Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24):4205-4225. https://doi.org/10.1016/s0016-7037(00)00493-2 |
Ayers, J. C., de la Cruz, K., Miller, C., et al., 2003. Experimental Study of Zircon Coarsening in Quartzite±H2O at 1.0 GPa and 1 000℃, with Implications for Geochronological Studies of High-Grade Metamorphism. American Mineralogist, 88(2/3):365-376. https://doi.org/10.2138/am-2003-2-313 |
Bai, W. J., Zhou, M. F., Robinson, P. T., 2000. Origins of Podiform Chromite, Diamonds and Their Associated Minerals at Luobusa, Tibet. Seismological Press, Beijing. 98 (in Chinese with English Abstract) |
Bea, F., Fershtater, G. B., Montero, P., et al., 2001. Recycling of Continental Crust into the Mantle as Revealed by Kytlym Dunite Zircons, Ural Mts, Russia. Terra Nova, 13(6):407-412. https://doi.org/10.1046/j.1365-3121.2001.00364.x |
Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7 |
Bingen, B., Austrheim, H., Whitehouse, M. J., 2001. Ilmenite as a Source for Zirconium during High-Grade Metamorphism? Textural Evidence from the Caledonides of Western Norway and Implications for Zircon Geochronology. Journal of Petrology, 42(2):355-375. https://doi.org/10.1093/petrology/42.2.355 |
Bodet, F., Schärer, U., 2000. Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers. Geochimica et Cosmochimica Acta, 64(12):2067-2091. https://doi.org/10.1016/s0016-7037(00)00352-5 |
Brueckner, H. K., Medaris, L. G., 1998. A Tale of Two Orogens-The Contrasting P-T-t History and Geochemical Evolution of Mantle in Ultrahigh-Pressure (UHP) Metamorphic Terranes of the Norwegian Caledonides and the Czech Variscides. Schweizerische Mineralogische and Petrographische Mutteilungen, 78:293-307 |
Brueckner, H. K., Medaris, L. G., 2000. A General Model for the Intrusion and Evolution of 'Mantle' Garnet Peridotites in High-Pressure and Ultra-High-Pressure Metamorphic Terranes. Journal of Metamorphic Geology, 18(2):123-133. https://doi.org/10.1046/j.1525-1314.2000.00250.x |
Carswell, D. A., Harvey, M. A., Al-Samman, A., 1983. The Petrogenesis of Contrasting Fe-Ti and Mg-Cr Garnet Peridotite Types in the High Grade Gneiss Complex of Western Norway. Bulletin de Minéralogie, 106(6):727-750. https://doi.org/10.3406/bulmi.1983.7696 |
Cao, Y., Song, S. G., Su, L., et al., 2016. Highly Refractory Peridotites in Songshugou, Qinling Orogen:Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle. Lithos, 252/253:234-254. https://doi.org/10.1016/j.lithos.2016.03.002 |
Chazot, G., Lowry, D., Menzies, M., et al., 1997. Oxygen Isotopic Composition of Hydrous and Anhydrous Mantle Peridotites. Geochimica et Cosmochimica Acta, 61(1):161-169. https://doi.org/10.1016/s0016-7037(96)00314-6 |
Chen, R. X., Zheng, Y. F., Xie, L. W., 2010. Metamorphic Growth and Recrystallization of Zircon:Distinction by Simultaneous in-situ Anal-yses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1/2):132-154. https://doi.org/10.1016/j.lithos.2009.08.006 |
Chen, R. X., Li, H. Y., Zheng, Y. F., et al., 2017. Crust-Mantle Interaction in a Continental Subduction Channel:Evidence from Orogenic Peridotites in North Qaidam, Northern Tibet. Journal of Petrology, 58(2):191-226. https://doi.org/10.1093/petrology/egx011 |
Chen, Y., Su, B., Chu, Z. Y., 2017. Modification of an Ancient Subcontinental Lithospheric Mantle by Continental Subduction:Insight from the Maowu Garnet Peridotites in the Dabie UHP Belt, Eastern China. Lithos, 278-281:54-71. https://doi.org/10.1016/j.lithos.2017.01.025 |
Degeling, H., Eggins, S., Ellis, D. J., 2001. Zr Budgets for Metamorphic Reactions, and the Formation of Zircon from Garnet Breakdown. Mineralogical Magazine, 65(6):749-758. https://doi.org/10.1180/0026461016560006 |
Ernst, W. G., Liou, J. G., 1995. Contrasting Plate-Tectonic Styles of the Qinling-Dabie-Sulu and Franciscan Metamorphic Belts. Geology, 23(4):353-356. https://doi.org/10.1130/0091-7613(1995)023<0353:cptsot>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0353:cptsot>2.3.co;2 |
Ernst, W. G., 2001. Subduction, Ultrahigh-Pressure Metamorphism, and Regurgitation of Buoyant Crustal Slices-Implications for Arcs and Continental Growth. Physics of the Earth and Planetary Interiors, 127(1/2/3/4):253-275. https://doi.org/10.1016/s0031-9201(01)00231-x |
Evans, B. W., 1977. Metamorphism of Alpine Peridotite and Serpentinite. Annual Review of Earth and Planetary Sciences, 5(1):397-447. https://doi.org/10.1146/annurev.ea.05.050177.002145 |
Fraser, G., Ellis, D., Eggins, S., 1997. Zirconium Abundance in Granulite-Facies Minerals, with Implications for Zircon Geochronology in High-Grade Rocks. Geology, 25(7):607-610. https://doi.org/10.1130/0091-7613(1997)025<0607:zaigfm>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0607:zaigfm>2.3.co;2 |
Gebauer, D., 1996. A P-T-t Path for a (Ultra-)High-Pressure Ultramafic/Mafic Rock Associations and Their Felsic Country-Rocks Based on SHRIMP-Dating of Magmatic and Metamorphic Zircon Domains. Example: Alpe Arami (Central Swiss Alps). In: Basu, A., Hart, S., eds., Special AGU-Monograph Dedicated to Profs. Tilton and Tatsumoto: Earth Processes: Reading the Isotopic Code. Geophysical Monograph Series, American Geophysical Union. 307-329. https: //doi.org/10.1029/GM095p0307 |
Grieco, G., Ferrario, A., Quadt, A. V., et al., 2001. The Zircon-Bearing Chromitites of the Phlogopite Peridotite of Finero (Ivrea Zone, Southern Alps):Evidence and Geochronology of a Metasomatized Mantle Slab. Journal of Petrology, 42(1):89-101. https://doi.org/10.1093/petrology/42.1.89 |
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 |
Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3/4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011 |
Goldfarb, R. J., Groves, D. I., Gardoll, S., 2001. Orogenic Gold and Geologic Time:A Global Synthesis. Ore Geology Reviews, 18(1/2):1-75. https://doi.org/10.1016/s0169-1368(01)00016-6 |
Harrison, T. M., Watson, E. B., 1983. Kinetics of Zircon Dissolution and Zirconium Diffusion in Granitic Melts of Variable Water Content. Contributions to Mineralogy and Petrology, 84(1):66-72. https://doi.org/10.1007/bf01132331 |
Harrison, T. M., Watson, E. B., Aikman, A. B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology, 35(7):635-638. https://doi.org/10.1130/g23505a.1 |
Helmers, H., Maaskant, P., Hartel, T. H. D., 1990. Garnet Peridotite and Associated High-Grade Rocks from Sulawesi, Indonesia. Lithos, 25(1/2/3):171-188. https://doi.org/10.1016/0024-4937(90)90013-q |
Hermann, J., Rubatto, D., Korsakov, A., et al., 2001. Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1):66-82. https://doi.org/10.1007/s004100000218 |
Hermann, J., Rubatto, D., Trommsdorff, V., 2006. Sub-Solidus Oligocene Zircon Formation in Garnet Peridotite during Fast Decompression and Fluid Infiltration (Duria, Central Alps). Mineralogy and Petrology, 88(1/2):181-206. https://doi.org/10.1007/s00710-006-0155-3 |
Kadarusman, A., Parkinson, C. D., 2000. Petrology and P-T Evolution of Garnet Peridotites from Central Sulawesi, Indonesia. Journal of Metamorphic Geology, 18(2):193-209. https://doi.org/10.1046/j.1525-1314.2000.00238.x |
Katayama, I., Muko, A., Iizuka, T., et al., 2003. Dating of Zircon from Ti-Clinohumite-Bearing Garnet Peridotite:Implication for Timing of Mantle Metasomatism. Geology, 31(8):713-716. https://doi.org/10.1130/g19525.1 |
Kinny, P. D., Mass, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1):327-341. https://doi.org/10.2113/0530327 |
Knudsen, T. L., Griffin, W., Hartz, E., et al., 2001. In-situ Hafnium and Lead Isotope Analyses of Detrital Zircons from the Devonian Sedimentary Basin of NE Greenland:A Record of Repeated Crustal Reworking. Contributions to Mineralogy and Petrology, 141(1):83-94. https://doi.org/10.1007/s004100000220 |
Li, H. Y., Chen, R. X., Zheng, Y. F., et al., 2016. The Crust-Mantle Interaction in Continental Subduction Channels:Zircon Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research:Solid Earth, 121(2):687-712. https://doi.org/10.1002/2015jb012231 |
Li, H. Y., Chen, R. X., Zheng, Y. F., et al., 2018. Crustal Metasomatism at the Slab-Mantle Interface in a Continental Subduction Channel:Geo-chemical Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research:Solid Earth, 123(3):2174-2198. https://doi.org/10.1002/2017jb014015 |
Li, W. C., Chen, R. X., Zheng, Y. F., et al., 2013. Zirconological Tracing of Transition between Aqueous Fluid and Hydrous Melt in the Crust:Constraints from Pegmatite Vein and Host Gneiss in the Sulu Orogen. Lithos, 162/163:157-174. https://doi.org/10.1016/j.lithos.2013.01.004 |
Li, X. P., Yang, J. S., Robinson, P., et al., 2011. Petrology and Geochemistry of UHP-Metamorphosed Ultramafic-Mafic Rocks from the Main Hole of the Chinese Continental Scientific Drilling Project (CCSD-MH), China:Fluid/Melt-Rock Interaction. Journal of Asian Earth Sciences, 42(4):661-683. https://doi.org/10.1016/j.jseaes.2011.01.010 |
Liati, A., Franz, L., Gebauer, D., et al., 2004. The Timing of Mantle and Crustal Events in South Namibia, as Defined by SHRIMP-Dating of Zircon Domains from a Garnet Peridotite Xenolith of the Gibeon Kimberlite Province. Journal of African Earth Sciences, 39(3/4/5):147-157. https://doi.org/10.1016/j.jafrearsci.2004.07.054 |
Liati, A., Gebauer, D., 2009. Crustal Origin of Zircon in a Garnet Peridotite:A Study of U-Pb SHRIMP Dating, Mineral Inclusions and REE Geo-chemistry (Erzgebirge, Bohemian Massif). European Journal of Mineralogy, 21(4):737-750. https://doi.org/10.1127/0935-1221/2009/0021-1939 |
Liou, J. G., Tsujimori, T., Zhang, R. Y., et al., 2004. Global UHP Metamorphism and Continental Subduction/Collision:The Himalayan Model. International Geology Review, 46(1):1-27. https://doi.org/10.2747/0020-6814.46.1.1 |
Liou, J. G., Zhang, R. Y., Ernst, W. G., 2007. Very High-Pressure Orogenic Garnet Peridotites. Proceedings of the National Academy of Sciences, 104(22):9116-9121. https://doi.org/10.1073/pnas.0607300104 |
Liou, J. G., Ernst, W. G., Zhang, R. Y., et al., 2009. Ultrahigh-Pressure Minerals and Metamorphic Terranes-The View from China. Journal of Asian Earth Sciences, 35(3/4):199-231. https://doi.org/10.1016/j.jseaes.2008.10.012 |
Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism:A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1):1-39. https://doi.org/10.1016/j.jseaes.2010.08.007 |
Lu, F. X., Wang, Y., Chen, M. H., et al., 1998. Geochemical Characteristics and Emplacement Ages of the Mengyin Kimberlites, Shandong Province, China. International Geology Review, 40(11):998-1006. https://doi.org/10.1080/00206819809465251 |
Maruyama, S., Liou, J. G., Terabayashi, M., 1996. Blueschists and Eclogites of the World and Their Exhumation. International Geology Review, 38(6):485-594. https://doi.org/10.1080/00206819709465347 |
Mattey, D., Lowry, D., Macpherson, C., 1994. Oxygen Isotope Composition of Mantle Peridotite. Earth and Planetary Science Letters, 128(3/4):231-241. https://doi.org/10.1016/0012-821x(94)90147-3 |
Medaris, L. G., Carswell, D. A., 1990. Petrogenesis of Mg-Cr Garnet Peri-dotites in European Metamorphic Belt. In: Carswell, D. A., ed., Eclogite Facies Rocks. Chapman & Hall, New York. 260-290 |
Medaris, L. G., 1999. Garnet Peridotites in Eurasian High-Pressure and Ultrahigh-Pressure Terranes: A Diversity of Origins and Thermal His-tories. International Geology Review, 41(9): 799-815. https: //doi.org/10.1080/00206819909465170 |
Nakajima, Y., 1998. Ti-Clinohumite-Bearing Garnet Peridotite from Kum-dykol Area in the Kokchetav UHP Complex, Northern Kazakhstan. Eos Transactions of the American Geophysical Union. May 26-29, 1998, Boston. 79 |
O'Hara, M. J., Richardson, S. W., Wilson, G., 1971. Garnet-Peridotite Stability and Occurrence in Crust and Mantle. Contributions to Mineralogy and Petrology, 32(1):48-68. https://doi.org/10.1007/bf00372233 |
Ota, T., Gladkochub, D. P., Sklyarov, E. V., et al., 2004. P-T History of Garnet-Websterites in the Sharyzhalgai Complex, Southwestern Margin of Siberian Craton:Evidence for Paleoproterozoic High-Pressure Metamorphism. Precambrian Research, 132(4):327-348. https://doi.org/10.1016/j.precamres.2004.03.009 |
Palme, H., O'Neill, H. St. O., 2003. Cosmochemical Constraints of Mantle Composition. Treatise on Geochemistry, 2:1-38 |
Patchett, P. J., Kouvo, O., Hedge, C. E., et al., 1981. Evolution of Continental Crust and Mantle Heterogeneity:Evidence from Hf Isotopes. Contributions to Mineralogy and Petrology, 78(3):279-297. https://doi.org/10.1007/bf00398923 |
Rubatto, D., Gebauer, D., Compagnoni, R., 1999. Dating of Eclogite-Facies Zircons:The Age of Alpine Metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters, 167(3/4):141-158. https://doi.org/10.1016/s0012-821x(99)00031-x |
Rubatto, D., 2002. Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2):123-138. https://doi.org/10.1016/s0009-2541(01)00355-2 |
Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps):Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12):2173-2187. https://doi.org/10.1016/s0016-7037(02)01321-2 |
Rumble, D., Giorgis, D., Ireland, T., et al., 2002. Low δ18O Zircons, U-Pb Dating, and the Age of the Qinglongshan Oxygen and Hydrogen Isotope Anomaly near Donghai in Jiangsu Province, China. Geochimica et Cosmochimica Acta, 66(12):2299-2306. https://doi.org/10.1016/s0016-7037(02)00844-x |
Scambelluri, M., Hermann, J., Morten, L., et al., 2006. Melt-versus Flu-id-Induced Metasomatism in Spinel to Garnet Wedge Peridotites (Ulten Zone, Eastern Italian Alps):Clues from Trace Element and Li Abun-dances. Contributions to Mineralogy and Petrology, 151(4):372-394. https://doi.org/10.1007/s00410-006-0064-9 |
Scambelluri, M., Pettke, T., Rampone, E., et al., 2014. Petrology and Trace Element Budgets of High-Pressure Peridotites Indicate Subduction Dehydration of Serpentinized Mantle (Cima Di Gagnone, Central Alps, Switzerland). Journal of Petrology, 55(3): 459-498. https: //doi.org/10.1093/petrology/egt068 |
Shen, J., Li, S. G., Wang, S. J., et al., 2018. Subducted Mg-Rich Carbonates into the Deep Mantle Wedge. Earth and Planetary Science Letters, 503:118-130. https://doi.org/10.1016/j.epsl.2018.09.011 |
Smith, D., Griffin, W. L., 2005. Garnetite Xenoliths and Mantle-Water Interactions below the Colorado Plateau, Southwestern United States. Journal of Petrology, 46(9):1901-1924. https://doi.org/10.1093/petrology/egi042 |
Spengler, D., Brueckner, H. K., van Roermund, H. L. M., et al., 2009. Long-Lived, Cold Burial of Baltica to 200 km Depth. Earth and Planetary Science Letters, 281(1/2):27-35. https://doi.org/10.1016/j.epsl.2009.02.001 |
Song, S. G., Su, L., 1998. Rheological Properties of Mantle Peridotites at Yushigou in the North Qilian Mountains and Their Implications for Plate Dynamics. Acta Geologica Sinica-English Edition, 72(2):131-141. https://doi.org/10.1111/j.1755-6724.1998.tb00389.x |
Song, S. G., Zhang, L. F., Niu, Y. L., 2004. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China. American Mineralogist, 89(8/9):1330-1336. https://doi.org/10.2138/am-2004-8-922 |
Song, S., Zhang, L., Niu, Y., et al., 2005. Geochronology of Dia-mond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau:A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1/2):99-118. https://doi.org/10.1016/j.epsl.2005.02.036 |
Song, S. G., Su, L., Niu, Y. L., et al., 2007. Petrological and Geochemical Constraints on the Origin of Garnet Peridotite in the North Qaidam Ul-trahigh-Pressure Metamorphic Belt, Northwestern China. Lithos, 96(1/2):243-265. https://doi.org/10.1016/j.lithos.2006.09.017 |
Su, B., Chen, Y., Guo, S., et al., 2016. Carbonatitic Metasomatism in Orogenic Dunites from Lijiatun in the Sulu UHP Terrane, Eastern China. Lithos, 262:266-284. https://doi.org/10.1016/j.lithos.2016.07.007 |
Su, L., Song, S. G., Wang, Z. H., 1999. CH4-Rich Fluid Inclusions in the Yushigou Mantle Peridotite and Their Implications, North Qilian Mountains, China. Chinese Science Bulletin, 44(21):1992-1995. https://doi.org/10.1007/bf02887126 |
Tang, M., Wang, X. L., Shu, X. J., et al., 2014. Hafnium Isotopic Heterogeneity in Zircons from Granitic Rocks:Geochemical Evaluation and Modeling of "Zircon Effect" in Crustal Anatexis. Earth and Planetary Science Letters, 389:188-199. https://doi.org/10.1016/j.epsl.2013.12.036 |
Vavra, G., Schmid, R., Gebauer, D., 1999. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons:Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4):380-404. https://doi.org/10.1007/s004100050492 |
Vrijmoed, J. C., Austrheim, H., John, T., et al., 2013. Metasomatism in the Ultrahigh-Pressure Svartberget Garnet-Peridotite (Western Gneiss Region, Norway):Implications for the Transport of Crust-Derived Fluids within the Mantle. Journal of Petrology, 54(9):1815-1848. https://doi.org/10.1093/petrology/egt032 |
Watson, E. B., 1996. Dissolution, Growth and Survival of Zircons during Crustal Fusion:Kinetic Principals, Geological Models and Implications for Isotopic Inheritance. Transactions of the Royal Society of Edinburgh:Earth Sciences, 87(1/2):43-56. https://doi.org/10.1017/s0263593300006465 |
Whitehouse, M. J., Platt, J. P., 2003. Dating High-Grade Metamorphism-Constraints from Rare-Earth Elements in Zircon and Garnet. Contribu-tions to Mineralogy and Petrology, 145(1):61-74. https://doi.org/10.1007/s00410-002-0432-z |
Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371 |
Wu, Y. B., Zheng, Y. F., Zhao, Z. F., et al., 2006. U/Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen. Geochimica et Cosmochimica Acta, 70(14):3743-3761. https://doi.org/10.1016/j.gca.2006.05.011 |
Xia, Q. K., Liu, J., Liu, S. C., et al., 2013. High Water Content in Mesozoic Primitive Basalts of the North China Craton and Implications on the Destruction of Cratonic Mantle Lithosphere. Earth and Planetary Sci-ence Letters, 361:85-97. https://doi.org/10.1016/j.epsl.2012.11.024 |
Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2011. Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China):Meso-Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes. Precambrian Research, 187(1/2):33-57. https://doi.org/10.1016/j.precamres.2011.02.003 |
Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2014. Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Met-asomatism and Segregation in the Mantle Wedge. Journal of Petrology, 55(12):2347-2376. https://doi.org/10.1093/petrology/egu059 |
Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2015. Episodic Refertilization and Metasomatism of Archean Mantle:Evidence from an Orogenic Peridotite in North Qaidam (NE Tibet, China). Contributions to Mineralogy and Petrology, 169(3):1-24. https://doi.org/10.1007/s00410-015-1126-7 |
Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2016. Southward Trench Migration at~130-120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites. Earth and Planetary Science Letters, 438:57-65. https://doi.org/10.1016/j.epsl.2016.01.014 |
Yang, J. J., Godard, G., Kienast, J. R., et al., 1993. Ultrahigh-Pressure (60 kbar) Magnesite-Bearing Garnet Peridotites from Northeastern Jiangsu, China. The Journal of Geology, 101(5):541-554. https://doi.org/10.1086/648248 |
Yang, J. J., Powell, R., 2008. Ultrahigh-Pressure Garnet Peridotites from the Devolatilization of Sea-Floor Hydrated Ultramafic Rocks. Journal of Metamorphic Geology, 26(6):695-716. https://doi.org/10.1111/j.1525-1314.2008.00780.x |
Yang, J. S., Li, T. F., Chen, S. Z., et al., 2009. Genesis of Garnet Peridotites in the Sulu UHP Belt:Examples from the Chinese Continental Scientific Drilling Project-Main Hole, PP1 and PP3 Drillholes. Tectonophysics, 475(2):359-382. https://doi.org/10.1016/j.tecto.2009.02.032 |
Yang, Y. H., Wu, F. Y., Wilde, S. A., et al., 2009. In situ Perovskite Sr-Nd Isotopic Constraints on the Petrogenesis of the Ordovician Mengyin Kimberlites in the North China Craton. Chemical Geology, 264(1/2/3/4):24-42. https://doi.org/10.1016/j.chemgeo.2009.02.011 |
Ye, K., Song, Y. R., Chen, Y., et al., 2009. Multistage Metamorphism of Orogenic Garnet-Lherzolite from Zhimafang, Sulu UHP Terrane, E. China:Implications for Mantle Wedge Convection during Progressive Oceanic and Continental Subduction. Lithos, 109(3/4):155-175. https://doi.org/10.1016/j.lithos.2008.08.005 |
Yu, H., Zhang, H. F., Santosh, M., 2017. Mylonitized Peridotites of Songshugou in the Qinling Orogen, Central China:A Fragment of Fossil Oceanic Lithosphere Mantle. Gondwana Research, 52:1-17. https://doi.org/10.1016/j.gr.2017.08.007 |
Zhang, R. Y., Liou, J. G., Yang, J. S., 2000. Petrochemical Constraints for Dual Origin of Garnet Peridotites from the Dabie-Sulu UHP Terrane, Eastern-Central China. Journal of Metamorphic Geology, 18(2):149-166. https://doi.org/10.1046/j.1525-1314.2000.00248.x |
Zhang, R. Y., Yang, J. S., Wooden, J. L., et al., 2005. U-Pb SHRIMP Geochronology of Zircon in Garnet Peridotite from the Sulu UHP Terrane, China:Implications for Mantle Metasomatism and Subduction-Zone UHP Metamorphism. Earth and Planetary Science Letters, 237(3/4):729-743. https://doi.org/10.1016/j.epsl.2005.07.003 |
Zhang, R. Y., Pan, Y. M., Yang, Y. H., et al., 2008. Chemical Composition and Ultrahigh-P Metamorphism of Garnet Peridotites from the Sulu UHP Terrane, China:Investigation of Major, Trace Elements and Hf Isotopes of Minerals. Chemical Geology, 255(1/2):250-264. https://doi.org/10.1016/j.chemgeo.2008.06.049 |
Zhang, Z. M., Dong, X., Liou, J. G., et al., 2011. Metasomatism of Garnet Peridotite from Jiangzhuang, Southern Sulu UHP Belt:Constraints on the Interactions between Crust and Mantle Rocks during Subduction of Continental Lithosphere. Journal of Metamorphic Geology, 29(9):917-937. https://doi.org/10.1111/j.1525-1314.2011.00947.x |
Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2008. Zircon U-Pb Ages, Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahigh-Pressure Dabie Orogen in China. Chemical Geology, 253(3/4):222-242. https://doi.org/10.1016/j.chemgeo.2008.05.011 |
Zheng, J. P., Zhang, R. Y., Griffin, W. L., et al., 2005. Heterogeneous and Metasomatized Mantle Recorded by Trace Elements in Minerals of the Donghai Garnet Peridotites, Sulu UHP Terrane, China. Chemical Geology, 221(3/4):243-259. https://doi.org/10.1016/j.chemgeo.2005.05.002 |
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006a. A Refractory Mantle Protolith in Younger Continental Crust, East-Central China:Age and Composition of Zircon in the Sulu Ultrahigh-Pressure Peridotite. Ge-ology, 34(9):705. https://doi.org/10.1130/g22569.1 |
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006b. Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere:Constraints on Mantle Evolution beneath Eastern China. Journal of Petrology, 47(11):2233-2256. https://doi.org/10.1093/petrology/egl042 |
Zheng, J. P., Sun, M., Griffin, W. L., et al., 2008. Age and Geochemistry of Contrasting Peridotite Types in the Dabie UHP Belt, Eastern China:Petrogenetic and Geodynamic Implications. Chemical Geology, 247(1/2):282-304. https://doi.org/10.1016/j.chemgeo.2007.10.023 |
Zheng, J. P., 2009. Comparison of Mantle-Derived Matierals from Different Spatiotemporal Settings:Implications for Destructive and Accretional Processes of the North China Craton. Chinese Science Bulletin, 54(19):3397-3416. https://doi.org/10.1007/s11434-009-0308-y |
Zheng, J. P., Tang, H. Y., Xiong, Q., et al., 2014. Linking Continental Deep Subduction with Destruction of a Cratonic Margin:Strongly Reworked North China SCLM Intruded in the Triassic Sulu UHP Belt. Contributions to Mineralogy and Petrology, 168(1):1028. https://doi.org/10.1007/s00410-014-1028-0 |
Zheng, J. P., Xiong, Q., Zhao, Y., et al., 2019a. Massif Peridotites from Subduction Zones:Records of Crust-Mantle Interaction. Science China Earth Sciences. https://doi.org/10.1007/s11430-018-9346-6 |
Zheng, J. P., Zhao, Y., Xiong, Q., 2019b. Genesis and Geological Significance of Zircons in Orogenic Peridotite. Earth Science, 44(4):1067-1082. https://doi.org/10.3799/dqkx.2018.375 (in Chinese with English Abstract) |
Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Science Bulletin, 53(20):3081-3104. https://doi.org/10.1007/s11434-008-0388-0 |
Zheng, Y. F., 2009. Fluid Regime in Continental Subduction Zones:Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks. Journal of the Geological Society, 166(4):763-782. https://doi.org/10.1144/0016-76492008-016r |
Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 |
Zheng, Y. F., Chen, R. X., Xu, Z., et al., 2016. The Transport of Water in Subduction Zones. Science China Earth Sciences, 59(4):651-682. https://doi.org/10.1007/s11430-015-5258-4 |