haloarchaeal Diversity in 23, 121 and 419 MYA Salts. Geobiology, 7(5): 515–523. https://doi.org/10.1111/j.1472-4669.2009.00218.x
    Putzig, N. E., Mellon, M. T., Kretke, K. A., et al., 2005. Global Thermal Inertia and Surface Properties of Mars from the MGS Mapping Mission. Icarus, 173(2): 325–341. https://doi.org/10.1016/j.icarus.2004.08.017
    Radax, C., Gruber, C., Stan-Lotter, H., 2001. Novel Haloarchaeal 16S RRNA Gene Sequences from Alpine Permo-Triassic Rock Salt. Extremophiles, 5(4): 221–228. https://doi.org/10.1007/s007920100192
    Rosen, M. R., 1994. The Importance of Groundwater in Playas: A Review of Playa Classification and the Sedimentology and Hydrology of Playas, GSA Special Papers 289, Geological Society of America, Boulder, Co.
    Ruesch, O., Poulet, F., Vincendon, M., et al., 2012. Compositional Investigation of the Proposed Chloride-Bearing Materials on Mars Using Near-Infrared Orbital Data from OMEGA/MEx. Journal of Geophysical Research: Planets, 117(E11): E00J13. https://doi.org/10.1029/2012je004108
    Saper, L., Mustard, J. F., 2013. Extensive Linear Ridge Networks in Nili Fossae and Nilosyrtis, Mars: Implications for Fluid Flow in the Ancient Crust. Geophysical Research Letters, 40(2): 245–249. https://doi.org/10.1002/grl.50106
    Schubert, B. A., Lowenstein, T. K., Timofeeff, M. N., 2009. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California. Astrobiology, 9(5): 467–482. https://doi.org/10.1089/ast.2008.0282
    Shean, D. E., Alexandrov, O., Moratto, Z. M., et al., 2016. An Automated, Open-Source Pipeline for Mass Production of Digital Elevation Models (DEMs) from Very-High-Resolution Commercial Stereo Satellite Imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 116: 101–117. https://doi.org/10.1016/j.isprsjprs.2016.03.012
    Soare, R. J., Osinski, G. R., Roehm, C. L., 2008. Thermokarst Lakes and Ponds on Mars in the very Recent (Late Amazonian) Past. Earth and Planetary Science Letters, 272(1/2): 382–393. https://doi.org/10.1016/j.epsl.2008.05.010
    Stein, N., Grotzinger, J. P., Schieber, J., et al., 2018. Desiccation Cracks Provide Evidence of Lake Drying on Mars, Sutton Island Member, Murray Formation, Gale Crater: REPLY. Geology, 46(8): e450–e450. https://doi.org/10.1130/g45237y.1
    Stivaletta, N., Barbieri, R., Picard, C., et al., 2009. Astrobiological Significance of the Sabkha Life and Environments of Southern Tunisia. Planetary and Space Science, 57(5/6): 597–605. https://doi.org/10.1016/j.pss.2008.10.002
    Thomas, D. S. G., 2011. Arid Zone Geomorphology: Process, Form and Change in Drylands. Wiley
    Villanueva, G. L., Mumma, M. J., Novak, R. E., et al., 2015. Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs. Science, 348(6231): 218–221. https://doi.org/10.1126/science.aaa3630
    Vreeland, R. H., Jones, J., Monson, A., et al., 2007. Isolation of Live Cretaceous (121–112 Million Years Old) Halophilic Archaea from Primary Salt Crystals. Geomicrobiology Journal, 24(3/4): 275–282. https://doi.org/10.1080/01490450701456917
    Wang, A. L., Sobron, P., Kong, F., et al., 2018. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: Ⅱ. Preservation of Salts with High Hydration Degrees in Subsurface. Astrobiology, 18(10): 1254–1276. https://doi.org/10.1089/ast.2018.1829
    Wang, C. W., Hong, H. L., Li, Z. H., et al., 2013. Climatic and Tectonic Evolution in the North Qaidam since the Cenozoic: Evidence from Sedimentology and Mineralogy. Journal of Earth Science, 24(3): 314–327. https://doi.org/10.1007/s12583-013-0332-3
    Wray, J. J., Milliken, R. E., Dundas, C. M., et al., 2011. Columbus Crater and other Possible Groundwater-Fed Paleolakes of Terra Sirenum, Mars. Journal of Geophysical Research, 116(E1): E01001. https://doi.org/10.1029/2010je003694
    Wray, J. J., Murchie, S. L., Squyres, S. W., et al., 2009. Diverse Aqueous Environments on Ancient Mars Revealed in the Southern Highlands. Geology, 37(11): 1043–1046. https://doi.org/10.1130/g30331a.1
    Xiao, L., Wang, J., Dang, Y. N., et al., 2017. A New Terrestrial Analogue Site for Mars Research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Science Reviews, 164: 84–101. https://doi.org/10.1016/j.earscirev.2016.11.003
    Yi, L. W., Gu, X. P., Lu, A. H., et al., 2017. Atacamite and Nantokite in Kaerqueka Copper Deposit of Qimantag Area: Evidence for Cenozoic Climate Evolution of the Qaidam Basin. Journal of Earth Science, 28(3): 492–499. https://doi.org/10.1007/s12583-017-0548-8
    Zanetti, M., Hiesinger, H., Reiss, D., et al., 2010. Distribution and Evolution of Scalloped Terrain in the Southern Hemisphere, Mars. Icarus, 206(2): 691–706. https://doi.org/10.1016/j.icarus.2009.09.010
    Zeng, F. M., Xiang, S. Y., 2017. Geochronology and Mineral Composition of the Pleistocene Sediments in Xitaijinair Salt Lake Region, Qaidam Basin: Preliminary Results. Journal of Earth Science, 28(4): 622–627. https://doi.org/10.1007/s12583-016-0712-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views(690) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return