Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 3
Jun 2019
Turn off MathJax
Article Contents
Yi Zhao, Jianping Zheng, Qing Xiong. Zircon from Orogenic Peridotite: An Ideal Indicator for Mantle-Crust Interaction in Subduction Zones. Journal of Earth Science, 2019, 30(3): 666-678. doi: 10.1007/s12583-019-1220-2
Citation: Yi Zhao, Jianping Zheng, Qing Xiong. Zircon from Orogenic Peridotite: An Ideal Indicator for Mantle-Crust Interaction in Subduction Zones. Journal of Earth Science, 2019, 30(3): 666-678. doi: 10.1007/s12583-019-1220-2

Zircon from Orogenic Peridotite: An Ideal Indicator for Mantle-Crust Interaction in Subduction Zones

doi: 10.1007/s12583-019-1220-2
Funds:

the DREAM project of the MOST 2016YFC0600403

the National Natural Science Foundation of China 41520104003

the National Natural Science Foundation of China 41873023

More Information
  • Corresponding author: Jianping Zheng
  • Received Date: 22 Nov 2018
  • Accepted Date: 25 Feb 2019
  • Publish Date: 01 Jun 2019
  • The orogenic peridotites can be subdivided into crust-and mantle-derived types. They record complex geological processes in subduction and collision zones. The crust-derived peridotites are derived from cumulates crystallized from ultramafic-mafic magmas in deep continental crust, an early mantle-crust interaction, prior to subduction. The mantle-derived orogenic peridotites are originated from subcontinental lithospheric mantle (SCLM) wedge and other mantle domains, and are later involved in the subduction channel and orogenic system. The mantle-derived peridotites usually record complex metasomatism, ultra-high pressure (UHP) metamorphism and mantle-crust interaction during the orogenic processes. Zircons are rarely found in orogenic peridotites. These zircons in orogenic peridotites are generally formed during metasomatism, they can be divided into old zircons (mainly the cores of residual magmatic and recrystallized) and newly grown zircons. Three key factors for zircon formation in orogenic peridotites are that:(1) zircon has strong crystallization ability, and Zr is easier to exchange Si in zircon crystal structure than other elements in the mantle; (2) metamorphic destruction of Zr-bearing minerals and precipitation of intergranular melts during the high-grade metamorphism can nucleate zircon under sub-solidus conditions; (3) the melts/fluids released from the subducted crust can metasomatize the mantle wedge to form zircons. In-situ studies on zircons and zircon inclusions enclosed in mantle minerals indicate that zircon can be an ideal indicator for mantle-crust interaction in subduction zones. The inclusions in zircons and Hf-O isotope of zircons are effective to reflect the composition of the melts/fluids, source properties, and the physical and chemical conditions. Dating of the zircons has been widely used in the studies of lithospheric evolution and crust-mantle interaction. During the complex processes of plate convergence, the orogenic peridotites can be subjected to the melt/fluid metasomatism, modifying the mineral and elemental compositions of peridotites. Thus, zircon is very useful to unravel the history of specific lithospheric mantle and the relationship between continental cratonic cores and their margins.

     

  • loading
  • Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24):4205-4225. https://doi.org/10.1016/s0016-7037(00)00493-2
    Ayers, J. C., de la Cruz, K., Miller, C., et al., 2003. Experimental Study of Zircon Coarsening in Quartzite±H2O at 1.0 GPa and 1 000℃, with Implications for Geochronological Studies of High-Grade Metamorphism. American Mineralogist, 88(2/3):365-376. https://doi.org/10.2138/am-2003-2-313
    Bai, W. J., Zhou, M. F., Robinson, P. T., 2000. Origins of Podiform Chromite, Diamonds and Their Associated Minerals at Luobusa, Tibet. Seismological Press, Beijing. 98 (in Chinese with English Abstract)
    Bea, F., Fershtater, G. B., Montero, P., et al., 2001. Recycling of Continental Crust into the Mantle as Revealed by Kytlym Dunite Zircons, Ural Mts, Russia. Terra Nova, 13(6):407-412. https://doi.org/10.1046/j.1365-3121.2001.00364.x
    Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7
    Bingen, B., Austrheim, H., Whitehouse, M. J., 2001. Ilmenite as a Source for Zirconium during High-Grade Metamorphism? Textural Evidence from the Caledonides of Western Norway and Implications for Zircon Geochronology. Journal of Petrology, 42(2):355-375. https://doi.org/10.1093/petrology/42.2.355
    Bodet, F., Schärer, U., 2000. Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers. Geochimica et Cosmochimica Acta, 64(12):2067-2091. https://doi.org/10.1016/s0016-7037(00)00352-5
    Brueckner, H. K., Medaris, L. G., 1998. A Tale of Two Orogens-The Contrasting P-T-t History and Geochemical Evolution of Mantle in Ultrahigh-Pressure (UHP) Metamorphic Terranes of the Norwegian Caledonides and the Czech Variscides. Schweizerische Mineralogische and Petrographische Mutteilungen, 78:293-307
    Brueckner, H. K., Medaris, L. G., 2000. A General Model for the Intrusion and Evolution of 'Mantle' Garnet Peridotites in High-Pressure and Ultra-High-Pressure Metamorphic Terranes. Journal of Metamorphic Geology, 18(2):123-133. https://doi.org/10.1046/j.1525-1314.2000.00250.x
    Carswell, D. A., Harvey, M. A., Al-Samman, A., 1983. The Petrogenesis of Contrasting Fe-Ti and Mg-Cr Garnet Peridotite Types in the High Grade Gneiss Complex of Western Norway. Bulletin de Minéralogie, 106(6):727-750. https://doi.org/10.3406/bulmi.1983.7696
    Cao, Y., Song, S. G., Su, L., et al., 2016. Highly Refractory Peridotites in Songshugou, Qinling Orogen:Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle. Lithos, 252/253:234-254. https://doi.org/10.1016/j.lithos.2016.03.002
    Chazot, G., Lowry, D., Menzies, M., et al., 1997. Oxygen Isotopic Composition of Hydrous and Anhydrous Mantle Peridotites. Geochimica et Cosmochimica Acta, 61(1):161-169. https://doi.org/10.1016/s0016-7037(96)00314-6
    Chen, R. X., Zheng, Y. F., Xie, L. W., 2010. Metamorphic Growth and Recrystallization of Zircon:Distinction by Simultaneous in-situ Anal-yses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1/2):132-154. https://doi.org/10.1016/j.lithos.2009.08.006
    Chen, R. X., Li, H. Y., Zheng, Y. F., et al., 2017. Crust-Mantle Interaction in a Continental Subduction Channel:Evidence from Orogenic Peridotites in North Qaidam, Northern Tibet. Journal of Petrology, 58(2):191-226. https://doi.org/10.1093/petrology/egx011
    Chen, Y., Su, B., Chu, Z. Y., 2017. Modification of an Ancient Subcontinental Lithospheric Mantle by Continental Subduction:Insight from the Maowu Garnet Peridotites in the Dabie UHP Belt, Eastern China. Lithos, 278-281:54-71. https://doi.org/10.1016/j.lithos.2017.01.025
    Degeling, H., Eggins, S., Ellis, D. J., 2001. Zr Budgets for Metamorphic Reactions, and the Formation of Zircon from Garnet Breakdown. Mineralogical Magazine, 65(6):749-758. https://doi.org/10.1180/0026461016560006
    Ernst, W. G., Liou, J. G., 1995. Contrasting Plate-Tectonic Styles of the Qinling-Dabie-Sulu and Franciscan Metamorphic Belts. Geology, 23(4):353-356. https://doi.org/10.1130/0091-7613(1995)023<0353:cptsot>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0353:cptsot>2.3.co;2
    Ernst, W. G., 2001. Subduction, Ultrahigh-Pressure Metamorphism, and Regurgitation of Buoyant Crustal Slices-Implications for Arcs and Continental Growth. Physics of the Earth and Planetary Interiors, 127(1/2/3/4):253-275. https://doi.org/10.1016/s0031-9201(01)00231-x
    Evans, B. W., 1977. Metamorphism of Alpine Peridotite and Serpentinite. Annual Review of Earth and Planetary Sciences, 5(1):397-447. https://doi.org/10.1146/annurev.ea.05.050177.002145
    Fraser, G., Ellis, D., Eggins, S., 1997. Zirconium Abundance in Granulite-Facies Minerals, with Implications for Zircon Geochronology in High-Grade Rocks. Geology, 25(7):607-610. https://doi.org/10.1130/0091-7613(1997)025<0607:zaigfm>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0607:zaigfm>2.3.co;2
    Gebauer, D., 1996. A P-T-t Path for a (Ultra-)High-Pressure Ultramafic/Mafic Rock Associations and Their Felsic Country-Rocks Based on SHRIMP-Dating of Magmatic and Metamorphic Zircon Domains. Example: Alpe Arami (Central Swiss Alps). In: Basu, A., Hart, S., eds., Special AGU-Monograph Dedicated to Profs. Tilton and Tatsumoto: Earth Processes: Reading the Isotopic Code. Geophysical Monograph Series, American Geophysical Union. 307-329. https: //doi.org/10.1029/GM095p0307
    Grieco, G., Ferrario, A., Quadt, A. V., et al., 2001. The Zircon-Bearing Chromitites of the Phlogopite Peridotite of Finero (Ivrea Zone, Southern Alps):Evidence and Geochronology of a Metasomatized Mantle Slab. Journal of Petrology, 42(1):89-101. https://doi.org/10.1093/petrology/42.1.89
    Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
    Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3/4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011
    Goldfarb, R. J., Groves, D. I., Gardoll, S., 2001. Orogenic Gold and Geologic Time:A Global Synthesis. Ore Geology Reviews, 18(1/2):1-75. https://doi.org/10.1016/s0169-1368(01)00016-6
    Harrison, T. M., Watson, E. B., 1983. Kinetics of Zircon Dissolution and Zirconium Diffusion in Granitic Melts of Variable Water Content. Contributions to Mineralogy and Petrology, 84(1):66-72. https://doi.org/10.1007/bf01132331
    Harrison, T. M., Watson, E. B., Aikman, A. B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology, 35(7):635-638. https://doi.org/10.1130/g23505a.1
    Helmers, H., Maaskant, P., Hartel, T. H. D., 1990. Garnet Peridotite and Associated High-Grade Rocks from Sulawesi, Indonesia. Lithos, 25(1/2/3):171-188. https://doi.org/10.1016/0024-4937(90)90013-q
    Hermann, J., Rubatto, D., Korsakov, A., et al., 2001. Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1):66-82. https://doi.org/10.1007/s004100000218
    Hermann, J., Rubatto, D., Trommsdorff, V., 2006. Sub-Solidus Oligocene Zircon Formation in Garnet Peridotite during Fast Decompression and Fluid Infiltration (Duria, Central Alps). Mineralogy and Petrology, 88(1/2):181-206. https://doi.org/10.1007/s00710-006-0155-3
    Kadarusman, A., Parkinson, C. D., 2000. Petrology and P-T Evolution of Garnet Peridotites from Central Sulawesi, Indonesia. Journal of Metamorphic Geology, 18(2):193-209. https://doi.org/10.1046/j.1525-1314.2000.00238.x
    Katayama, I., Muko, A., Iizuka, T., et al., 2003. Dating of Zircon from Ti-Clinohumite-Bearing Garnet Peridotite:Implication for Timing of Mantle Metasomatism. Geology, 31(8):713-716. https://doi.org/10.1130/g19525.1
    Kinny, P. D., Mass, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1):327-341. https://doi.org/10.2113/0530327
    Knudsen, T. L., Griffin, W., Hartz, E., et al., 2001. In-situ Hafnium and Lead Isotope Analyses of Detrital Zircons from the Devonian Sedimentary Basin of NE Greenland:A Record of Repeated Crustal Reworking. Contributions to Mineralogy and Petrology, 141(1):83-94. https://doi.org/10.1007/s004100000220
    Li, H. Y., Chen, R. X., Zheng, Y. F., et al., 2016. The Crust-Mantle Interaction in Continental Subduction Channels:Zircon Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research:Solid Earth, 121(2):687-712. https://doi.org/10.1002/2015jb012231
    Li, H. Y., Chen, R. X., Zheng, Y. F., et al., 2018. Crustal Metasomatism at the Slab-Mantle Interface in a Continental Subduction Channel:Geo-chemical Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research:Solid Earth, 123(3):2174-2198. https://doi.org/10.1002/2017jb014015
    Li, W. C., Chen, R. X., Zheng, Y. F., et al., 2013. Zirconological Tracing of Transition between Aqueous Fluid and Hydrous Melt in the Crust:Constraints from Pegmatite Vein and Host Gneiss in the Sulu Orogen. Lithos, 162/163:157-174. https://doi.org/10.1016/j.lithos.2013.01.004
    Li, X. P., Yang, J. S., Robinson, P., et al., 2011. Petrology and Geochemistry of UHP-Metamorphosed Ultramafic-Mafic Rocks from the Main Hole of the Chinese Continental Scientific Drilling Project (CCSD-MH), China:Fluid/Melt-Rock Interaction. Journal of Asian Earth Sciences, 42(4):661-683. https://doi.org/10.1016/j.jseaes.2011.01.010
    Liati, A., Franz, L., Gebauer, D., et al., 2004. The Timing of Mantle and Crustal Events in South Namibia, as Defined by SHRIMP-Dating of Zircon Domains from a Garnet Peridotite Xenolith of the Gibeon Kimberlite Province. Journal of African Earth Sciences, 39(3/4/5):147-157. https://doi.org/10.1016/j.jafrearsci.2004.07.054
    Liati, A., Gebauer, D., 2009. Crustal Origin of Zircon in a Garnet Peridotite:A Study of U-Pb SHRIMP Dating, Mineral Inclusions and REE Geo-chemistry (Erzgebirge, Bohemian Massif). European Journal of Mineralogy, 21(4):737-750. https://doi.org/10.1127/0935-1221/2009/0021-1939
    Liou, J. G., Tsujimori, T., Zhang, R. Y., et al., 2004. Global UHP Metamorphism and Continental Subduction/Collision:The Himalayan Model. International Geology Review, 46(1):1-27. https://doi.org/10.2747/0020-6814.46.1.1
    Liou, J. G., Zhang, R. Y., Ernst, W. G., 2007. Very High-Pressure Orogenic Garnet Peridotites. Proceedings of the National Academy of Sciences, 104(22):9116-9121. https://doi.org/10.1073/pnas.0607300104
    Liou, J. G., Ernst, W. G., Zhang, R. Y., et al., 2009. Ultrahigh-Pressure Minerals and Metamorphic Terranes-The View from China. Journal of Asian Earth Sciences, 35(3/4):199-231. https://doi.org/10.1016/j.jseaes.2008.10.012
    Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism:A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1):1-39. https://doi.org/10.1016/j.jseaes.2010.08.007
    Lu, F. X., Wang, Y., Chen, M. H., et al., 1998. Geochemical Characteristics and Emplacement Ages of the Mengyin Kimberlites, Shandong Province, China. International Geology Review, 40(11):998-1006. https://doi.org/10.1080/00206819809465251
    Maruyama, S., Liou, J. G., Terabayashi, M., 1996. Blueschists and Eclogites of the World and Their Exhumation. International Geology Review, 38(6):485-594. https://doi.org/10.1080/00206819709465347
    Mattey, D., Lowry, D., Macpherson, C., 1994. Oxygen Isotope Composition of Mantle Peridotite. Earth and Planetary Science Letters, 128(3/4):231-241. https://doi.org/10.1016/0012-821x(94)90147-3
    Medaris, L. G., Carswell, D. A., 1990. Petrogenesis of Mg-Cr Garnet Peri-dotites in European Metamorphic Belt. In: Carswell, D. A., ed., Eclogite Facies Rocks. Chapman & Hall, New York. 260-290
    Medaris, L. G., 1999. Garnet Peridotites in Eurasian High-Pressure and Ultrahigh-Pressure Terranes: A Diversity of Origins and Thermal His-tories. International Geology Review, 41(9): 799-815. https: //doi.org/10.1080/00206819909465170
    Nakajima, Y., 1998. Ti-Clinohumite-Bearing Garnet Peridotite from Kum-dykol Area in the Kokchetav UHP Complex, Northern Kazakhstan. Eos Transactions of the American Geophysical Union. May 26-29, 1998, Boston. 79
    O'Hara, M. J., Richardson, S. W., Wilson, G., 1971. Garnet-Peridotite Stability and Occurrence in Crust and Mantle. Contributions to Mineralogy and Petrology, 32(1):48-68. https://doi.org/10.1007/bf00372233
    Ota, T., Gladkochub, D. P., Sklyarov, E. V., et al., 2004. P-T History of Garnet-Websterites in the Sharyzhalgai Complex, Southwestern Margin of Siberian Craton:Evidence for Paleoproterozoic High-Pressure Metamorphism. Precambrian Research, 132(4):327-348. https://doi.org/10.1016/j.precamres.2004.03.009
    Palme, H., O'Neill, H. St. O., 2003. Cosmochemical Constraints of Mantle Composition. Treatise on Geochemistry, 2:1-38
    Patchett, P. J., Kouvo, O., Hedge, C. E., et al., 1981. Evolution of Continental Crust and Mantle Heterogeneity:Evidence from Hf Isotopes. Contributions to Mineralogy and Petrology, 78(3):279-297. https://doi.org/10.1007/bf00398923
    Rubatto, D., Gebauer, D., Compagnoni, R., 1999. Dating of Eclogite-Facies Zircons:The Age of Alpine Metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters, 167(3/4):141-158. https://doi.org/10.1016/s0012-821x(99)00031-x
    Rubatto, D., 2002. Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2):123-138. https://doi.org/10.1016/s0009-2541(01)00355-2
    Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps):Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12):2173-2187. https://doi.org/10.1016/s0016-7037(02)01321-2
    Rumble, D., Giorgis, D., Ireland, T., et al., 2002. Low δ18O Zircons, U-Pb Dating, and the Age of the Qinglongshan Oxygen and Hydrogen Isotope Anomaly near Donghai in Jiangsu Province, China. Geochimica et Cosmochimica Acta, 66(12):2299-2306. https://doi.org/10.1016/s0016-7037(02)00844-x
    Scambelluri, M., Hermann, J., Morten, L., et al., 2006. Melt-versus Flu-id-Induced Metasomatism in Spinel to Garnet Wedge Peridotites (Ulten Zone, Eastern Italian Alps):Clues from Trace Element and Li Abun-dances. Contributions to Mineralogy and Petrology, 151(4):372-394. https://doi.org/10.1007/s00410-006-0064-9
    Scambelluri, M., Pettke, T., Rampone, E., et al., 2014. Petrology and Trace Element Budgets of High-Pressure Peridotites Indicate Subduction Dehydration of Serpentinized Mantle (Cima Di Gagnone, Central Alps, Switzerland). Journal of Petrology, 55(3): 459-498. https: //doi.org/10.1093/petrology/egt068
    Shen, J., Li, S. G., Wang, S. J., et al., 2018. Subducted Mg-Rich Carbonates into the Deep Mantle Wedge. Earth and Planetary Science Letters, 503:118-130. https://doi.org/10.1016/j.epsl.2018.09.011
    Smith, D., Griffin, W. L., 2005. Garnetite Xenoliths and Mantle-Water Interactions below the Colorado Plateau, Southwestern United States. Journal of Petrology, 46(9):1901-1924. https://doi.org/10.1093/petrology/egi042
    Spengler, D., Brueckner, H. K., van Roermund, H. L. M., et al., 2009. Long-Lived, Cold Burial of Baltica to 200 km Depth. Earth and Planetary Science Letters, 281(1/2):27-35. https://doi.org/10.1016/j.epsl.2009.02.001
    Song, S. G., Su, L., 1998. Rheological Properties of Mantle Peridotites at Yushigou in the North Qilian Mountains and Their Implications for Plate Dynamics. Acta Geologica Sinica-English Edition, 72(2):131-141. https://doi.org/10.1111/j.1755-6724.1998.tb00389.x
    Song, S. G., Zhang, L. F., Niu, Y. L., 2004. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China. American Mineralogist, 89(8/9):1330-1336. https://doi.org/10.2138/am-2004-8-922
    Song, S., Zhang, L., Niu, Y., et al., 2005. Geochronology of Dia-mond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau:A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1/2):99-118. https://doi.org/10.1016/j.epsl.2005.02.036
    Song, S. G., Su, L., Niu, Y. L., et al., 2007. Petrological and Geochemical Constraints on the Origin of Garnet Peridotite in the North Qaidam Ul-trahigh-Pressure Metamorphic Belt, Northwestern China. Lithos, 96(1/2):243-265. https://doi.org/10.1016/j.lithos.2006.09.017
    Su, B., Chen, Y., Guo, S., et al., 2016. Carbonatitic Metasomatism in Orogenic Dunites from Lijiatun in the Sulu UHP Terrane, Eastern China. Lithos, 262:266-284. https://doi.org/10.1016/j.lithos.2016.07.007
    Su, L., Song, S. G., Wang, Z. H., 1999. CH4-Rich Fluid Inclusions in the Yushigou Mantle Peridotite and Their Implications, North Qilian Mountains, China. Chinese Science Bulletin, 44(21):1992-1995. https://doi.org/10.1007/bf02887126
    Tang, M., Wang, X. L., Shu, X. J., et al., 2014. Hafnium Isotopic Heterogeneity in Zircons from Granitic Rocks:Geochemical Evaluation and Modeling of "Zircon Effect" in Crustal Anatexis. Earth and Planetary Science Letters, 389:188-199. https://doi.org/10.1016/j.epsl.2013.12.036
    Vavra, G., Schmid, R., Gebauer, D., 1999. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons:Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4):380-404. https://doi.org/10.1007/s004100050492
    Vrijmoed, J. C., Austrheim, H., John, T., et al., 2013. Metasomatism in the Ultrahigh-Pressure Svartberget Garnet-Peridotite (Western Gneiss Region, Norway):Implications for the Transport of Crust-Derived Fluids within the Mantle. Journal of Petrology, 54(9):1815-1848. https://doi.org/10.1093/petrology/egt032
    Watson, E. B., 1996. Dissolution, Growth and Survival of Zircons during Crustal Fusion:Kinetic Principals, Geological Models and Implications for Isotopic Inheritance. Transactions of the Royal Society of Edinburgh:Earth Sciences, 87(1/2):43-56. https://doi.org/10.1017/s0263593300006465
    Whitehouse, M. J., Platt, J. P., 2003. Dating High-Grade Metamorphism-Constraints from Rare-Earth Elements in Zircon and Garnet. Contribu-tions to Mineralogy and Petrology, 145(1):61-74. https://doi.org/10.1007/s00410-002-0432-z
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
    Wu, Y. B., Zheng, Y. F., Zhao, Z. F., et al., 2006. U/Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen. Geochimica et Cosmochimica Acta, 70(14):3743-3761. https://doi.org/10.1016/j.gca.2006.05.011
    Xia, Q. K., Liu, J., Liu, S. C., et al., 2013. High Water Content in Mesozoic Primitive Basalts of the North China Craton and Implications on the Destruction of Cratonic Mantle Lithosphere. Earth and Planetary Sci-ence Letters, 361:85-97. https://doi.org/10.1016/j.epsl.2012.11.024
    Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2011. Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China):Meso-Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes. Precambrian Research, 187(1/2):33-57. https://doi.org/10.1016/j.precamres.2011.02.003
    Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2014. Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Met-asomatism and Segregation in the Mantle Wedge. Journal of Petrology, 55(12):2347-2376. https://doi.org/10.1093/petrology/egu059
    Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2015. Episodic Refertilization and Metasomatism of Archean Mantle:Evidence from an Orogenic Peridotite in North Qaidam (NE Tibet, China). Contributions to Mineralogy and Petrology, 169(3):1-24. https://doi.org/10.1007/s00410-015-1126-7
    Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2016. Southward Trench Migration at~130-120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites. Earth and Planetary Science Letters, 438:57-65. https://doi.org/10.1016/j.epsl.2016.01.014
    Yang, J. J., Godard, G., Kienast, J. R., et al., 1993. Ultrahigh-Pressure (60 kbar) Magnesite-Bearing Garnet Peridotites from Northeastern Jiangsu, China. The Journal of Geology, 101(5):541-554. https://doi.org/10.1086/648248
    Yang, J. J., Powell, R., 2008. Ultrahigh-Pressure Garnet Peridotites from the Devolatilization of Sea-Floor Hydrated Ultramafic Rocks. Journal of Metamorphic Geology, 26(6):695-716. https://doi.org/10.1111/j.1525-1314.2008.00780.x
    Yang, J. S., Li, T. F., Chen, S. Z., et al., 2009. Genesis of Garnet Peridotites in the Sulu UHP Belt:Examples from the Chinese Continental Scientific Drilling Project-Main Hole, PP1 and PP3 Drillholes. Tectonophysics, 475(2):359-382. https://doi.org/10.1016/j.tecto.2009.02.032
    Yang, Y. H., Wu, F. Y., Wilde, S. A., et al., 2009. In situ Perovskite Sr-Nd Isotopic Constraints on the Petrogenesis of the Ordovician Mengyin Kimberlites in the North China Craton. Chemical Geology, 264(1/2/3/4):24-42. https://doi.org/10.1016/j.chemgeo.2009.02.011
    Ye, K., Song, Y. R., Chen, Y., et al., 2009. Multistage Metamorphism of Orogenic Garnet-Lherzolite from Zhimafang, Sulu UHP Terrane, E. China:Implications for Mantle Wedge Convection during Progressive Oceanic and Continental Subduction. Lithos, 109(3/4):155-175. https://doi.org/10.1016/j.lithos.2008.08.005
    Yu, H., Zhang, H. F., Santosh, M., 2017. Mylonitized Peridotites of Songshugou in the Qinling Orogen, Central China:A Fragment of Fossil Oceanic Lithosphere Mantle. Gondwana Research, 52:1-17. https://doi.org/10.1016/j.gr.2017.08.007
    Zhang, R. Y., Liou, J. G., Yang, J. S., 2000. Petrochemical Constraints for Dual Origin of Garnet Peridotites from the Dabie-Sulu UHP Terrane, Eastern-Central China. Journal of Metamorphic Geology, 18(2):149-166. https://doi.org/10.1046/j.1525-1314.2000.00248.x
    Zhang, R. Y., Yang, J. S., Wooden, J. L., et al., 2005. U-Pb SHRIMP Geochronology of Zircon in Garnet Peridotite from the Sulu UHP Terrane, China:Implications for Mantle Metasomatism and Subduction-Zone UHP Metamorphism. Earth and Planetary Science Letters, 237(3/4):729-743. https://doi.org/10.1016/j.epsl.2005.07.003
    Zhang, R. Y., Pan, Y. M., Yang, Y. H., et al., 2008. Chemical Composition and Ultrahigh-P Metamorphism of Garnet Peridotites from the Sulu UHP Terrane, China:Investigation of Major, Trace Elements and Hf Isotopes of Minerals. Chemical Geology, 255(1/2):250-264. https://doi.org/10.1016/j.chemgeo.2008.06.049
    Zhang, Z. M., Dong, X., Liou, J. G., et al., 2011. Metasomatism of Garnet Peridotite from Jiangzhuang, Southern Sulu UHP Belt:Constraints on the Interactions between Crust and Mantle Rocks during Subduction of Continental Lithosphere. Journal of Metamorphic Geology, 29(9):917-937. https://doi.org/10.1111/j.1525-1314.2011.00947.x
    Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2008. Zircon U-Pb Ages, Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahigh-Pressure Dabie Orogen in China. Chemical Geology, 253(3/4):222-242. https://doi.org/10.1016/j.chemgeo.2008.05.011
    Zheng, J. P., Zhang, R. Y., Griffin, W. L., et al., 2005. Heterogeneous and Metasomatized Mantle Recorded by Trace Elements in Minerals of the Donghai Garnet Peridotites, Sulu UHP Terrane, China. Chemical Geology, 221(3/4):243-259. https://doi.org/10.1016/j.chemgeo.2005.05.002
    Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006a. A Refractory Mantle Protolith in Younger Continental Crust, East-Central China:Age and Composition of Zircon in the Sulu Ultrahigh-Pressure Peridotite. Ge-ology, 34(9):705. https://doi.org/10.1130/g22569.1
    Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006b. Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere:Constraints on Mantle Evolution beneath Eastern China. Journal of Petrology, 47(11):2233-2256. https://doi.org/10.1093/petrology/egl042
    Zheng, J. P., Sun, M., Griffin, W. L., et al., 2008. Age and Geochemistry of Contrasting Peridotite Types in the Dabie UHP Belt, Eastern China:Petrogenetic and Geodynamic Implications. Chemical Geology, 247(1/2):282-304. https://doi.org/10.1016/j.chemgeo.2007.10.023
    Zheng, J. P., 2009. Comparison of Mantle-Derived Matierals from Different Spatiotemporal Settings:Implications for Destructive and Accretional Processes of the North China Craton. Chinese Science Bulletin, 54(19):3397-3416. https://doi.org/10.1007/s11434-009-0308-y
    Zheng, J. P., Tang, H. Y., Xiong, Q., et al., 2014. Linking Continental Deep Subduction with Destruction of a Cratonic Margin:Strongly Reworked North China SCLM Intruded in the Triassic Sulu UHP Belt. Contributions to Mineralogy and Petrology, 168(1):1028. https://doi.org/10.1007/s00410-014-1028-0
    Zheng, J. P., Xiong, Q., Zhao, Y., et al., 2019a. Massif Peridotites from Subduction Zones:Records of Crust-Mantle Interaction. Science China Earth Sciences. https://doi.org/10.1007/s11430-018-9346-6
    Zheng, J. P., Zhao, Y., Xiong, Q., 2019b. Genesis and Geological Significance of Zircons in Orogenic Peridotite. Earth Science, 44(4):1067-1082. https://doi.org/10.3799/dqkx.2018.375 (in Chinese with English Abstract)
    Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Science Bulletin, 53(20):3081-3104. https://doi.org/10.1007/s11434-008-0388-0
    Zheng, Y. F., 2009. Fluid Regime in Continental Subduction Zones:Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks. Journal of the Geological Society, 166(4):763-782. https://doi.org/10.1144/0016-76492008-016r
    Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
    Zheng, Y. F., Chen, R. X., Xu, Z., et al., 2016. The Transport of Water in Subduction Zones. Science China Earth Sciences, 59(4):651-682. https://doi.org/10.1007/s11430-015-5258-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(963) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return