Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 5
Oct 2019
Turn off MathJax
Article Contents
Chen Song, Qiang Yao, Dun Wang. Magnitude of the 23 January 2018 M7.9 Alaska Earthquake Estimated from Local Dense Seismic Records in Alaska. Journal of Earth Science, 2019, 30(5): 1005-1009. doi: 10.1007/s12583-019-1215-z
Citation: Chen Song, Qiang Yao, Dun Wang. Magnitude of the 23 January 2018 M7.9 Alaska Earthquake Estimated from Local Dense Seismic Records in Alaska. Journal of Earth Science, 2019, 30(5): 1005-1009. doi: 10.1007/s12583-019-1215-z

Magnitude of the 23 January 2018 M7.9 Alaska Earthquake Estimated from Local Dense Seismic Records in Alaska

doi: 10.1007/s12583-019-1215-z
More Information
  • Corresponding author: Dun Wang
  • Received Date: 29 Sep 2018
  • Accepted Date: 01 Mar 2019
  • Publish Date: 01 Oct 2019
  • We apply a novel method to estimate the magnitude of the 23 January 2018 M7.9 Alaska earthquake using seismic stations recorded at local to regional distances in Alaska, US. We determine the source duration from back-projection results derived from the Alaska stations in a relatively compact azimuth range. Then we calculate the maximum P-wave displacements recorded on a wide azimuth range at distances of 8 to 15 degrees. Combining the source duration and the maximum P-wave displacements, we obtain magnitudes of 7.86-8.03 for the 23 January 2018 earthquake in 3-5 min, very close to the Mw7.9 determined by the USGS and GCMT. This example validates the new approach for determining magnitude of large earthquakes using local to regional stations, and its time efficiency that magnitudes of large earthquakes can be accurately estimated within in 3-5 min after origin time. Therefore, further application of this new method would help accurate estimation of size of earthquakes that occur offshore and might cause tsunami hazards.

     

  • loading
  • Convers, J. A., Newman, A. V., 2013. Rapid Earthquake Rupture Duration Estimates from Teleseismic Energy Rates, with Application to Real-Time Warning. Geophysical Research Letters, 40(22): 5844-5848. https://doi.org/10.1002/2013gl057664
    Crotwell, H. P., Owens, T. J., Ritsema, J., 1999. The TauP Toolkit: Flexible Seismic Travel-Time and Ray-Path Utilities. Seismological Research Letters, 70(2): 154-160. https://doi.org/10.1785/gssrl.70.2.154
    Ekström, G., Stein, R. S., Eaton, J. P., et al., 1992. Seismicity and Geometry of a 110-km-Long Blind Thrust Fault 1. The 1985 Kettleman Hills, California, Earthquake. Journal of Geophysical Research, 97(B4): 4843. https://doi.org/10.1029/91jb02925
    Fan, W. Y., Shearer, P. M., 2015. Detailed Rupture Imaging of the 25 April 2015 Nepal Earthquake Using Teleseismic Waves. Geophysical Research Letters, 42(14): 5744-5752. https://doi.org/10.1002/2015gl064587
    Freymueller, J. T., Woodard, H., Cohen, S. C., et al., 2008. Active Deformation Processes in Alaska, Based on 15 Years of GPS Measurements. In: Freymueller, J. T., Haeussler, P. J., Wesson, R. L., et al., eds., Active Tectonics and Seismic Potential of Alaska, Geophys. Monogr. Ser., 179: 1-42. https://doi.org/10.1029/179gm02
    Hanks, T. C., Kanamori, H., 1979. A Moment Magnitude Scale. Journal of Geophysical Research, 84(B5): 2348. https://doi.org/10.1029/jb084ib05p02348
    Hara, T., 2007a. Magnitude Determination Using Duration of High Frequency Energy Radiation and Displacement Amplitude: Application to Tsunami Earthquakes. Earth, Planets and Space, 59(6): 561-565. https://doi.org/10.1186/bf03352718
    Hara, T., 2007b. Measurement of the Duration of High-Frequency Energy Radiation and Its Application to Determination of the Magnitudes of Large Shallow Earthquakes. Earth, Planets and Space, 59(4): 227-231. https://doi.org/10.1186/bf03353099
    Hara, T., 2011. Magnitude Determination Using Duration of High Frequency Energy Radiation and Displacement Amplitude: Application to the 2011 off the Pacific Coast of Tohoku Earthquake. Earth, Planets and Space, 63(7): 525-528. https://doi.org/10.5047/eps.2011.05.014
    Ishii, M., Shearer, P. M., Houston, H., et al., 2005. Extent, Duration and Speed of the 2004 Sumatra-Andaman Earthquake Imaged by the Hi-Net Array. Nature, 435(7044): 933-936. https://doi.org/10.1038/nature03675
    Kennett, B. L. N., Engdahl, E. R., 1991. Traveltimes for Global Earthquake Location and Phase Identification. Geophysical Journal International, 105(2): 429-465. https://doi.org/10.1111/j.1365-246x.1991.tb06724.x
    Krüger, F., Ohrnberger, M., 2005. Tracking the Rupture of the Mw=9.3 Sumatra Earthquake over 1 150 km at Teleseismic Distance. Nature, 435(7044): 937-939. https://doi.org/10.1038/nature03696
    Li, J., Liu, C. L., Zheng, Y., et al., 2017. Rupture Process of the Ms 7.0 Lushan Earthquake Determined by Joint Inversion of Local Static GPS Records, Strong Motion Data, and Teleseismograms. Journal of Earth Science, 28(2): 404-410. https://doi.org/10.1007/s12583-017-0757-1
    Naugler, F. P., Wageman, J. M., 1973. Gulf of Alaska: Magnetic Anomalies, Fracture Zones, and Plate Interaction. Geological Society of America Bulletin, 84(5): 815-821. https://doi.org/10.1130/0016-7606(1973)84<L1575:goamaf>2.0.co; 2 doi: 10.1130/0016-7606(1973)842.0.co;2
    Pegler, G., Das, S., 1996. The 1987-1992 Gulf of Alaska Earthquakes. Tectonophysics, 257(2-4): 111-136. https://doi.org/10.1016/0040-1951(95)00112-3
    Pitman, W. C. Ⅲ, Hayes, D. E., 1968. Sea-Floor Spreading in the Gulf of Alaska. Journal of Geophysical Research, 73(20): 6571-6580. https://doi.org/10.1029/jb073i020p06571
    Rao, G., Cheng, Y. L., Lin, A. M., et al., 2017. Relationship between Landslides and Active Normal Faulting in the Epicentral Area of the AD 1556 M~8.5 Huaxian Earthquake, SE Weihe Graben (Central China). Journal of Earth Science, 28(3): 545-554. https://doi.org/10.1007/s12583-017-0900-z
    Satriano, C., Kiraly, E., Bernard, P., et al., 2012. The 2012 Mw 8.6 Sumatra Earthquake: Evidence of Westward Sequential Seismic Ruptures Associated to the Reactivation of a N-S Ocean Fabric. Geophysical Research Letters, 39(15): L15302. https://doi.org/10.1029/2012gl052387
    Wang, D., Kawakatsu, H., Zhuang, J., et al., 2017. Automated Determination of Magnitude and Source Length of Large Earthquakes Using Backprojection and P Wave Amplitudes. Geophysical Research Letters, 44(11): 5447-5456. https://doi.org/10.1002/2017gl073801
    Wang, D., Kawakatsu, H., Mori, J., et al., 2016. Backprojection Analyses from Four Regional Arrays for Rupture over a Curved Dipping Fault: The Mw 7.7 24 September 2013 Pakistan Earthquake. Journal of Geophysical Research: Solid Earth, 121(3): 1948-1961. https://doi.org/10.1002/2015jb012168
    Wessel, P., Smith, W. H. F., 1991. Free Software Helps Map and Display Data. Eos, Transactions American Geophysical Union, 72(41): 441-446. https://doi.org/10.1029/90eo00319
    Yao, H., Shearer, P. M., Gerstoft, P., 2013. Compressive Sensing of Frequency-Dependent Seismic Radiation from Subduction Zone Megathrust Ruptures. Proceedings of the National Academy of Sciences, 110(12): 4512-4517. https://doi.org/10.1073/pnas.1212790110
    Zhang, H., Ge, Z. X., Ding, L. Y., 2011. Three Sub-Events Composing the 2011 off the Pacific Coast of Tohoku Earthquake (Mw 9.0) Inferred from Rupture Imaging by Back-Projecting Teleseismic P Waves. Earth, Planets and Space, 63(7): 595-598. https://doi.org/10.5047/eps.2011.06.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(451) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return