Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 5
Oct 2019
Turn off MathJax
Article Contents
Pingping Zhu, Qiuming Cheng, Guoxiong Chen. New Fractal Evidence of Pacific Plate Subduction in the Late Mesozoic, Great Xing'an Range, Northeast China. Journal of Earth Science, 2019, 30(5): 1031-1040. doi: 10.1007/s12583-019-1216-y
Citation: Pingping Zhu, Qiuming Cheng, Guoxiong Chen. New Fractal Evidence of Pacific Plate Subduction in the Late Mesozoic, Great Xing'an Range, Northeast China. Journal of Earth Science, 2019, 30(5): 1031-1040. doi: 10.1007/s12583-019-1216-y

New Fractal Evidence of Pacific Plate Subduction in the Late Mesozoic, Great Xing'an Range, Northeast China

doi: 10.1007/s12583-019-1216-y
More Information
  • Corresponding author: Qiuming Cheng
  • Received Date: 24 May 2018
  • Accepted Date: 20 Oct 2018
  • Publish Date: 01 Oct 2019
  • Late Mesozoic granitoids are widespread in the Great Xing'an Range (GXR), which is part of a large igneous province in eastern China. The geodynamic setting of the Late Mesozoic granitoids is still debated, and there have been two dominant models proposed, subduction and thermal erosion. This study discusses the geodynamic mechanisms from a new perspective on ages of the granitoids and fractal dimensions of their shape. Our results show that granitoids become gradually older from South GXR to North GXR to Erguna Block (EB) in the Jurassic, and opposite in the Cretaceous. The fractal dimensions of the Perimeter-area model (DAP) exhibit the same features. The values of DAP are smaller from South GXR (0.673 1) to North GXR (0.628 0) to EB (0.607 9) in the Jurassic, and larger from South GXR (0.609 6) to North GXR (0.630 2) to EB (0.639 9) in the Cretaceous. This implies that the geometrical irregularities of the granitoids are shaped by subduction rather than thermal erosion. These spatial variations could be best explained by the subduction of the Pacific Plate and consequent granitoid magmatism in the Late Mesozoic, thus providing a new fractal evidence for Pacific Plate subduction mechanism and opening a new possibility method for studing plate movement.

     

  • loading
  • Bak, P., Tang, C., Wiesenfeld, K., 1987. Self-Organized Criticality: An Explanation of the 1/F Noise. Physical Review Letters, 59(4): 381–384. https://doi.org/10.1103/physrevlett.59.381
    Brinkhoff, L. A., von Savigny, C., Randall, C. E., et al., 2015. The Fractal Perimeter Dimension of Noctilucent Clouds: Sensitivity Analysis of the Area-Perimeter Method and Results on the Seasonal and Hemispheric Dependence of the Fractal Dimension. Journal of Atmospheric and Solar-Terrestrial Physics, 127: 66–72. https://doi.org/10.1016/j.jastp.2014.06.005
    Chen, G. X., Cheng, Q. M., 2018. Cyclicity and Persistence of Earth's Evolution over Time: Wavelet and Fractal Analysis. Geophysical Research Letters, 45(16): 8223–8230. https://doi.org/10.1029/2018gl078625
    Cheng, Q. M., 1995. The Perimeter-Area Fractal Model and Its Application to Geology. Mathematical Geology, 27(1): 69–82. https://doi.org/10.1007/bf02083568
    Cheng, Q. M., 2017. Singularity Analysis of Global Zircon U-Pb Age Series and Implication of Continental Crust Evolution. Gondwana Research, 51: 51–63. https://doi.org/10.1016/j.gr.2017.07.011
    Cheng, Q., 2014. Generalized Binomial Multiplicative Cascade Processes and Asymmetrical Multifractal Distributions. Nonlinear Processes in Geophysics, 21(2): 477–487. https://doi.org/10.5194/npg-21-477-2014
    Clouard, V., Bonneville, A., 2001. How Many Pacific Hotspots are Fed by Deep-Mantle Plumes?. Geology, 29(8): 695. https://doi.org/10.1130/0091-7613(2001)029 < 0695:hmphaf > 2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0695:hmphaf>2.0.co;2
    Cohen K. M., Finney S. C., Gibbard P. L., et al., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36: 199–204. https://doi.org/10.1111/j.1502-3931.1980.tb01026.x
    Deng, J. F., Mo, X. X., Zhao, H. L., et al., 2004. A New Model for the Dynamic Evolution of Chinese Lithosphere: 'Continental Roots-Plume Tectonics'. Earth-Science Reviews, 65(3/4): 223–275. https://doi.org/10.1016/j.earscirev.2003.08.001
    Ding, C. W., Nie, F. J., Jiang, S. H., et al., 2016. Characteristics and Origin of the Zhulazhaga Gold Deposit in Inner Mongolia, China. Ore Geology Reviews, 73: 211–221. https://doi.org/10.1016/j.oregeorev.2015.02.011
    Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926–944. https://doi.org/10.1016/j.gr.2010.09.006
    Gao, S., Zhang, B., Jin, Z., et al., 1998. How Mafic is the Lower Continental Crust? Earth and Planetary Science Letters, 161(1–4): 101–117. https://doi.org/10.1016/s0012-821x(98)00140-x
    Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892–897. https://doi.org/10.1038/nature03162
    Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73–100. https://doi.org/10.1144/gsl.sp.2004.226.01.05
    Kay, R. W., Kay, S. M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1–3): 177–189. https://doi.org/10.1016/0040-1951(93)90295-u
    Korvin, G., 1992. Fractal Models in the Earth Sciences. Elsevier, New York
    Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3/4): 207–224. https://doi.org/10.1016/j.jseaes.2005.09.001
    Liu, X., Zhao, D. P., Li, S. Z., et al., 2017. Age of the Subducting Pacific Slab beneath East Asia and Its Geodynamic Implications. Earth and Planetary Science Letters, 464: 166–174. https://doi.org/10.1016/j.epsl.2017.02.024
    Lovejoy, S., Agterberg, F., Carsteanu, A., et al., 2009. Nonlinear Geophysics: Why We Need It. Eos, Transactions American Geophysical Union, 90(48): 455–456. https://doi.org/10.1029/2009eo480003
    Lu, F., Zheng, J., Zhang, R., 2005. Phanerozoic Mantle Secular Evolution beneath the Eastern North China Craton. Earth Science Frontiers, 12(1): 61–67 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200501009
    Lucido, G., Triolo, R., Caponetti, E., 1988. Fractal Approach in Petrology: Small-Angle Neutron Scattering Experiments with Volcanic Rocks. Physical Review B, 38(13): 9031–9034. https://doi.org/10.1103/physrevb.38.9031
    Mallard, C., Coltice, N., Seton, M., et al., 2016. Subduction Controls the Distribution and Fragmentation of Earth's Tectonic Plates. Nature, 535(7610): 140–143. https://doi.org/10.1038/nature17992
    Mandelbrot, B. B., Passoja, D. E., Paullay, A. J., 1984. Fractal Character of Fracture Surfaces of Metals. Nature, 308(5961): 721–722. https://doi.org/10.1038/308721a0
    Mandelbrot, B., 1967. How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 156(3775): 636–638. https://doi.org/10.1126/science.156.3775.636
    Meakin, P., 1987. Diffusion-Limited Aggregation on Multifractal Lattices: A Model for Fluid-Fluid Displacement in Porous Media. Physical Review A, 36(6): 2833–2837. https://doi.org/10.1103/physreva.36.2833
    Müller, R. D., Seton, M., Zahirovic, S., et al., 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 44(1): 107–138. https://doi.org/10.1146/annurev-earth-060115-012211
    Newman, M., 2005. Power Laws, Pareto Distributions and Zipf's Law. Contemporary Physics, 46(5): 323–351. https://doi.org/10.1080/00107510500052444
    Ranguelov, B., Ivanov, Y., 2017. Fractal Properties of the Elements of Plate Tectonics. Journal of Mining and Geological Sciences, 60(1): 83–89 https://doi.org/10.1029/2002GL015043
    Ren, J., Niu, B., Liu, Z., 1999. Soft Collision, Superposition Orogeny and Polycyclic Suturing. Earth Science Frontiers, 6(3): 85–93 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY199903010.htm
    Ren, J., Niu, B., Wang, J., et al., 2013. 1 : 5 Million International Geological Map of Asia. Acta Geoscientica Sinica, 34(1): 24–30 (in Chinese) http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_312d799abfb4a74ea247d6e73a15df1a
    Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Los Angeles. 940
    Shao, J., Zhang, Z., She, H., et al., 2012. The Discovery of Phanerozoic Granulite in Chifeng Area of North Craton and Its Implication. Earth Science Frontiers, 19(3): 188–198 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201203021
    Shi, Y. R., Liu, D. Y., Miao, L. C., et al., 2010. Devonian A-Type Granitic Magmatism on the Northern Margin of the North China Craton: SHRIMP U-Pb Zircon Dating and Hf-Isotopes of the Hongshan Granite at Chifeng, Inner Mongolia, China. Gondwana Research, 17(4): 632–641. https://doi.org/10.1016/j.gr.2009.11.011
    Sornette, D., Pisarenko, V., 2003. Fractal Plate Tectonics. Geophysical Research Letters, 30(3): 1105. https://doi.org/10.1029/2002gl015043
    Sun, S. Q., Huang, R. Q., Pei, X. J., et al., 2016. Engineering Geological Classification of the Structural Planes for Hydroelectric Projects in Emeishan Basalts. Journal of Mountain Science, 13(2): 330–341 (in Chinese with English Abstract) doi: 10.1007/s11629-014-3244-5
    Tian, Y., Zhao, D. P., 2011. Destruction Mechanism of the North China Craton: Insight from P and S Wave Mantle Tomography. Journal of Asian Earth Sciences, 42(6): 1132–1145. https://doi.org/10.1016/j.gr.2009.11.011
    Triolo, F., Triolo, A., Agamalian, M. M., et al., 2000. Fractal Approach in Petrology: Combining Ultra Small Angle, Small Angle and Intermediate Angle Neutron Scattering. Journal of Applied Crystallography, 33(3): 863–866. https://doi.org/10.1107/s0021889899014910
    Turcotte, D. L., 2002. Fractals in Petrology. Lithos, 65(3/4): 261–271. https://doi.org/10.1016/s0024-4937(02)00194-9
    Wang, W., Chen, Q., 2017. The Crust S-wave Velocity Structure under the Changbaishan Volcano Area in Northeast China Inferred from Ambient Noise Tomography. Chinese Journal of Geophysics, 60(8): 3080–3095 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201708016.htm
    Wang, C. Y., Sandvol, E., Lou, H., et al., 2017. Evidence for a Crustal Root beneath the Paleoproterozoic Collision Zone in the Northern Ordos Block, North China. Precambrian Research, 301: 124–133. https://doi.org/10.1016/j.precamres.2017.09.009
    Wang, F., Zhou, X. H., Zhang, L. C., et al., 2006. Late Mesozoic Volcanism in the Great Xing'an Range (NE China): Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 251(1/2): 179–198. https://doi.org/10.1016/j.epsl.2006.09.007
    Wang, T., Guo, L., Zhang, L., et al., 2015. Timing and Evolution of Jurassic–Cretaceous Granitoid Magmatisms in the Mongol-Okhotsk Belt and Adjacent Areas, NE Asia: Implications for Transition from Contractional Crustal Thickening to Extensional Thinning and Geodynamic Settings. Journal of Asian Earth Sciences, 97: 365–392. https://doi.org/10.1016/j.jseaes.2014.10.005
    Wang, Z. J., Cheng, Q. M., Cao, L., et al., 2007. Fractal Modelling of the Microstructure Property of Quartz Mylonite during Deformation Process. Mathematical Geology, 39(1): 53–68. https://doi.org/10.1007/s11004-006-9065-5
    Wessel, P., Kroenke, L. W., 2008. Pacific Absolute Plate Motion since 145 Ma: An Assessment of the Fixed Hot Spot Hypothesis. Journal of Geophysical Research, 113(B6): 1–21. https://doi.org/10.1029/2007jb005499
    Wu, F., Ge, W., Sun, D., Guo, C., 2003. Discussions on the Lithospheric Thinning in Eastern China. Earth Science Frontiers, 10(3): 51–60 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200303004
    Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1–30. https://doi.org/10.1016/j.jseaes.2010.11.014
    Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143–173. https://doi.org/10.1016/s0009-2541(02)00018-9
    Wu, F., Lin, J., Wilde, S., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103–119. https://doi.org/10.1016/j.epsl.2005.02.019
    Xu, Y. G., 2007. Diachronous Lithospheric Thinning of the North China Craton and Formation of the Daxin'anling-Taihangshan Gravity Lineament. Lithos, 96(1): 281–298. https://doi.org/10.1016/j.lithos.2006.09.013
    Xu, Z., Chen, Y., Wang, C., et al., 2008. 1 : 2.5 Million Geological Map of Metallogenic Zone of China. China Map Publishing House, Beijing (in Chinese)
    Xu, W. L., Zhou, Q. J., Pei, F. P., et al., 2013. Destruction of the North China Craton: Delamination or Thermal/chemical Erosion? Mineral Chemistry and Oxygen Isotope Insights from Websterite Xenoliths. Gondwana Research, 23(1): 119–129. https://doi.org/10.1016/j.gr.2012.02.008
    Xu, Y. G., 2001. Thermo-Tectonic Destruction of the Archaean Lithospheric Keel beneath the Sino-Korean Craton in China: Evidence, Timing and Mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9/10): 747–757. https://doi.org/10.1016/s1464-1895(01)00124-7
    Xu, Y. G., Huang, X. L., Ma, J. L., et al., 2004. Crust-Mantle Interaction during the Tectono-Thermal Reactivation of the North China Craton: Constraints from SHRIMP Zircon U-Pb Chronology and Geochemistry of Mesozoic Plutons from Western Shandong. Contributions to Mineralogy and Petrology, 147(6): 750–767. https://doi.org/10.1007/s00410-004-0594-y
    Ye, T., Huang, C., Deng, Z., 2017. Spatial Database of 1 : 2.5 Million Geological Map of China. http://dcc.ngac.org.cn/geologicaldata. China Map Publishing House. Beijing (in Chinese)
    Zhang, C., Ma, C. Q., Liao, Q. A., et al., 2011. Implications of Subduction and Subduction Zone Migration of the Paleo-Pacific Plate beneath Eastern North China, Based on Distribution, Geochronology, and Geochemistry of Late Mesozoic Volcanic Rocks. International Journal of Earth Sciences, 100(7): 1665–1684. https://doi.org/10.1007/s00531-010-0582-6
    Zhang, J. H., Gao, S., Ge, W. C., et al., 2010. Geochronology of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China: Implications for Subduction-Induced Delamination. Chemical Geology, 276(3/4): 144–165. https://doi.org/10.1016/j.chemgeo.2010.05.013
    Zhang, J. H., Ge, W. C., Wu, F. Y., et al., 2008. Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range, Northeastern China. Lithos, 102(1/2): 138–157. https://doi.org/10.1016/j.lithos.2007.08.011
    Zhang, J., Li, S. Z., Li, X., et al., 2017. Yanshanian Deformation in Western Shandong, Eastern North China Craton: Response to a Transition from Paleo-Pacific to Pacific Plate Subduction. Geological Journal, 52(5): 32–43. https://doi.org/10.1002/gj.3049
    Zhang, S. H., Zhao, Y., Davis, G. A., et al., 2014. Temporal and Spatial Variations of Mesozoic Magmatism and Deformation in the North China Craton: Implications for Lithospheric Thinning and Decratonization. Earth-Science Reviews, 131: 49–87. https://doi.org/10.1016/j.earscirev.2013.12.004
    Zhang, Y., Pei, F. P., Wang, Z. W., et al., 2017. Late Paleozoic Tectonic Evolution of the Central Great Xing'an Range, Northeast China: Geochronological and Geochemical Evidence from Igneous Rocks. Geological Journal, 53(1): 282–303. https://doi.org/10.1111/j.1440-1738.2004.00442.x
    Zheng, J., 1999. Mesozoic–Cenozoic Mantle Replacement and Lithospheric Thinning beneath Eastern China. China University of Geosciences Press, Wuhan. 126 (in Chinese with English Abstract)
    Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2007. Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203–5225. https://doi.org/10.1016/j.gca.2007.07.028
    Zhu, P. P., Cheng, Q. M., Zhang, Z. J., et al., 2017. Genesis and Implications of the Late Jurassic Hailesitai Granites in the Northern Greater Khingan Range: Evidence from Zircon U-Pb Dating and Hf Isotope. Geological Magazine, 154(5): 963–982. https://doi.org/10.1017/s0016756816000534
    Zuo, R. G., Cheng, Q. M., Xia, Q. L., et al., 2009. Application of Fractal Models to Distinguish between Different Mineral Phases. Mathematical Geosciences, 41(1): 71–80. https://doi.org/10.1007/s11004-008-9191-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(415) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return