Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 3
Jun 2019
Turn off MathJax
Article Contents
Peter Olds. Hypervelocity Impacts and Exposed Lithospheric Mantle: A Way to Recognize Large Terrestrial Impact Basins?. Journal of Earth Science, 2019, 30(3): 451-459. doi: 10.1007/s12583-019-1225-x
Citation: Peter Olds. Hypervelocity Impacts and Exposed Lithospheric Mantle: A Way to Recognize Large Terrestrial Impact Basins?. Journal of Earth Science, 2019, 30(3): 451-459. doi: 10.1007/s12583-019-1225-x

Hypervelocity Impacts and Exposed Lithospheric Mantle: A Way to Recognize Large Terrestrial Impact Basins?

doi: 10.1007/s12583-019-1225-x
More Information
  • Corresponding author: Peter Olds
  • Received Date: 20 Nov 2018
  • Accepted Date: 10 Feb 2019
  • Publish Date: 01 Jun 2019
  • On the Moon and Mars olivine of probable mantle origin is detected at rims of large Late Heavy Bombardment (LHB) age impact basins for which excavation depth estimates exceed crustal thickness estimates. But lunar Crisium size impact basins are not recognized on Earth nor expected in the Phanerozoic from conventional interpretations of crater size frequency distributions. In this study several large circular to elliptical basin structures on Earth, for which hypothesized impact excavation depth would greatly exceed crustal thickness, are examined for the presence of exposed lithospheric mantle, expressed as ophiolite, at the rims. Three Phanerozoic impact basins, modified by plate tectonics and tentatively correlated with "ophiolite obduction" plus global extinction events, are proposed here. These tentatively suggested Phanerozoic impact basins are:(1) Yucatan Basin/Puerto Rico Trench with a Greater Antilles ophiolite rim. Cretaceous-Paleogene Boundary global extinction may correlate with Maastrichtian ophiolite obduction in Southeast Cuba. (2) Loyalty Basin with a New Caledonia ophiolite plus d'Entrecasteaux Ridge rim. Late Eocene global extinction may correlate with obduction of the New Caledonia Peridotite Nappe. (3) Sulu Sea Basin with a Palawan, Sabah etc. ophiolite rim. The Middle Miocene Disruption Event may correlate with ophiolite obduction plus ophiolitic mélange emplacement in Sabah and in Palawan. These originally circular to elliptical belts of exposed lithospheric mantle may serve as strain markers for relative plate motions in the vicinity of plate boundaries during post-impact geologic times. It is further speculated that plate boundaries may be initiated and/or modified by such impacts.

     

  • loading
  • Alvarez, L.W., Alvarez, W., Asaro, F., et al., 1980.Extraterrestrial Cause for the Cretaceous-Tertiary Extinction.Science, 208(4448):1095-1108. https://doi.org/10.1126/science.208.4448.1095
    Aurelio, M.A., Pe a, R.E., Taguibao, K.J.L., 2013.Sculpting the Philippine Archipelago since the Cretaceous through Rifting, Oceanic Spreading, Subduction, Obduction, Collision and Strike-Slip Faulting:Contribution to IGMA5000.Journal of Asian Earth Sciences, 72:102-107. https://doi.org/10.1016/j.jseaes.2012.10.007
    Bohor, B., Betterton, W., Foord, E., 1990.Shocked Zircon and Chromite in K/T Boundary Claystones.Meteoritics, 25:350 http://cn.bing.com/academic/profile?id=defdf83d71b56383e4309872cd6152e2&encoded=0&v=paper_preview&mkt=zh-cn
    Clennell, B., 1991.The Origin and Tectonic Significance of Mélanges in Eastern Sabah, Malaysia.Journal of Southeast Asian Earth Sciences, 6(3/4):407-429. https://doi.org/10.1016/0743-9547(91)90085-c
    Cluzel, D., Aitchison, J.C., Picard, C., 2001.Tectonic Accretion and Underplating of Mafic Terranes in the Late Eocene Intraoceanic Fore-Arc of New Caledonia (Southwest Pacific):Geodynamic Implications.Tectonophysics, 340(1/2):23-59. https://doi.org/10.1016/s0040-1951(01)00148-2
    Coleman, R.G., 1971.Plate Tectonic Emplacement of Upper Mantle Peridotites along Continental Edges.Journal of Geophysical Research, 76(5):1212-1222. https://doi.org/10.1029/jb076i005p01212
    Collins, G.S., Rae, A.S., Morgan, J.V., et al., 2018.The Formation of Peak Rings in Large Impact Craters.EGU General Assembly Conference Abstracts.Geophysical Research Abstracts, 20:EGU2018-16300
    DeMets, C., Gordon, R.G., Argus, D.F., 2010.Geologically Current Plate Motions.Geophysical Journal International, 181(1):1-80. https://doi.org/10.1111/j.1365-246x.2009.04491.x
    Fassett, C.I., Minton, D.A., 2013.Impact Bombardment of the Terrestrial Planets and the Early History of the Solar System.Nature Geoscience, 6(7):520-524. https://doi.org/10.1038/ngeo1841
    García-Casco, A., Iturralde-Vinent, M.A., Pindell, J., 2008.Latest Cretaceous Collision/Accretion between the Caribbean Plate and Caribeana:Origin of Metamorphic Terranes in the Greater Antilles.International Geology Review, 50(9):781-809. https://doi.org/10.2747/0020-6814.50.9.781
    Gautier, P., Quesnel, B., Boulvais, P., et al., 2016.The Emplacement of the Peridotite Nappe of New Caledonia and Its Bearing on the Tectonics of Obduction.Tectonics, 35(12):3070-3094. https://doi.org/10.1002/2016tc004318
    Goto, K., Tada, R., Tajika, E., et al., 2008.Lateral Lithological and Compositional Variations of the Cretaceous/Tertiary Deep-Sea Tsunami Deposits in Northwestern Cuba.Cretaceous Research, 29(2):217-236. https://doi.org/10.1016/j.cretres.2007.04.004
    Grieve, R.A.F., Cintala, M.J., 1992.An Analysis of Differential Impact Melt-Crater Scaling and Implications for the Terrestrial Impact Record.Meteoritics, 27(5):526-538. https://doi.org/10.1111/j.1945-5100.1992.tb01074.x
    Grieve, R.A.F., Reimold, W.U., Morgan, J., et al., 2008.Observations and Interpretations at Vredefort, Sudbury, and Chicxulub:Towards an Empirical Model of Terrestrial Impact Basin Formation.Meteoritics & Planetary Science, 43(5):855-882. https://doi.org/10.1111/j.1945-5100.2008.tb01086.x
    Guillon, J.-H., 1975.Les Massifs Péridotitiques de Nouvelle-Calédonie: Type dʼappareil Ultrabasique Stratiforme de Cha ne Récente, IRD Editions.ORSTOM, Paris.120
    Head, J.W., 2010.Transition from Complex Craters to Multi-Ringed Basins on Terrestrial Planetary Bodies:Scale-Dependent Role of the Expanding Melt Cavity and Progressive Interaction with the Displaced Zone.Geophysical Research Letters, 37(2). https://doi.org/10.1029/2009gl041790
    Holsapple, K.A., 1993.The Scaling of Impact Processes in Planetary Sciences.Annual Review of Earth and Planetary Sciences, 21(1):333-373. https://doi.org/10.1146/annurev.ea.21.050193.002001
    Hutchison, C.S., 1992.The Southeast Sulu Sea, a Neogene Marginal Basin with Outcropping Extensions in Sabah.Geological Society of Malaysia Bulletin, 32:89-108 http://cn.bing.com/academic/profile?id=aa77c10e3a12155541cc776ad3695aad&encoded=0&v=paper_preview&mkt=zh-cn
    Iturralde-Vinent, M.A., 1992.A Short Note on the Cuban Late Maastrichtian Megaturbidite (an Impact-Derived Deposit?).Earth and Planetary Science Letters, 109(1/2):225-228. https://doi.org/10.1016/0012-821x(92)90085-a
    Iturralde-Vinent, M., Díaz-Otero, C., Vega, R., et al., 2006.Tectonic Implications of Paleontologic Dating of Cretaceous-Danian Sections of Eastern Cuba.Geologica Acta, 4(1/2). https://doi.org/10.1344/105.000000359
    Ivanov, B., Neukum, G., Bottke, W., et al., 2002.The Comparison of Size-Frequency Distributions of Impact Craters and Asteroids and the Planetary Cratering Rate.Asteroids Ⅲ, 1:89-101 http://cn.bing.com/academic/profile?id=a7cad1561b7a7338bf9203dd685c2022&encoded=0&v=paper_preview&mkt=zh-cn
    Johnson, B.C., Melosh, H.J., 2012.Impact Spherules as a Record of an Ancient Heavy Bombardment of Earth.Nature, 485(7396):75-77. https://doi.org/10.1038/nature10982
    Johnson, B.C., Collins, G.S., Minton, D.A., et al., 2016.Spherule Layers, Crater Scaling Laws, and the Population of Ancient Terrestrial Impactors.Icarus, 271:350-359. https://doi.org/10.1016/j.icarus.2016.02.023
    Karimi, S., Dombard, A.J., 2017.Studying Lower Crustal Flow beneath Mead Basin:Implications for the Thermal History and Rheology of Venus.Icarus, 282:34-39. https://doi.org/10.1016/j.icarus.2016.09.015
    Keenan, T.E., Encarnación, J., Buchwaldt, R., et al., 2016.Rapid Conversion of an Oceanic Spreading Center to a Subduction Zone Inferred from High-Precision Geochronology.Proceedings of the National Academy of Sciences, 113(47):E7359-E7366. https://doi.org/10.1073/pnas.1609999113
    Kenkmann, T., Poelchau, M.H., Wulf, G., 2014.Structural Geology of Impact Craters.Journal of Structural Geology, 62:156-182. https://doi.org/10.1016/j.jsg.2014.01.015
    Koeppen, W.C., Hamilton, V.E., 2008.Global Distribution, Composition, and Abundance of Olivine on the Surface of Mars from Thermal Infrared Data.Journal of Geophysical Research, 113(E5). https://doi.org/10.1029/2007je002984
    Leroy, S., Mauffret, A., Patriat, P., et al., 2000.An Alternative Interpretation of the Cayman Trough Evolution from a Reidentification of Magnetic Anomalies.Geophysical Journal International, 141(3):539-557. https://doi.org/10.1046/j.1365-246x.2000.00059.x
    Maus, S., Barckhausen, U., Berkenbosch, H., et al., 2009.EMAG2:A 2-Arc Min Resolution Earth Magnetic Anomaly Grid Compiled from Satellite, Airborne, and Marine Magnetic Measurements.Geochemistry, Geophysics, Geosystems, 10(8). https://doi.org/10.1029/2009gc002471
    McGetchin, T.R., Settle, M., Head, J.W., 1973.Radial Thickness Variation in Impact Crater Ejecta:Implications for Lunar Basin Deposits.Earth and Planetary Science Letters, 20(2):226-236. https://doi.org/10.1016/0012-821x(73)90162-3
    Melosh, H.J., 1989.Impact Cratering: A Geologic Process.Oxford University Press, New York.253
    Morgan, J.V., Gulick, S.P.S., Bralower, T., et al., 2016.The Formation of Peak Rings in Large Impact Craters.Science, 354(6314):878-882. https://doi.org/10.1126/science.aah6561
    Mortimer, N., Gans, P.B., Palin, J.M., et al., 2014.Eocene and Oligocene Basins and Ridges of the Coral Sea-New Caledonia Region:Tectonic Link between Melanesia, Fiji, and Zealandia.Tectonics, 33(7):1386-1407. https://doi.org/10.1002/2014tc003598
    Neumann, G.A., Zuber, M., Wieczorek, M., et al., 2004.Crustal Structure of Mars from Gravity and Topography.Journal of Geophysical Research, 109(E8). https://doi.org/10.1029/2004je002262
    Nichols, G., Betzler, C., Brass, G., et al., 1990.Depositional History of the Sulu Sea from ODP Sites 768, 769 and 771.Geophysical Research Letters, 17(11):2065-2068. https://doi.org/10.1029/gl017i011p02065
    Omang, S.A.K., Barber, A.J., 1996.Origin and Tectonic Significance of the Metamorphic Rocks Associated with the Darvel Bay Ophiolite, Sabah, Malaysia.Geological Society, London, Special Publications, 106(1):263-279. https://doi.org/10.1144/gsl.sp.1996.106.01.17
    O'Neill, C., Marchi, S., Zhang, S., et al., 2017.Impact-Driven Subduction on the Hadean Earth.Nature Geoscience, 10(10):793-797. https://doi.org/10.1038/ngeo3029
    Paquette, J.L., Cluzel, D., 2007.U-Pb Zircon Dating of Post-Obduction Volcanic-Arc Granitoids and a Granulite-Facies Xenolith from New Caledonia.Inference on Southwest Pacific Geodynamic Models.International Journal of Earth Sciences, 96(4):613-622. https://doi.org/10.1007/s00531-006-0127-1
    Pierazzo, E., Vickery, A.M., Melosh, H.J., 1997.A Reevaluation of Impact Melt Production.Icarus, 127(2):408-423. https://doi.org/10.1006/icar.1997.5713
    Potter, R.W.K., 2015.Investigating the Onset of Multi-Ring Impact Basin Formation.Icarus, 261:91-99. https://doi.org/10.1016/j.icarus.2015.08.009
    Potter, R.W.K., Kring, D.A., Collins, G.S., et al., 2013.Numerical Modeling of the Formation and Structure of the Orientale Impact Basin.Journal of Geophysical Research:Planets, 118(5):963-979. https://doi.org/10.1002/jgre.20080
    Quinn, T., 1994.Strontium-Isotopic Dating of Neritic Carbonates at Bougainville Guyot (Site 831), New Hebrides Island Arc.Proceedings of Ocean Drilling Program, Scientific Results, 134:89-95
    Rosencrantz, E., 1990.Structure and Tectonics of the Yucatan Basin, Caribbean Sea, as Determined from Seismic Reflection Studies.Tectonics, 9(5):1037-1059. https://doi.org/10.1029/tc009i005p01037
    Rosencrantz, E., Mann, P., 1991.SeaMARC Ⅱ Mapping of Transform Faults in the Cayman Trough, Caribbean Sea.Geology, 19(7):690.https://doi.org/10.1130/0091-7613(1991)019<0690:simotf>2.3.co;2 doi: 10.1130/0091-7613(1991)019<0690:simotf>2.3.co;2
    Schultz, P., 1999.Ejecta Distribution from Oblique Impacts into Particulate Targets.30th Annual Lunar and Planetary Science Conference.15-29 March, 1999, Houston, TX.1919
    Sleep, N.H., Lowe, D.R., 2014.Physics of Crustal Fracturing and Chert Dike Formation Triggered by Asteroid Impact, ~3.26 Ga, Barberton Greenstone Belt, South Africa.Geochemistry, Geophysics, Geosystems, 15(4):1054-1070. https://doi.org/10.1002/2014gc005229
    Sleep, N.H., Zahnle, K., 1998.Refugia from Asteroid Impacts on Early Mars and the Early Earth.Journal of Geophysical Research:Planets, 103(E12):28529-28544. https://doi.org/10.1029/98je01809
    Spudis, P.D., 2005.The Geology of Multi-Ring Impact Basins: The Moon and Other Planets.Cambridge University Press, Cambridge
    Tada, R., Iturralde-Vinent, M.A., Matsui, T., et al., 2003.K/T Boundary Deposits in the Paleo-Western Caribbean Basin.In: Bartolini, C., Buffler, R.T., Blickwede, J., eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics.AAPG Memoir, 79: 582-604
    Turtle, E., Pierazzo, E., Collins, G., et al., 2005.Impact Structures: What does Crater Diameter Mean.In: Kenkmann, T., H rz, F., Deutsch, A., eds., Large Meteorite Impacts Ⅲ.The Geological Society of America, 384: 1-24
    Urrutia-Fucugauchi, J., Morgan, J., St ffler, D., et al., 2004.The Chicxulub Scientific Drilling Project (CSDP).Meteoritics & Planetary Science, 39(6):787-790. https://doi.org/10.1111/j.1945-5100.2004.tb00928.x
    Ward, W.C., Keller, G., Stinnesbeck, W., et al., 1995.Yucatán Subsurface Stratigraphy:Implications and Constraints for the Chicxulub Impact.Geology, 23(10):873-876.https://doi.org/10.1130/0091-7613(1995)023<0873:ynssia>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0873:ynssia>2.3.co;2
    Wieczorek, M.A., Neumann, G.A., Nimmo, F., et al., 2013.The Crust of the Moon as Seen by GRAIL.Science, 339(6120):671-675 doi: 10.1126/science.1231530
    Yamamoto, S., Nakamura, R., Matsunaga, T., et al., 2010.Possible Mantle Origin of Olivine around Lunar Impact Basins Detected by SELENE.Nature Geoscience, 3(8):533-536. https://doi.org/10.1038/ngeo897
    Yang, J.S., Robinson, P.T., Dilek, Y., 2014.Diamonds in Ophiolites.Elements, 10(2):127-130. https://doi.org/10.2113/gselements.10.2.127
    Yumul, G.P.Jr., Dimalanta, C.B., Maglambayan, V.B., et al., 2008.Tectonic Setting of a Composite Terrane:A Review of the Philippine Island Arc System.Geosciences Journal, 12(1):7-17. https://doi.org/10.1007/s12303-008-0002-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(806) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return