Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 3
Jun 2019
Turn off MathJax
Article Contents
Yancheng Zhang, Xu-Ping Li, Guangming Sun, Zeli Wang, Wenyong Duan. Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling. Journal of Earth Science, 2019, 30(3): 549-562. doi: 10.1007/s12583-019-1222-0
Citation: Yancheng Zhang, Xu-Ping Li, Guangming Sun, Zeli Wang, Wenyong Duan. Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling. Journal of Earth Science, 2019, 30(3): 549-562. doi: 10.1007/s12583-019-1222-0

Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling

doi: 10.1007/s12583-019-1222-0
More Information
  • Corresponding author: Xu-Ping Li
  • Received Date: 20 Nov 2018
  • Accepted Date: 15 Mar 2019
  • Publish Date: 01 Jun 2019
  • The clinopyroxene amphibolite from the Bailang terrane is located in the central section of the Yarlung Zangbo suture zone (YZSZ), southern Tibet. The study of it is expected to provide important clues for the subduction of the Neo-Tethyan Ocean below the Asian Plate and thus for better understanding of the development of the India-Asia collision zone. Based on integrated textural, mineral compositional, metamorphic reaction history and geothermobarometric studies of the clinopyroxene amphibolite within a serpentinite mélange, four overprinted metamorphic stages are established. They are the first metamorphic record of M1 stage indicated by a relict assemblage of plagioclase+clinopyroxene+amphibole, an early M2 stage characterized by an assemblage of medium-grained clinopyroxene+amphibole+plagioclase+quartz as well as rutile inclusion in titanite, which is formed during burial process, an isobaric cooling M3 stage which is characterized by an assemblage of clinopyroxene+amphibole+plagioclase+titanite, and a decomposing retrograde stage M4, which is represented by the amphibolite+plagioclase symplectite+titanite+ rutile+quartz. By applying the THERMOCALC (versions 6.2 and 6.3) technique in the NCFMASHTO system, the P-T conditions estimated from M1 to M4 stages are ca. 8.6 kbar/880℃, 10.8-13.4 kbar/800-840℃, 12.7-13.2 kbar/650-660℃ and < 11.2 kbar/640℃, respectively. The mineral assemblages and their P-T conditions define a counterclockwise P-T path for the clinopyroxene amphibolite of the Xigaze ophiolite, suggesting that the rocks underwent a cooling process during burial from magmatic protolith, and a decompressing stage after the pressure peak metamorphic conditions, which implies that the Bailang terrane of the Xigaze ophiolite may have experienced subduction/collision-related tectonic processes. The peak metamorphism reaches to the transitional P-T conditions among amphibolite facies, granulite facies and eclogite facies with a burial depth of 30-40 km. After exhumation of the ophiolitic unit to the shallow crustal levels, the clinopyroxene amphibolite exposes to a high fO2 condition on the basis of the stable epidotebearing assemblage in the T-MO2 diagrams. A late subgreenschist facies overprinting subsequently occurs, the relevant mineral assemblage is prehnite+albite+chlorite+epidote+quartz.

     

  • loading
  • Aitchison, J. C., Badengzhu., Davis, A. M., et al., 2000. Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet). Earth and Planetary Science Letters, 183(1/2):231-244. https://doi.org/10.1016/s0012-821x(00)00287-9
    Aitchison, J. C., Davis, A. M., 2004. Evidence for the Multiphase Nature of the India-Asia Collision from the Yarlung Zangbo Suture Zone, Tibet. In: Malpas, J., Fletcher, C., Ali, J. R., et al., eds., Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226: 217-234. https: //doi.org/10.1144/gsl.sp.2004.226.01.12
    Aitchison, J. C., Davis, A. M., Abrajevitch, A. V., et al., 2003. Stratigraphic and Sedimentological Constraints on the Age and Tectonic Evolution of the Neotethyan Ophiolites along the Yarlung Tsangpo Suture Zone, Tibet. Geological Society, London, Special Publications, 218(1):147-164. https://doi.org/10.1144/gsl.sp.2003.218.01.09
    Aitchison, J. C., McDermid, I. R. C., Ali, J. R., et al., 2007. Shoshonites in Southern Tibet Record Late Jurassic Rifting of a Tethyan Intraoceanic Island Arc. The Journal of Geology, 115(2):197-213. https://doi.org/10.1086/510642
    Allègre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946):17-22. https://doi.org/10.1038/307017a0
    Bédard, É., Hébert, R., Guilmette, C., et al., 2009. Petrology and Geochemistry of the Saga and Sangsang Ophiolitic Massifs, Yarlung Zangbo Suture Zone, Southern Tibet:Evidence for an Arc-Back-Arc Origin. Lithos, 113(1/2):48-67. https://doi.org/10.1016/j.lithos.2009.01.011
    Bézard, R., Hébert, R., Wang, C. S., et al., 2011. Petrology and Geochemistry of the Xiugugabu Ophiolitic Massif, Western Yarlung Zangbo Suture Zone, Tibet. Lithos, 125(1/2):347-367. https://doi.org/10.1016/j.lithos.2011.02.019
    Bhowmik, S. K., Ao, A., 2016. Subduction Initiation in the Neo-Tethys:Constraints from Counterclockwise P-T Paths in Amphibolite Rocks of the Nagaland Ophiolite Complex, India. Journal of Metamorphic Ge-ology, 34(1):17-44. https://doi.org/10.1111/jmg.12169
    Coleman, R. G., 1981. Tectonic Setting for Ophiolite Obduction in Oman. Journal of Geophysical Research:Solid Earth, 86(B4):2497-2508. https://doi.org/10.1029/jb086ib04p02497
    Dai, J. G., Wang, C. S., Polat, A., et al., 2013. Rapid Forearc Spreading between 130 and 120 Ma:Evidence from Geochronology and Geo-chemistry of the Xigaze Ophiolite, Southern Tibet. Lithos, 172/173:1-16. https://doi.org/10.1016/j.lithos.2013.03.011
    Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6):631-656. https://doi.org/10.1111/j.1525-1314.2007.00720.x
    Dilek, Y., Whitney, D. L., 1997. Counterclockwise P-T-t Trajectory from the Metamorphic Sole of a Neo-Tethyan Ophiolite (Turkey). Tectonophysics, 280(3/4):295-310. https://doi.org/10.1016/s0040-1951(97)00038-3
    Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3):TC3001. https://doi.org/10.1029/2004tc001729
    Dubois-Côté, V., Hébert, R., Dupuis, C., et al., 2005. Petrological and Geochemical Evidence for the Origin of the Yarlung Zangbo Ophiolites, Southern Tibet. Chemical Geology, 214(3/4):265-286. https://doi.org/10.1016/j.chemgeo.2004.10.004
    Dupuis, C., Hébert, R., Dubois-Côté, V., et al., 2005a. Petrology and Geochemistry of Mafic Rocks from Mélange and Flysch Units Adjacent to the Yarlung Zangbo Suture Zone, Southern Tibet. Chemical Geology, 214(3/4):287-308. https://doi.org/10.1016/j.chemgeo.2004.10.005
    Dupuis, C., Hébert, R., Dubois-Côté, V., et al., 2005b. The Yarlung Zangbo Suture Zone Ophiolitic Mélange (Southern Tibet):New Insights from Geochemistry of Ultramafic Rocks. Journal of Asian Earth Sciences, 25(6):937-960. https://doi.org/10.1016/j.jseaes.2004.09.004
    Dupuis, C., Hébert, R., Dubois-Côté, V., et al., 2006. Geochemistry of Sedimentary Rocks from Mélange and Flysch Units South of the Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Asian Earth Sciences, 26(5):489-508. https://doi.org/10.1016/j.jseaes.2004.11.002
    Girardeau, J., Mercier, J. C. C., Yougong, Z., 1985. Origin of the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, Southern Tibet. Tectonophysics, 119(1/2/3/4):407-433. https://doi.org/10.1016/0040-1951(85)90048-4
    Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9):845-869. https://doi.org/10.1111/jmg.12211
    Guilmette, C., Hébert, R., Dostal, J., et al., 2012. Discovery of a Dismembered Metamorphic Sole in the Saga Ophiolitic Mélange, South Tibet:Assessing an Early Cretaceous Disruption of the Neo-Tethyan Supra-Subduction Zone and Consequences on Basin Closing. Gondwana Research, 22(2):398-414. https://doi.org/10.1016/j.gr.2011.10.012
    Guilmette, C., Hébert, R., Dupuis, C., et al., 2008. Metamorphic History and Geodynamic Significance of High-Grade Metabasites from the Ophiolitic Mélange beneath the Yarlung Zangbo Ophiolites, Xigaze Area, Tibet. Journal of Asian Earth Sciences, 32(5/6):423-437. https://doi.org/10.1016/j.jseaes.2007.11.013
    Guilmette, C., Hébert, R., Wang, C. S., et al., 2009. Geochemistry and Geochronology of the Metamorphic Sole Underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet. Lithos, 112(1/2):149-162. https://doi.org/10.1016/j.lithos.2009.05.027
    Hébert, R., Bézard, R., Guilmette, C., et al., 2012. The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet:First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys. Gondwana Research, 22(2):377-397. https://doi.org/10.1016/j.gr.2011.10.013
    Hébert, R., Huot, F., Wang, C. S., et al., 2003. Yarlung Zangbo Ophiolites (Southern Tibet) Revisited:Geodynamic Implications from the Mineral Record. Geological Society, London, Special Publications, 218(1):165-190. https://doi.org/10.1144/gsl.sp.2003.218.01.10
    Hébert, R., Varfalvy, V., Huot, F., et al., 2000. Yarlung Zangbo Ophiolites, Southern Tibet. Earth Science Frontier, 7:124-126 http://d.old.wanfangdata.com.cn/Periodical/dqxb201504009
    Hébert, R., Wang, C. S., Varfalvy, V., et al., 2001. Yarlung Zangbo Suture Ophiolites and Their Supra-Subduction Zone Setting. Journal of Asian Earth Sciences, 19:27-28 http://d.old.wanfangdata.com.cn/Periodical/dqxb201504009
    Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3):333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
    Holland, T. J. B., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations:An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4):492-501. https://doi.org/10.1007/s00410-003-0464-z
    Huot, F., Hébert, R., Varfalvy, V., et al., 2002. The Beimarang Mélange (Southern Tibet) Brings Additional Constraints in Assessing the Origin, Metamorphic Evolution and Obduction Processes of the Yarlung Zangbo Ophiolite. Journal of Asian Earth Sciences, 21(3):307-322. https://doi.org/10.1016/s1367-9120(02)00053-6
    Johannes, W., Schreyer, W., 1981. Experimental Introduction of CO2 and H2O into Mg-Cordierite. American Journal of Science, 281(3):299-317. https://doi.org/10.2475/ajs.281.3.299
    Leake, B. E., Woolley, A. R., Birch, W. D., et al., 2004. Nomenclature of Amphiboles:Additions and Revisions to the International Mineralogical Association's Amphibole Nomenclature. Mineralogical Magazine, 68(1):209-215. https://doi.org/10.1180/0026461046810182
    Li, X.-P., Chen, H. K., Wang, Z. L., et al., 2015a. Textural Evolution of Spinel Peridotite and Olivine Websterite in the Purang Ophiolite Com-plex, Western Tibet. Journal of Asian Earth Sciences, 110:55-71. https://doi.org/10.1016/j.jseaes.2014.06.023
    Li, X.-P., Kong, F. M., Chen, H. K., et al., 2015b. Rodingite in the Purang Ophiolite and Its Geological Implication, Southwest Tibet. Acta Geologica Sinica-English Edition, 89(Suppl. 2):41-42. https://doi.org/10.1111/1755-6724.12308_29
    Li, X.-P., Duan, W. Y., Zhao, L. Q., et al., 2017. Rodingites from the Xigaze Ophiolite, Southern Tibet-New Insights into the Processes of Rodin-gitization. European Journal of Mineralogy, 29(5):821-837. https://doi.org/10.1127/ejm/2017/0029-2633
    Liu, T., Wu, F. Y., Zhang, L. L., et al., 2016. Zircon U-Pb Geochronological Constraints on Rapid Exhumation of the Mantle Peridotite of the Xigaze Ophiolite, Southern Tibet. Chemical Geology, 443:67-86. https://doi.org/10.1016/j.chemgeo.2016.09.015
    Mahoney, J. J., Frei, R., Tejada, M. L. G., et al., 1998. Tracing the Indian Ocean Mantle Domain through Time:Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor. Journal of Petrology, 39(7):1285-1306. https://doi.org/10.1093/petroj/39.7.1285
    Malpas, J., Zhou, M. F., Robinson, P. T., et al., 2003. Geochemical and Geochronological Constraints on the Origin and Emplacement of the Yarlung Zangbo Ophiolites, Southern Tibet. Geological Society, London, Special Publications, 218(1):191-206. https://doi.org/10.1144/gsl.sp.2003.218.01.11
    Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Ce-nozoic Igneous Rocks in Southern Tibet. Lithos, 96(1/2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005
    Nicolas, A., 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Kluwer Academic Publisher, Dororecht, Boston, London. 1-369
    Nicolas, A., Girardeau, J., Marcoux, J., et al., 1981. The Xigaze Ophiolite (Tibet):A Peculiar Oceanic Lithosphere. Nature, 294(5840):414-417. https://doi.org/10.1038/294414a0
    Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
    Robertson, A. H. F., 2002. Overview of the Genesis and Emplacement of Mesozoic Ophiolites in the Eastern Mediterranean Tethyan Region. Lithos, 65(1/2):1-67. https://doi.org/10.1016/s0024-4937(02)00160-3
    Sun, G. M., Li, X.-P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5):1026-1039. https://doi.org/10.1007/s12583-018-0854-9
    Wakabayashi, J., Dilek, Y., 2003. What Constitutes 'Emplacement' of an Ophiolite? Mechanisms and Relationship to Subduction Initiation and Formation of Metamorphic Soles. Geological Society, London, Special Publications, 218(1):427-447. https://doi.org/10.1144/gsl.sp.2003.218.01.22
    Wang, R., Xia, B., Zhou, G. Q., et al., 2006. SHRIMP Zircon U-Pb Dating for Gabbro from the Tiding Ophiolite in Tibet. Chinese Science Bulletin, 51(14):1776-1779. https://doi.org/10.1007/s11434-006-2027-y
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
    Wu, F. Y., Ji, W. Q., Wang, J. G., et al., 2014. Zircon U-Pb and Hf Isotopic Constraints on the Onset Time of India-Asia Collision. American Journal of Science, 314(2):548-579. https://doi.org/10.2475/02.2014.04
    Xia, B., Yu, H. X., Chen, G. W., et al., 2003. Geochemistry and Tectonic Environment of the Dagzhuka Ophiolite in the Yarlung-Zangbo Suture Zone, Tibet. Geochemical Journal, 37(3):311-324. https://doi.org/10.2343/geochemj.37.311
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
    Zhang, X., Li, X.-P., Wang, Z. L., et al., 2016. Mineralogical and Petrogeochemical Characteristics of the Garnet Amphibolites in the Xigaze Ophiolite, Tibet. Acta Petrologica Sinica, 32(12):3685-3702 (in Chinese with English Abstract)
    Zhou, M. F., Robinson, P. T., Malpas, J., et al., 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views(548) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return