Aikman, A. B., Harrison, T. M., Ding, L., 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1/2):14-23. https://doi.org/10.1016/j.epsl.2008.06.038 |
Aoya, M., Wallis, S. R., Terada, K., et al., 2005. North-South Extension in the Tibetan Crust Triggered by Granite Emplacement. Geology, 33(11):853-856. https://doi.org/10.1130/g21806.1 |
Aoya, M., Wallis, S. R., Kawakami, T., et al., 2006. The Malashan Gneiss Dome in South Tibet:Comparative Study with the Kangmar Dome with Special Reference to Kinematics of Deformation and Origin of Associated Granites. Geological Society, London, Special Publications, 268(1):471-495. https://doi.org/10.1144/gsl.sp.2006.268.01.22 |
Beck, R. A., Burbank, D. W., Sercombe, W. J., et al., 1995. Stratigraphic Evidence for an Early Collision between Northwest India and Asia. Nature, 373(6509):55-58. https://doi.org/10.1038/373055a0 |
Bureau of Geology and Mineral Resources of Xizang Autonomous Region (BGMRXAR), 1993. Regional Geology of Xizang (Tibet) Autonomous Region. Geological Publishing House, Beijing (in Chinese) |
Burchfiel, B. C., Chen, Z. L., Hodges, K. V., et al., 1992. The South Tibetan Detachment System, Himalayan Orogen:Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt. Geological Society America Special Paper, 269:1-41. https://doi.org/10.1130/spe269-p1 |
Burchfiel, B. C., Royden, L. H., 1985. North-South Extension within the Convergent Himalayan Region. Geology, 13(10):679-682. https://doi.org/10.1130/0091-7613(1985)13<679:newtch>2.0.co; 2 doi: 10.1130/0091-7613(1985)13<679:newtch>2.0.co;2 |
Burg, J. P., Chen, G. M., 1984. Tectonics and Structural Zonation of Southern Tibet, China. Nature, 311(5983):219-223. https://doi.org/10.1038/311219a0 |
Chen, Z. L., Liu, Y. P., Hodges, K. V., et al., 1990. The Kangmar Dome:A Metamorphic Core Complex in Southern Xizang (Tibet). Science, 250(4987):1552-1556. https://doi.org/10.1126/science.250.4987.1552 |
Diedesch, T. F., Jessup, M. J., Cottle, J. M., et al., 2016. Tectonic Evolution of the Middle Crust in Southern Tibet from Structural and Kinematic Studies in the Lhagoi Kangri Gneiss Dome. Lithosphere, 8(5):480-504. https://doi.org/10.1130/l506.1 |
Ding, H. X., Zhang, Z. M., Dong, X., et al., 2016. Early Eocene (c. 50 Ma) Collision of the Indian and Asian Continents:Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet. Earth and Planetary Science Letters, 435:64-73. https://doi.org/10.1016/j.epsl.2015.12.006 |
Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3):1029. https://doi.org/10.1029/2004tc001729 |
Dodson, M. H., 1973. Closure Temperature in Cooling Geochronological and Petrological Systems. Contributions to Mineralogy and Petrology, 40(3):259-274. https://doi.org/10.1007/bf00373790 |
Gansser, A., 1964. The Geology of the Himalayas. Wiley Interscience, New York. 289 |
Gao, L. E., Zeng, L. S., Hou, K. J., et al., 2013. Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome, Southern Tibet. Chinese Science Bulletin, 58(28/29):3546-3563. https://doi.org/10.1007/s11434-013-5792-4 |
Gao, L. E., Zeng, L. S., Asimow, P. D., 2017. Contrasting Geochemical Signatures of Fluid-Absent Versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites. Geology, 45(1):39-42. https://doi.org/10.1130/g38336.1 |
Geological Survey of Shannxi Province, 1994.1: 200 000 Geological Map of the Zedong County (China). Geological Publishing House, Beijing (in Chinese) |
Geological Survey of Yunnan Province, 2004.1: 250 000 Geological Map of the Longzi County (China). Geological Publishing House, Beijing (in Chinese) |
Grove, M., Harrison, T. M., 1996. 40Ar* Diffusion in Fe-Rich Biotite. American Mineralogist, 81(7/8):940-951. https://doi.org/10.2138/am-1996-7-816 |
Guo, L., Zhang, J. J., Zhang, B., 2008. Structures, Kinematics, Thermo-chronology and Tectonic Evolution of the Ramba Gneiss Dome in the Northern Himalaya. Progress in Natural Science, 18(7):851-860. https://doi.org/10.1016/j.pnsc.2008.01.016 |
Harrison, T. M., 1982. Diffusion of 40Ar in Hornblende. Contributions to Mineralogy and Petrology, 78(3):324-331. https://doi.org/10.1007/bf00398927 |
Harrison, T. M., Aleinikoff, J. N., Compston, W., 1987. Observations and Controls on the Occurrence of Inherited Zircon in Concord-Type Gran-itoids, New Hampshire. Geochimica et Cosmochimica Acta, 51(9):2549-2558. https://doi.org/10.1016/0016-7037(87)90305-x |
Harrison, T. M., Copeland, P., Kidd, W. S. F., et al., 1992. Raising Tibet. Science, 255(5052):1663-1670. https://doi.org/10.1126/science.255.5052.1663 |
Harrison, T. M., Lovera, O. M., Grove, M., 1997. New Insights into the Origin of Two Contrasting Himalayan Granite Belts. Geology, 25(10):899-902. https://doi.org/10.1130/0091-7613(1997)025<0899:niitoo>2.3.co; 2 doi: 10.1130/0091-7613(1997)025<0899:niitoo>2.3.co;2 |
Hauck, M. L., Nelson, K. D., Brown, L. D., et al., 1998. Crustal Structure of the Himalayan Orogen at~90° East Longitude from Project INDEPTH Deep Reflection Profiles. Tectonics, 17(4):481-500. https://doi.org/10.1029/98tc01314 |
Heim, A., Gansser, A., 1939. Central Himalaya. Hindustan Publishing Corporation, Delhi, India. 1-246 |
Hou, Z. Q., Zheng, Y. C., Zeng, L. S., et al., 2012. Eocene-Oligocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen. Earth and Planetary Science Letters, 349/350:38-52. https://doi.org/10.1016/j.epsl.2012.06.030 |
Hu, X. M., Garzanti, E., Wang, J. G., et al., 2016. The Timing of India-Asia Collision Onset-Facts, Theories, Controversies. Earth-Science Reviews, 160:264-299. https://doi.org/10.1016/j.earscirev.2016.07.014 |
Jain, A. K., Manickavasagam, R. M., 1993. Inverted Metamorphism in the Intracontinental Ductile Shear Zone during Himalayan Collision Tec-tonics. Geology, 21(5):407-410. https://doi.org/10.1130/0091-7613(1993)021<0407:imitid>2.3.co; 2 doi: 10.1130/0091-7613(1993)021<0407:imitid>2.3.co;2 |
Kawakami, T., Aoya, M., Wallis, S. R., et al., 2007. Contact Metamorphism in the Malashan Dome, North Himalayan Gneiss Domes, Southern Tibet:An Example of Shallow Extensional Tectonics in the Tethys Himalaya. Journal of Metamorphic Geology, 25(8):831-853. https://doi.org/10.1111/j.1525-1314.2007.00731.x |
King, J., Harris, N., Argles, T., et al., 2007. First Field Evidence of Southward Ductile Flow of Asian Crust beneath Southern Tibet. Geology, 35(8):727-730. https://doi.org/10.1130/g23630a.1 |
King, J., Harris, N., Argles, T., et al., 2011. Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. Ge-ological Society of America Bulletin, 123(1/2):218-239. https://doi.org/10.1130/b30085.1 |
Langille, J., Lee, J., Hacker, B., et al., 2010. Middle Crustal Ductile Deformation Patterns in Southern Tibet:Insights from Vorticity Studies in Mabja Dome. Journal of Structural Geology, 32(1):70-85. https://doi.org/10.1016/j.jsg.2009.08.009 |
Langille, J. M., Jessup, M. J., Cottle, J., et al., 2014. Kinematic and Thermal Studies of the Leo Pargil Dome:Implications for Synconvergent Ex-tension in the NW Indian Himalaya. Tectonics, 33(9):1766-1786. https://doi.org/10.1002/2014tc003593 |
Lee, J., Whitehouse, M. J., 2007. Onset of Mid-Crustal Extensional Flow in Southern Tibet:Evidence from U/Pb Zircon Ages. Geology, 35(1):45-48. https://doi.org/10.1130/g22842a.1 |
Lee, J., Hacker, B. R., Wang, Y., 2004. Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet. Journal of Structural Geology, 26(12):2297-2316. https://doi.org/10.1016/j.jsg.2004.02.013 |
Lee, J., Hacker, B. R., Dinklage, W. S., et al., 2000. Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints. Tectonics, 19(5):872-895. https://doi.org/10.1029/1999tc001147 |
Lee, J., McClelland, W., Wang, Y., et al., 2006. Oligocene-Miocene Middle Crustal Flow in Southern Tibet:Geochronology of Mabja Dome. Geological Society, London, Special Publications, 268(1):445-469. https://doi.org/10.1144/gsl.sp.2006.268.01.21 |
Li, G. W., Tian, Y. T., Kohn, B. P., et al., 2015. Cenozoic Low Temperature Cooling History of the Northern Tethyan Himalaya in Zedang, SE Tibet and Its Implications. Tectonophysics, 643:80-93. https://doi.org/10.1016/j.tecto.2014.12.014 |
Lister, G. S., Baldwin, S. L., 1996. Modelling the Effect of Arbitrary P-T-t Histories on Argon Diffusion in Minerals Using the MacArgon Program for the Apple Macintosh. Tectonophysics, 253(1/2):83-109. https://doi.org/10.1016/0040-1951(95)00059-3 |
Makovsky, Y., Klemperer, S. L., Ratschbacher, L., et al., 1999. Midcrustal Reflector on INDEPTH Wide-Angle Profiles:An Ophiolitic Slab beneath the India-Asia Suture in Southern Tibet?. Tectonics, 18(5):793-808. https://doi.org/10.1029/1999tc900022 |
McDougall, I., Harrison, T. M., 1999. Geochronology and Thermochronol-ogy by the 40Ar/39Ar Method. Oxford University Press, Oxford. 1-269 |
Meng, Y. K., Xu, Z. Q., Gao, C. S., et al., 2018a. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet. Acta Petrologica Sinica, 34(3):513-546 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201803001 |
Meng, Y. K., Xu, Z. Q., Ma, S. W., et al., 2018b. Late Triassic Granites from the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet. Acta Geologica Sinica-English Edition, 92(2):462-481. https://doi.org/10.1111/1755-6724.13537 |
Mezger, K., 1990. Geochronology in Granulites. In: Vielzeuf, D., Vidal, P., eds., Granulites and Crustal Evolution. Kluwer Academic Publishers. 451-470 |
Pidgeon, R. T., Aftalion, M., 1978. Crustal Evolution in Northwestern Britain and Adjacent Regions. In: Bowes, D. R., Leake, B. E., eds., Cognetic and Inherited Zircon U-Pb Systems in Granites: Paleozoic Granites of Scotland and England. Proceedings of an International Conference, Glasgow University, April 1977. Geological Journal Special Issue 10.183-220 |
Quigley, M. C., Yu, L. J., Gregory, C., et al., 2008. U-Pb SHRIMP Zircon Geochronology and T-t-d History of the Kampa Dome, Southern Tibet. Tectonophysics, 446(1/2/3/4):97-113. https://doi.org/10.1016/j.tecto.2007.11.004 |
Quigley, M. C., Yu, L. J., Liu, X. H., et al., 2006. 40Ar/39Ar Thermochro-nology of the Kampa Dome, Southern Tibet:Implications for Tectonic Evolution of the North Himalayan Gneiss Domes. Tectonophysics, 421(3/4):269-297. https://doi.org/10.1016/j.tecto.2006.05.002 |
Searle, M. P., Godin, L., 2003. The South Tibetan Detachment and the Manaslu Leucogranite:A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 111(5):505-523. https://doi.org/10.1086/376763 |
Smit, M. A., Hacker, B. R., Lee, J., 2014. Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya. Geology, 42(7):591-594. https://doi.org/10.1130/g35524.1 |
Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5):1026-1039. https://doi.org/10.1007/s12583-018-0854-9 |
Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanics of the Collision between India and Asia. Geological Society, London, Special Publications, 19(1):113-157. https://doi.org/10.1144/gsl.sp.1986.019.01.07 |
Treloar, P. J., Coward, M. P., 1991. Indian Plate Motion and Shape:Con-straints on the Geometry of the Himalayan Orogen. Tectonophysics, 191(3/4):189-198. https://doi.org/10.1016/0040-1951(91)90055-w |
Wang, J. M., Wu, F. Y., Rubatto, D., et al., 2018. Early Miocene Rapid Exhumation in Southern Tibet:Insights from P-T-t-D-Magmatism Path of YardoiDome. Lithos, 304-307:38-56. https://doi.org/10.1016/j.lithos.2018.02.003 |
Webb, A. A. G., Guo, H. C., Clift, P. D., et al., 2017. The Himalaya in 3D:Slab Dynamics Controlled Mountain Building and Monsoon Intensifi-cation. Lithosphere, 9(4):637-651. https://doi.org/10.1130/l636.1 |
Xiong, F. H., Yang, J. S., Xu, X. Z., et al., 2018. Compositional and Isotopic Heterogeneities in the Neo-Tethyan Upper Mantle Recorded by Coex-isting Al-Rich and Cr-Rich Chromitites in the Purang Peridotite Massif, SW Tibet (China). Journal of Asian Earth Sciences, 159:109-129. https://doi.org/10.1016/j.jseaes.2018.03.024 |
Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2011. On the Tectonics of the India-Asia Collision. Acta Geologica Sinica-English Edition, 85(1):1-33 doi: 10.1111/acgs.2011.85.issue-1 |
Xu, Z. Q., Ji, S. C., Cai, Z. H., et al., 2012. Kinematics and Dynamics of the Namche Barwa Syntaxis, Eastern Himalaya:Constraints from Defor-mation, Fabrics and Geochronology. Gondwana Research, 21(1):19-36. https://doi.org/10.1016/j.gr.2011.06.010 |
Xu, Z. Q., Wang, Q., Pecher, A., et al., 2013. Orogen-Parallel Ductile Extension and Extrusion of the Greater Himalaya in the Late Oligocene and Miocene. Tectonics, 32(2):191-215. https://doi.org/10.1002/tect.20021 |
Yan, D. P., Zhou, M. F., Robinson, P. T., et al., 2012. Constraining the Mid-Crustal Channel Flow beneath the Tibetan Plateau:Data from the Nielaxiongbo Gneiss Dome, SE Tibet. International Geology Review, 54(6):615-632. https://doi.org/10.1080/00206814.2010.548153 |
Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhu-mation History, and Foreland Sedimentation. Earth-Science Reviews, 76(1/2):1-131. https://doi.org/10.1016/j.earscirev.2005.05.004 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Yu, F., Li, Z. G., Zhao, Z. D., et al., 2010. Geochemistry and Implication of the Linzizong Volcanic Succession in Cuomai Area, Central-Western Gangdese, Tibet. Acta Petrologica Sinica, 26(7):2217-2225 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007022 |
Zeng, L. S., Liu, J., Gao, L., et al., 2009. Early Oligocene Anatexis in the YardoiGneiss Dome, Southern Tibet and Geological Implications. Chinese Science Bulletin, 54(1):104-112. https://doi.org/10.1007/s11434-008-0362-x |
Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3/4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005 |
Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leu-cogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33(5):1420-1444 (in Chinese with English Abstract) |
Zhang, H. F., Harris, N., Parrish, R., et al., 2004. Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform. Earth and Planetary Science Letters, 228(1/2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031 |
Zhang, J. J., Guo, L., Zhang, B., 2007. Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China. Scientia Geologica Sinica, 42(1):16-30 (in Chinese with English Ab-stract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003 |
Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4):939-960. https://doi.org/10.1016/j.gr.2011.11.004 |
Zhang, L., Ye, Y., Qin, S., et al., 2018. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 29(5):1040-1048. https://doi.org/10.1007/s12583-018-0880-7 |
Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5):1010-1025. https://doi.org/10.1007/s12583-018-0852-y |