Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 3
Jun 2019
Turn off MathJax
Article Contents
Hanwen Dong, Yuanku Meng, Zhiqin Xu, Hui Cao, Zhiyu Yi, Zeliang Ma. Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 2019, 30(3): 535-548. doi: 10.1007/s12583-019-1223-z
Citation: Hanwen Dong, Yuanku Meng, Zhiqin Xu, Hui Cao, Zhiyu Yi, Zeliang Ma. Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 2019, 30(3): 535-548. doi: 10.1007/s12583-019-1223-z

Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology

doi: 10.1007/s12583-019-1223-z
More Information
  • Corresponding author: Hui Cao
  • Received Date: 20 Oct 2018
  • Accepted Date: 10 Jan 2019
  • Publish Date: 01 Jun 2019
  • The Yardoi dome is located in the eastern end of the northwest-southeast extending North Himalayan domes (NHD). The dome exposes a granite pluton in the core and three lithologictectonic units separated by the upper detachment fault and the lower detachment fault. The Yardoi detachment fault (YDF), corresponding to the lower detachment fault, is a 800 m strongly deformed top-NW shear zone. LA-ICP-MS zircon U-Pb dating yielded a crystallization ages of 19.57±0.23 to 15.5±0.11 Ma for the leucogranite dyke swarm, which indicates that the ductile motion along the YDF began at ca. 20 Ma. The 40Ar/39Ar muscovite ages of 14.05±0.2 to 13.2±0.2 Ma and the 40Ar/39Ar biotite age of 13.15±0.2 Ma, suggest that the exhumation led to cooling through the 370℃ Ar closure temperature in muscovite at~14 Ma to the 335℃ Ar closure temperature in biotite at~13 Ma. Our new geochronological data from the Yardoi dome and other domes in the Tethyan Himalayan Sequences suggest that the ductile deformation in the region began at or before~36 Ma in a deep tectonic level, resulting in southward ductile flow at the mid-crustal tectonic level that continued from 20 to 13 Ma. Comparing the Yardoi dome to other domes in the NHD, the cooling ages show a clear diachronism and they are progressively younger from the West Himalayan to the East Himalayan.

     

  • loading
  • Aikman, A. B., Harrison, T. M., Ding, L., 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1/2):14-23. https://doi.org/10.1016/j.epsl.2008.06.038
    Aoya, M., Wallis, S. R., Terada, K., et al., 2005. North-South Extension in the Tibetan Crust Triggered by Granite Emplacement. Geology, 33(11):853-856. https://doi.org/10.1130/g21806.1
    Aoya, M., Wallis, S. R., Kawakami, T., et al., 2006. The Malashan Gneiss Dome in South Tibet:Comparative Study with the Kangmar Dome with Special Reference to Kinematics of Deformation and Origin of Associated Granites. Geological Society, London, Special Publications, 268(1):471-495. https://doi.org/10.1144/gsl.sp.2006.268.01.22
    Beck, R. A., Burbank, D. W., Sercombe, W. J., et al., 1995. Stratigraphic Evidence for an Early Collision between Northwest India and Asia. Nature, 373(6509):55-58. https://doi.org/10.1038/373055a0
    Bureau of Geology and Mineral Resources of Xizang Autonomous Region (BGMRXAR), 1993. Regional Geology of Xizang (Tibet) Autonomous Region. Geological Publishing House, Beijing (in Chinese)
    Burchfiel, B. C., Chen, Z. L., Hodges, K. V., et al., 1992. The South Tibetan Detachment System, Himalayan Orogen:Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt. Geological Society America Special Paper, 269:1-41. https://doi.org/10.1130/spe269-p1
    Burchfiel, B. C., Royden, L. H., 1985. North-South Extension within the Convergent Himalayan Region. Geology, 13(10):679-682. https://doi.org/10.1130/0091-7613(1985)13<679:newtch>2.0.co; 2 doi: 10.1130/0091-7613(1985)13<679:newtch>2.0.co;2
    Burg, J. P., Chen, G. M., 1984. Tectonics and Structural Zonation of Southern Tibet, China. Nature, 311(5983):219-223. https://doi.org/10.1038/311219a0
    Chen, Z. L., Liu, Y. P., Hodges, K. V., et al., 1990. The Kangmar Dome:A Metamorphic Core Complex in Southern Xizang (Tibet). Science, 250(4987):1552-1556. https://doi.org/10.1126/science.250.4987.1552
    Diedesch, T. F., Jessup, M. J., Cottle, J. M., et al., 2016. Tectonic Evolution of the Middle Crust in Southern Tibet from Structural and Kinematic Studies in the Lhagoi Kangri Gneiss Dome. Lithosphere, 8(5):480-504. https://doi.org/10.1130/l506.1
    Ding, H. X., Zhang, Z. M., Dong, X., et al., 2016. Early Eocene (c. 50 Ma) Collision of the Indian and Asian Continents:Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet. Earth and Planetary Science Letters, 435:64-73. https://doi.org/10.1016/j.epsl.2015.12.006
    Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3):1029. https://doi.org/10.1029/2004tc001729
    Dodson, M. H., 1973. Closure Temperature in Cooling Geochronological and Petrological Systems. Contributions to Mineralogy and Petrology, 40(3):259-274. https://doi.org/10.1007/bf00373790
    Gansser, A., 1964. The Geology of the Himalayas. Wiley Interscience, New York. 289
    Gao, L. E., Zeng, L. S., Hou, K. J., et al., 2013. Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome, Southern Tibet. Chinese Science Bulletin, 58(28/29):3546-3563. https://doi.org/10.1007/s11434-013-5792-4
    Gao, L. E., Zeng, L. S., Asimow, P. D., 2017. Contrasting Geochemical Signatures of Fluid-Absent Versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites. Geology, 45(1):39-42. https://doi.org/10.1130/g38336.1
    Geological Survey of Shannxi Province, 1994.1: 200 000 Geological Map of the Zedong County (China). Geological Publishing House, Beijing (in Chinese)
    Geological Survey of Yunnan Province, 2004.1: 250 000 Geological Map of the Longzi County (China). Geological Publishing House, Beijing (in Chinese)
    Grove, M., Harrison, T. M., 1996. 40Ar* Diffusion in Fe-Rich Biotite. American Mineralogist, 81(7/8):940-951. https://doi.org/10.2138/am-1996-7-816
    Guo, L., Zhang, J. J., Zhang, B., 2008. Structures, Kinematics, Thermo-chronology and Tectonic Evolution of the Ramba Gneiss Dome in the Northern Himalaya. Progress in Natural Science, 18(7):851-860. https://doi.org/10.1016/j.pnsc.2008.01.016
    Harrison, T. M., 1982. Diffusion of 40Ar in Hornblende. Contributions to Mineralogy and Petrology, 78(3):324-331. https://doi.org/10.1007/bf00398927
    Harrison, T. M., Aleinikoff, J. N., Compston, W., 1987. Observations and Controls on the Occurrence of Inherited Zircon in Concord-Type Gran-itoids, New Hampshire. Geochimica et Cosmochimica Acta, 51(9):2549-2558. https://doi.org/10.1016/0016-7037(87)90305-x
    Harrison, T. M., Copeland, P., Kidd, W. S. F., et al., 1992. Raising Tibet. Science, 255(5052):1663-1670. https://doi.org/10.1126/science.255.5052.1663
    Harrison, T. M., Lovera, O. M., Grove, M., 1997. New Insights into the Origin of Two Contrasting Himalayan Granite Belts. Geology, 25(10):899-902. https://doi.org/10.1130/0091-7613(1997)025<0899:niitoo>2.3.co; 2 doi: 10.1130/0091-7613(1997)025<0899:niitoo>2.3.co;2
    Hauck, M. L., Nelson, K. D., Brown, L. D., et al., 1998. Crustal Structure of the Himalayan Orogen at~90° East Longitude from Project INDEPTH Deep Reflection Profiles. Tectonics, 17(4):481-500. https://doi.org/10.1029/98tc01314
    Heim, A., Gansser, A., 1939. Central Himalaya. Hindustan Publishing Corporation, Delhi, India. 1-246
    Hou, Z. Q., Zheng, Y. C., Zeng, L. S., et al., 2012. Eocene-Oligocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen. Earth and Planetary Science Letters, 349/350:38-52. https://doi.org/10.1016/j.epsl.2012.06.030
    Hu, X. M., Garzanti, E., Wang, J. G., et al., 2016. The Timing of India-Asia Collision Onset-Facts, Theories, Controversies. Earth-Science Reviews, 160:264-299. https://doi.org/10.1016/j.earscirev.2016.07.014
    Jain, A. K., Manickavasagam, R. M., 1993. Inverted Metamorphism in the Intracontinental Ductile Shear Zone during Himalayan Collision Tec-tonics. Geology, 21(5):407-410. https://doi.org/10.1130/0091-7613(1993)021<0407:imitid>2.3.co; 2 doi: 10.1130/0091-7613(1993)021<0407:imitid>2.3.co;2
    Kawakami, T., Aoya, M., Wallis, S. R., et al., 2007. Contact Metamorphism in the Malashan Dome, North Himalayan Gneiss Domes, Southern Tibet:An Example of Shallow Extensional Tectonics in the Tethys Himalaya. Journal of Metamorphic Geology, 25(8):831-853. https://doi.org/10.1111/j.1525-1314.2007.00731.x
    King, J., Harris, N., Argles, T., et al., 2007. First Field Evidence of Southward Ductile Flow of Asian Crust beneath Southern Tibet. Geology, 35(8):727-730. https://doi.org/10.1130/g23630a.1
    King, J., Harris, N., Argles, T., et al., 2011. Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. Ge-ological Society of America Bulletin, 123(1/2):218-239. https://doi.org/10.1130/b30085.1
    Langille, J., Lee, J., Hacker, B., et al., 2010. Middle Crustal Ductile Deformation Patterns in Southern Tibet:Insights from Vorticity Studies in Mabja Dome. Journal of Structural Geology, 32(1):70-85. https://doi.org/10.1016/j.jsg.2009.08.009
    Langille, J. M., Jessup, M. J., Cottle, J., et al., 2014. Kinematic and Thermal Studies of the Leo Pargil Dome:Implications for Synconvergent Ex-tension in the NW Indian Himalaya. Tectonics, 33(9):1766-1786. https://doi.org/10.1002/2014tc003593
    Lee, J., Whitehouse, M. J., 2007. Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U/Pb Zircon Ages. Geology, 35(1):45-48. https://doi.org/10.1130/g22842a.1
    Lee, J., Hacker, B. R., Wang, Y., 2004. Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet. Journal of Structural Geology, 26(12):2297-2316. https://doi.org/10.1016/j.jsg.2004.02.013
    Lee, J., Hacker, B. R., Dinklage, W. S., et al., 2000. Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints. Tectonics, 19(5):872-895. https://doi.org/10.1029/1999tc001147
    Lee, J., McClelland, W., Wang, Y., et al., 2006. Oligocene-Miocene Middle Crustal Flow in Southern Tibet:Geochronology of Mabja Dome. Geological Society, London, Special Publications, 268(1):445-469. https://doi.org/10.1144/gsl.sp.2006.268.01.21
    Li, G. W., Tian, Y. T., Kohn, B. P., et al., 2015. Cenozoic Low Temperature Cooling History of the Northern Tethyan Himalaya in Zedang, SE Tibet and Its Implications. Tectonophysics, 643:80-93. https://doi.org/10.1016/j.tecto.2014.12.014
    Lister, G. S., Baldwin, S. L., 1996. Modelling the Effect of Arbitrary P-T-t Histories on Argon Diffusion in Minerals Using the MacArgon Program for the Apple Macintosh. Tectonophysics, 253(1/2):83-109. https://doi.org/10.1016/0040-1951(95)00059-3
    Makovsky, Y., Klemperer, S. L., Ratschbacher, L., et al., 1999. Midcrustal Reflector on INDEPTH Wide-Angle Profiles:An Ophiolitic Slab beneath the India-Asia Suture in Southern Tibet?. Tectonics, 18(5):793-808. https://doi.org/10.1029/1999tc900022
    McDougall, I., Harrison, T. M., 1999. Geochronology and Thermochronol-ogy by the 40Ar/39Ar Method. Oxford University Press, Oxford. 1-269
    Meng, Y. K., Xu, Z. Q., Gao, C. S., et al., 2018a. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet. Acta Petrologica Sinica, 34(3):513-546 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201803001
    Meng, Y. K., Xu, Z. Q., Ma, S. W., et al., 2018b. Late Triassic Granites from the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet. Acta Geologica Sinica-English Edition, 92(2):462-481. https://doi.org/10.1111/1755-6724.13537
    Mezger, K., 1990. Geochronology in Granulites. In: Vielzeuf, D., Vidal, P., eds., Granulites and Crustal Evolution. Kluwer Academic Publishers. 451-470
    Pidgeon, R. T., Aftalion, M., 1978. Crustal Evolution in Northwestern Britain and Adjacent Regions. In: Bowes, D. R., Leake, B. E., eds., Cognetic and Inherited Zircon U-Pb Systems in Granites: Paleozoic Granites of Scotland and England. Proceedings of an International Conference, Glasgow University, April 1977. Geological Journal Special Issue 10.183-220
    Quigley, M. C., Yu, L. J., Gregory, C., et al., 2008. U-Pb SHRIMP Zircon Geochronology and T-t-d History of the Kampa Dome, Southern Tibet. Tectonophysics, 446(1/2/3/4):97-113. https://doi.org/10.1016/j.tecto.2007.11.004
    Quigley, M. C., Yu, L. J., Liu, X. H., et al., 2006. 40Ar/39Ar Thermochro-nology of the Kampa Dome, Southern Tibet:Implications for Tectonic Evolution of the North Himalayan Gneiss Domes. Tectonophysics, 421(3/4):269-297. https://doi.org/10.1016/j.tecto.2006.05.002
    Searle, M. P., Godin, L., 2003. The South Tibetan Detachment and the Manaslu Leucogranite:A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 111(5):505-523. https://doi.org/10.1086/376763
    Smit, M. A., Hacker, B. R., Lee, J., 2014. Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya. Geology, 42(7):591-594. https://doi.org/10.1130/g35524.1
    Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5):1026-1039. https://doi.org/10.1007/s12583-018-0854-9
    Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanics of the Collision between India and Asia. Geological Society, London, Special Publications, 19(1):113-157. https://doi.org/10.1144/gsl.sp.1986.019.01.07
    Treloar, P. J., Coward, M. P., 1991. Indian Plate Motion and Shape:Con-straints on the Geometry of the Himalayan Orogen. Tectonophysics, 191(3/4):189-198. https://doi.org/10.1016/0040-1951(91)90055-w
    Wang, J. M., Wu, F. Y., Rubatto, D., et al., 2018. Early Miocene Rapid Exhumation in Southern Tibet:Insights from P-T-t-D-Magmatism Path of YardoiDome. Lithos, 304-307:38-56. https://doi.org/10.1016/j.lithos.2018.02.003
    Webb, A. A. G., Guo, H. C., Clift, P. D., et al., 2017. The Himalaya in 3D:Slab Dynamics Controlled Mountain Building and Monsoon Intensifi-cation. Lithosphere, 9(4):637-651. https://doi.org/10.1130/l636.1
    Xiong, F. H., Yang, J. S., Xu, X. Z., et al., 2018. Compositional and Isotopic Heterogeneities in the Neo-Tethyan Upper Mantle Recorded by Coex-isting Al-Rich and Cr-Rich Chromitites in the Purang Peridotite Massif, SW Tibet (China). Journal of Asian Earth Sciences, 159:109-129. https://doi.org/10.1016/j.jseaes.2018.03.024
    Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2011. On the Tectonics of the India-Asia Collision. Acta Geologica Sinica-English Edition, 85(1):1-33 doi: 10.1111/acgs.2011.85.issue-1
    Xu, Z. Q., Ji, S. C., Cai, Z. H., et al., 2012. Kinematics and Dynamics of the Namche Barwa Syntaxis, Eastern Himalaya:Constraints from Defor-mation, Fabrics and Geochronology. Gondwana Research, 21(1):19-36. https://doi.org/10.1016/j.gr.2011.06.010
    Xu, Z. Q., Wang, Q., Pecher, A., et al., 2013. Orogen-Parallel Ductile Extension and Extrusion of the Greater Himalaya in the Late Oligocene and Miocene. Tectonics, 32(2):191-215. https://doi.org/10.1002/tect.20021
    Yan, D. P., Zhou, M. F., Robinson, P. T., et al., 2012. Constraining the Mid-Crustal Channel Flow beneath the Tibetan Plateau:Data from the Nielaxiongbo Gneiss Dome, SE Tibet. International Geology Review, 54(6):615-632. https://doi.org/10.1080/00206814.2010.548153
    Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhu-mation History, and Foreland Sedimentation. Earth-Science Reviews, 76(1/2):1-131. https://doi.org/10.1016/j.earscirev.2005.05.004
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
    Yu, F., Li, Z. G., Zhao, Z. D., et al., 2010. Geochemistry and Implication of the Linzizong Volcanic Succession in Cuomai Area, Central-Western Gangdese, Tibet. Acta Petrologica Sinica, 26(7):2217-2225 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007022
    Zeng, L. S., Liu, J., Gao, L., et al., 2009. Early Oligocene Anatexis in the YardoiGneiss Dome, Southern Tibet and Geological Implications. Chinese Science Bulletin, 54(1):104-112. https://doi.org/10.1007/s11434-008-0362-x
    Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3/4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005
    Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leu-cogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33(5):1420-1444 (in Chinese with English Abstract)
    Zhang, H. F., Harris, N., Parrish, R., et al., 2004. Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform. Earth and Planetary Science Letters, 228(1/2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031
    Zhang, J. J., Guo, L., Zhang, B., 2007. Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China. Scientia Geologica Sinica, 42(1):16-30 (in Chinese with English Ab-stract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003
    Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4):939-960. https://doi.org/10.1016/j.gr.2011.11.004
    Zhang, L., Ye, Y., Qin, S., et al., 2018. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 29(5):1040-1048. https://doi.org/10.1007/s12583-018-0880-7
    Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5):1010-1025. https://doi.org/10.1007/s12583-018-0852-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(545) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return