Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Songjie Wang, Xu-Ping Li, Wenyong Duan, Fanmei Kong, Zeli Wang. Record of Early-Stage Rodingitization from the Purang Ophi-olite Complex, Western Tibet. Journal of Earth Science, 2019, 30(6): 1108-1124. doi: 10.1007/s12583-019-1244-7
Citation: Songjie Wang, Xu-Ping Li, Wenyong Duan, Fanmei Kong, Zeli Wang. Record of Early-Stage Rodingitization from the Purang Ophi-olite Complex, Western Tibet. Journal of Earth Science, 2019, 30(6): 1108-1124. doi: 10.1007/s12583-019-1244-7

Record of Early-Stage Rodingitization from the Purang Ophi-olite Complex, Western Tibet

doi: 10.1007/s12583-019-1244-7
More Information
  • Corresponding author: Xu-Ping Li
  • Received Date: 24 May 2019
  • Accepted Date: 30 Aug 2019
  • Publish Date: 01 Dec 2019
  • Rodingitization, commonly coupled with serpentinization of ultramafic rocks, bears significant information for fluid-rock interactions and element transfer from sea-floor to subduction zone envi-ronments. Numerous outcrops of rodingites are exposed along the Yarlung Zangbo suture zone (YZSZ) of southern Tibet, providing us an excellent opportunity to probe the petrogenetic processes, and unravel their implications for regional tectonic evolution. Several studies have been performed on rodingites from the eastern to central portions of the YZSZ, whereas limited work has ever been conducted on rodingitized rocks from the western segment of the YZSZ, precluding a comprehensive understanding of this lithological type. In this paper, we present detailed studies of petrology, mineral, whole-rock geochemistry and phase equilibrium modeling on a suite of newly recognized rodingites within the Purang ophiolite massif in the southwestern part of the YZSZ. The rodingites have a major metasomatic mineral association of chlorite, clinozoisite, amphibole and minor amounts of plagioclase, representing products of an early-stage rodingitization. They generally present compositions of low SiO2 (48.89 wt.%-53.57 wt.%), Fe2O3T (3.77 wt.%-5.56 wt.%), Na2O (1.31 wt.%-1.93 wt.%), Al2O3 (4.78 wt.%-8.84 wt.%), moderate CaO (9.69 wt.%-11.23 wt.%), and high MgO (24.11 wt.%-26.08 wt.%) concentrations with extremely high Mg# values[Mg#=100×Mg/(Mg+Fe2+) molar] of 89-92. Bulk-rock recalculation reveals that the rodingites have a protolith of mantle-derived olivine gabbro or gabbronorite. They have low rare earth element compositions (∑REE=2.4 ppm-6.5 ppm) and are characterized by flat LREE and slightly enriched HREE patterns with positive Eu anomalies; they also exhibit positive anomalies in Sr, U and Pb and negative anomalies in high-field strength elements, including Nb, P and Ti, suggesting for a subduction-zone imprinting. Phase equilibrium modeling shows that the rodingitization did take place at P < 2 kbar and T=~350-400℃, consistent with low greenschist facies conditions. Taking into account of all these petrological and geochemical features, we propose that the rodingites record evidence of early-stage fluid-rock interactions between olivine gabbroic rocks and Ca-rich fluids, which may have derived from weakly serpentinized ultramafic country rocks. Although this process may initially have occurred in a mid-ocean ridge setting, an obvious overprinting by supra-subduction zone fluids in a fore-arc environment is recognized.

     

  • loading
  • Aitchison, J. C., Badengzhu, Davis, A. M., et al., 2000. Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet). Earth and Planetary Science Letters, 183(1/2):231-244. https://doi.org/10.1016/s0012-821x(00)00287-9
    Allégre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946):17-22. https://doi.org/10.1038/307017a0
    Anhaeusser, C. R., 1979. Rodingite Occurrences in Some Archaean Ul-tramafic Complexes in the Barberton Mountain Land, South Africa. Precambrian Research, 8(1/2):49-76. https://doi.org/10.1016/0301-9268(79)90038-x
    Aumento, F., Loubat, H., 1971. The Mid-Atlantic Ridge near 45°N. XVI. Serpentinized Ultramafic Intrusions. Canadian Journal of Earth Sci-ences, 8(6):631-663. https://doi.org/10.1139/e71-062
    Austrheim, H., Prestvik, T., 2008. Rodingitization and Hydration of the Oceanic Lithosphere as Developed in the Leka Ophiolite, North-Central Norway. Lithos, 104(1/2/3/4):177-198. https://doi.org/10.1016/j.lithos.2007.12.006
    Bach, W., Klein, F., 2009. The Petrology of Seafloor Rodingites:Insights from Geochemical Reaction Path Modeling. Lithos, 112(1/2):103-117. https://doi.org/10.1016/j.lithos.2008.10.022
    Bédard, É., Hébert, R., Guilmette, C., et al., 2009. Petrology and Geochemistry of the Saga and Sangsang Ophiolitic Massifs, Yarlung Zangbo Suture Zone, Southern Tibet:Evidence for an Arc-Back-Arc Origin. Lithos, 113(1/2):48-67. https://doi.org/10.1016/j.lithos.2009.01.011
    Bézard, R., Hébert, R., Wang, C. S., et al., 2011. Petrology and Geochemistry of the Xiugugabu Ophiolitic Massif, Western Yarlung Zangbo Suture Zone, Tibet. Lithos, 125(1/2):347-367. https://doi.org/10.1016/j.lithos.2011.02.019
    Bloomer, S. H., Hawkins, J. W., 1987. Petrology and Geochemistry of Boninite Series Volcanic Rocks from the Mariana Trench. Contributions to Mineralogy and Petrology, 97(3):361-377. https://doi.org/10.1007/bf00371999
    Carson, C. J., Powell, R., Clarke, G. L., 1999. Calculated Mineral Equilibria for Eclogites in CaO-Na2O-FeO-MgO-Al2O3-SiO2-H2O:Application to the Pouébo Terrane, Pam Peninsula, New Caledonia. Journal of Metamorphic Geology, 17(1):9-24. https://doi.org/10.1046/j.1525-1314.1999.00177.x
    Chen, H. K., Li, X.-P., Chen, S., et al., 2016. Geochemistry and Geochro-nology of Mafic Rocks in the Purang Ophiolite, Tibet. Advances in Geosciences, 6(1):30-43. http://doi.org/10.12677/ag.2016.61005 (in Chinese with English Abstract)
    Cheng, C., Xia, B., Zheng, H., et al., 2018. Chronology, Geochemistry and Tectonic Significance of Daba Ophiolites in Western Segment of Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4):975-990. https://doi.org/10.3799/dqkx.2018.703 (in Chinese with English Ab-stract)
    Coleman, R. G., 1963. Serpentinites, Rodingites, and Tectonic Inclusions in Alpine-Type Mountain Chains. Geological Society of America, Special Papers, 73:130-131
    Connolly, J. A. D., 1990. Multivariable Phase Diagrams:An Algorithm Based on Generalized Thermodynamics. American Journal of Science, 290(6):666-718. https://doi.org/10.2475/ajs.290.6.666
    Dai, J. G., Wang, C. S., Hébert, R., et al., 2011. Petrology and Geochemistry of Peridotites in the Zhongba Ophiolite, Yarlung Zangbo Suture Zone:Implications for the Early Cretaceous Intra-Oceanic Subduction Zone within the Neo-Tethys. Chemical Geology, 288(3/4):133-148. https://doi.org/10.1016/j.chemgeo.2011.07.011
    Dai, J. G., Wang, C. S., Li, Y. L., 2012. Relicts of the Early Cretaceous Seamounts in the Central-Western Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Asian Earth Sciences, 53:25-37. https://doi.org/10.1016/j.jseaes.2011.12.024
    Dewey, J. F., Shackleton, R. M., Chengfa, C., et al., 1988. The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 327(1594):379-413. https://doi.org/10.1098/rsta.1988.0135
    Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermody-namic Model for Clino- and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6):631-656. https://doi.org/10.1111/j.1525-1314.2007.00720.x
    Dubińska, E., 1995. Rodingites of the Eastern Part of the Jordanow-Gogolow Serpentinite Massif, Lower Silesia, Poland. The Canadian Mineralogist, 33(3):585-608
    Dubińska, E., Bylina, P., Kozłowski, A., et al., 2004. U-Pb Dating of Serpentinization:Hydrothermal Zircon from a Metasomatic Rodingite Shell (Sudetic Ophiolite, SW Poland). Chemical Geology, 203(3/4):183-203. https://doi.org/10.1016/j.chemgeo.2003.10.005
    Evans, B. W., Trommsdorff, V., Richter, W., 1979. Petrology of an Eclogite-Metarodingite Suite at Cima di Gagnone, Ticino, Switzerland. American Mineralogist, 64(1/2):15-31
    Frost, B. R., Beard, J. S., 2007. On Silica Activity and Serpentinization. Journal of Petrology, 48(7):1351-1368. https://doi.org/10.1093/petrology/egm021
    Frost, B. R., Beard, J. S., McCaig, A., et al., 2008. The Formation of Micro-Rodingites from IODP Hole U1309D:Key to Understanding the Process of Serpentinization. Journal of Petrology, 49(9):1579-1588. https://doi.org/10.1093/petrology/egn038
    Green, E., Holland, T., Powell, R., 2007. An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks. American Mineralogist, 92(7):1181-1189. https://doi.org/10.2138/am.2007.2401
    Guilmette, C., Hébert, R., Dupuis, C., et al., 2008. Metamorphic History and Geodynamic Significance of High-Grade Metabasites from the Ophiolitic Mélange beneath the Yarlung Zangbo Ophiolites, Xigaze Area, Tibet. Journal of Asian Earth Sciences, 32(5/6):423-437. https://doi.org/10.1016/j.jseaes.2007.11.013
    Girardeau, J., Mercier, J. C. C., Wang, X. B., 1985a. Petrology of the Mafic Rocks of the Xigaze Ophiolite, Tibet. Contributions to Mineralogy and Petrology, 90(4):309-321. https://doi.org/10.1007/bf00384710
    Girardeau, J., Mercier, J. C. C., Yougong, Z., 1985b. Origin of the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, Southern Tibet. Tectonophysics, 119(1/2/3/4):407-433. https://doi.org/10.1016/0040-1951(85)90048-4
    Gresens, R. L., 1967. Composition-Volume Relationships of Metasomatism. Chemical Geology, 2:47-65. https://doi.org/10.1016/0009-2541(67)90004-6
    Guo, G. L., Yang, J. S., Liu, X. D., et al., 2015. Mid-Ocean Ridge (MOR) and Suprasubduction Zone (SSZ) Geological Events in the Yarlung Zangbo Suture Zone:Evidence from the Mineral Record of Mantle Peridotites. Journal of Asian Earth Sciences, 110:33-54. https://doi.org/10.1016/j.jseaes.2015.02.012
    Guo, J. L., Zhang, H. F., Xu, W. C., et al., 2019. The Bulk Crustal Composition of the Southeastern Lhasa Terrane and Its Origin. Earth Science, 44(6):1809-1821. https://doi.org/10.3799/dqkx.2019.040 (in Chinese with English Abstract)
    Hatzipanagiotou, K., Tsikouras, B., 2001. Rodingite Formation from Diorite in the Samothraki Ophiolite, NE Aegean, Greece. Geological Journal, 36(2):93-109. https://doi.org/10.1002/gj.887
    Hawthorne, F. C., Oberti, R., Harlow, G. E., et al., 2012. Nomenclature of the Amphibole Supergroup. American Mineralogist, 97(11/12):2031-2048. https://doi.org/10.2138/am.2012.4276
    Hébert, R., Bezard, R., Guilmette, C., et al., 2012. The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet:First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys. Gondwana Research, 22(2):377-397. https://doi.org/10.1016/j.gr.2011.10.013
    Holland, T. J. B., Powell, R., 1991. A Compensated-Redlich-Kwong (CORK) Equation for Volumes and Fugacities of CO2 and H2O in the Range 1 bar to 50 kbar and 100-1 600℃. Contributions to Mineralogy and Pe-trology, 109(2):265-273. https://doi.org/10.1007/bf00306484
    Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermody-namic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3):309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
    Holland, T., Baker, J., Powell, R., 1998. Mixing Properties and Activity-Composition Relationships of Chlorites in the System MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 10(3):395-406. https://doi.org/10.1127/ejm/10/3/0395
    Honnorez, J., Kirst, P., 1975. Petrology of Rodingites from the Equatorial Mid-Atlantic Fracture Zones and Their Geotectonic Significance. Con-tributions to Mineralogy and Petrology, 49(3):233-257. https://doi.org/10.1007/bf00376590
    Huot, F., Hébert, R., Varfalvy, V., et al., 2002. The Beimarang Mélange (Southern Tibet) Brings Additional Constraints in Assessing the Origin, Metamorphic Evolution and Obduction Processes of the Yarlung Zangbo Ophiolite. Journal of Asian Earth Sciences, 21(3):307-322. https://doi.org/10.1016/s1367-9120(02)00053-6
    Kawamoto, T., Hertwig, A., Schertl, H. P., et al., 2018. Fluid Inclusions in Jadeitite and Jadeite-Rich Rock from Serpentinite Mélanges in Northern Hispaniola:Trapped Ambient Fluids in a Cold Subduction Channel. Lithos, 308/309:227-241. https://doi.org/10.1016/j.lithos.2018.02.024
    Koutsovitis, P., Magganas, A., Pomonis, P., et al., 2013. Subduction-Related Rodingites from East Othris, Greece:Mineral Reactions and Physico-chemical Conditions of Formation. Lithos, 172/173:139-157. https://doi.org/10.1016/j.lithos.2013.04.009
    Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the Inter-national Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(405):295-310. https://doi.org/10.1180/minmag.1997.061.405.13
    Li, J. F., Xia, B., Liu, L., et al., 2008. SHRIMP U-Pb Zircon Dating of Diabase in the La'nga Co Ophiolite, Burang, Tibet, China, and Its Geological Significance. Geological Bulletin of China, 27(10):1739-1743 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200810016
    Li, X.-P., Rahn, M., Bucher, K., 2004a. Metamorphic Processes in Rod-ingites of the Zermatt-Saas Ophiolites. International Geology Review, 46(1):28-51. https://doi.org/10.2747/0020-6814.46.1.28
    Li, X.-P., Rahn, M., Bucher, K., 2004b. Serpentinites of the Zermatt-Saas Ophiolite Complex and Their Texture Evolution. Journal of Metamor-phic Geology, 22(3):159-177. https://doi.org/10.1111/j.1525-1314.2004.00503.x
    Li, X.-P., Zhang, L., Wei, C., et al., 2007. Petrology of Rodingite Derived from Eclogite in Western Tianshan, China. Journal of Metamorphic Geology, 25(3):363-382. https://doi.org/10.1111/j.1525-1314.2007.00700.x
    Li, X.-P., Rahn, M., Bucher, K., 2008a. Eclogite Facies Metaroding-ites-Phase Relations in the System SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-CO2-H2O:An Example from the Zermatt-Saas Ophiolite. Journal of Metamorphic Geology, 26(3):347-364. https://doi.org/10.1111/j.1525-1314.2008.00761.x
    Li, X.-P., Zhang, L. F., Wang, Z. L., 2008b. Geochemistry of Rodingite Derived from Eclogite in Western Tianshan, China. Acta Petrologica Sinica, 24(4):711-717 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200804010
    Li, X.-P., Zhang, L. F., Wilde, S. A., et al., 2010. Zircons from Rodingite in the Western Tianshan Serpentinite Complex:Mineral Chemistry and U-Pb Ages Define Nature and Timing of Rodingitization. Lithos, 118(1/2):17-34. https://doi.org/10.1016/j.lithos.2010.03.009
    Li, X.-P., Chen, H. K., Wang, Z. L., et al., 2015. Spinel Peridotite, Olivine Websterite and the Textural Evolution of the Purang Ophiolite Complex, Western Tibet. Journal of Asian Earth Sciences, 110:55-71. https://doi.org/10.1016/j.jseaes.2014.06.023
    Li, X.-P., Duan, W. Y., Zhao, L. Q., et al., 2017. Rodingites from the Xigaze Ophiolite, Southern Tibet-New Insights into the Processes of Rodin-gitization. European Journal of Mineralogy, 29(5):821-837. https://doi.org/10.1127/ejm/2017/0029-2633
    Li, X.-P., Wang, X., Chen, S., et al., 2018. Petrology and Zircon U-Pb Dating of Meta-Calcsilicate from the Jiaobei Terrane in the Jiao-Liao-Ji Belt of the North China Craton. Precambrian Research, 313:221-241. https://doi.org/10.1016/j.precamres.2018.04.018
    Liu, C. Z., Wu, F. Y., Wilde, S. A., et al., 2010. Anorthitic Plagioclase and Pargasitic Amphibole in Mantle Peridotites from the Yungbwa Ophiolite (Southwestern Tibetan Plateau) Formed by Hydrous Melt Metasomatism. Lithos, 114(3/4):413-422. https://doi.org/10.1016/j.lithos.2009.10.008
    Liu, C. Z., Wu, F. Y., Chu, Z. Y., et al., 2012. Preservation of Ancient Os Isotope Signatures in the Yungbwa Ophiolite (Southwestern Tibet) after Subduction Modification. Journal of Asian Earth Sciences, 53:38-50. https://doi.org/10.1016/j.jseaes.2011.08.010
    Liu, C. Z., Zhang, C., Yang, L. Y., et al., 2014. Formation of Gabbronorites in the Purang Ophiolite (SW Tibet) through Melting of Hydrothermally Altered Mantle along a Detachment Fault. Lithos, 205:127-141. https://doi.org/10.1016/j.lithos.2014.06.019
    Liu, F., Yang, J. S., Dilek, Y., et al., 2015. Geochronology and Geochemistry of Basaltic Lavas in the Dongbo and Purang Ophiolites of the Yar-lung-Zangbo Suture Zone:Plume-Influenced Continental Margin-Type Oceanic Lithosphere in Southern Tibet. Gondwana Research, 27(2):701-718. https://doi.org/10.1016/j.gr.2014.08.002
    Liu, F., Lian, D. Y., Niu, X. L., et al., 2018. Dongbo MORB-Type Isotropic Gabbro Emplaced as an Oceanic Core Complex in Western Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4):952-974. https://doi.org/10.3799/dqkx.2018.702 (in Chinese with English Ab-stract)
    Liu, H., Li, X.-P., Kong, F. M., et al., 2019. Ultra-High Temperature Overprinting of High Pressure Pelitic Granulites in the Huai'an Complex, North China Craton:Evidence from Thermodynamic Modeling and Isotope Geochronology. Gondwana Research, 72:15-33. https://doi.org/10.1016/j.gr.2019.02.003
    Liu, Z., Li, Y., Xiong, F. H., et al., 2011. Petrology and Geochronology of MOR Gabbro in the Purang Ophiolite of Western Tibet, China. Acta Petrologica Sinica, 27(11):3269-3279 (in Chinese with English Ab-stract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111009
    Luo, A. B., Fan, J. J., Wang, M., et al., 2019. Age of Flysch in Ban-gong-Nujiang Ocean:Constraints of Detrital Zircon from Yaduo Village of Gerze County. Earth Science, 44(7):2426-2440. https://doi.org/10.3799/dqkx.2018.944 (in Chinese with English Ab-stract)
    Malpas, J., Zhou, M. F., Robinson, P. T., et al., 2003. Geochemical and Geochronological Constraints on the Origin and Emplacement of the Yarlung Zangbo Ophiolites, Southern Tibet. Geological Society, London, Special Publications, 218(1):191-206. https://doi.org/10.1144/gsl.sp.2003.218.01.11
    Marshall, P., 1911. The Geology of the Dun Mountain Subdivision, Nelson. Geological Survey New Zealand, 12:31-35
    Massonne, H. J. W., Willner, A. P., 2008. Phase Relations and Dehydration Behaviour of Psammopelite and Mid-Ocean Ridge Basalt at Very-Low-Grade to Low-Grade Metamorphic Conditions. European Journal of Mineralogy, 20(5):867-879. https://doi.org/10.1127/0935-1221/2008/0020-1871
    McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3/4):358-374. https://doi.org/10.1016/0012-821x(91)90029-h
    Meng, Y. K., Xiong, F. H., Xu, Z. Q., et al., 2019. Petrogenesis of Late Cretaceous Mafic Enclaves and Their Host Granites in the Nyemo Region of Southern Tibet:Implications for the Tectonic-Magmatic Evolution of the Central Gangdese Belt. Journal of Asian Earth Sciences, 176:27-41. https://doi.org/10.1016/j.jseaes.2019.01.041
    Miller, C., Thöni, M., Frank, W., et al., 2003. Geochemistry and Tec-tonomagmatic Affinity of the Yungbwa Ophiolite, SW Tibet. Lithos, 66(3/4):155-172. https://doi.org/10.1016/s0024-4937(02)00217-7
    Murton, B. J., 1989. Tectonic Controls on Boninite Genesis. Geological Society, London, Special Publications, 42(1):347-377. https://doi.org/10.1144/gsl.sp.1989.042.01.20
    Nicolas, A., Girardeau, J., Marcoux, J., et al., 1981. The Xigaze Ophiolite (Tibet):A Peculiar Oceanic Lithosphere. Nature, 294(5840):414-417. https://doi.org/10.1038/294414a0
    O'Hanley, D. S., Schandl, E. S., Wicks, F. J., 1992. The Origin of Rodingites from Cassiar, British Columbia, and Their Use to Estimate T and P (H2O) during Serpentinization. Geochimica et Cosmochimica Acta, 56(1):97-108. https://doi.org/10.1016/0016-7037(92)90119-4
    O'Hanley, D. S., 1996. Serpentinites:Records of Tectonic and Petrological History. Oxford University Press, New York. 277
    Pan, G. T., Chen, Z. L., Li, X. Z., et al., 1997. Geological-Tectonic Evolution in the Eastern Tethys. Geological Publishing House, Beijing. 1-191 (in Chinese)
    Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
    Pearce, J. A., 1976. Statistical Analysis of Major Element Patterns in Basalts. Journal of Petrology, 17(1):15-43. https://doi.org/10.1093/petrology/17.1.15
    Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Ele-ments, 10(2):101-108. https://doi.org/10.2113/gselements.10.2.101
    Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/bf00375192
    Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland:Geo-chemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3/4):231-254. https://doi.org/10.1016/s0009-2541(01)00363-1
    Ragnarsdóttir, K. V., Walther, J. V., 1985. Experimental Determination of Corundum Solubilities in Pure Water between 400-700℃ and 1-3 kbar. Geochimica et Cosmochimica Acta, 49(10):2109-2115. https://doi.org/10.1016/0016-7037(85)90068-7
    Rollinson, H. R., 1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. Longman, Essex. 352
    Schandl, E. S., Mittwede, S. K., 2001. Evolution of the Acipayam (Denizli, Turkey) Rodingites. International Geology Review, 43(7):611-623. https://doi.org/10.1080/00206810109465036
    Schandl, E. S., O'Hanley, D. S., Wicks, F. J., 1989. Rodingites in Serpentinized Ultramafic Rocks of the Abitibi Greenstone Belt, Ontario. The Canadian Mineralogist, 27(4):579-591
    Shen, T. T., Zhang, L. F., Li, X.-P., 2012. Geochemical Characteristics of Rodingite Derived from Eclogite in Western Tianshan, Xinjiang, China and Its Implication for Subduction Zone Fluid. Acta Petrologica Sinica, 28(7):2235-2249 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207023
    Shen, T. T., Wu, F. Y., Zhang, L. F., et al., 2016. In-situ U-Pb Dating and Nd Isotopic Analysis of Perovskite from a Rodingite Blackwall Associated with UHP Serpentinite from Southwestern Tianshan, China. Chemical Geology, 431:67-82. https://doi.org/10.1016/j.chemgeo.2016.03.029
    Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1):101-118. https://doi.org/10.1016/0012-821x(82)90120-0
    Sun, G. M., Li, X.-P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5):1026-1039. https://doi.org/10.1007/s12583-018-0854-9
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tang, Y., Zhai, Q. G., Hu, P. Y., et al., 2018. Rodingite from the Beila Ophiolite in the Bangong-Nujiang Suture Zone, Northern Tibet:New Insights into the Formation Ofophiolite-Related Rodingite. Lithos, 316/317:33-47. https://doi.org/10.1016/j.lithos.2018.07.006
    Tapponnier, P., Mercier, J. L., Proust, F., et al., 1981. The Tibetan Side of the India-Eurasia Collision. Nature, 294(5840):405-410. https://doi.org/10.1038/294405a0
    Taylor, R. N., Nesbitt, R. W., Vidal, P., et al., 1994. Mineralogy, Chemistry, and Genesis of the Boninite Series Volcanics, Chichijima, Bonin Islands, Japan. Journal of Petrology, 35(3):577-617. https://doi.org/10.1093/petrology/35.3.577
    Thayer, T. P., 1966. Serpentinization Considered as a Constant-Volume Metasomatic Process. American Mineralogist:Journal of Earth and Planetary Materials, 51(5/6):685-710
    Tsikouras, B., Karipi, S., Rigopoulos, I., et al., 2009. Geochemical Processes and Petrogenetic Evolution of Rodingite Dykes in the Ophiolite Com-plex of Othrys (Central Greece). Lithos, 113(3/4):540-554. https://doi.org/10.1016/j.lithos.2009.06.013
    Tsikouras, B., Karipi, S., Hatzipanagiotou, K., 2013. Evolution of Rod-ingites along Stratigraphic Depth in the Iti and Kallidromon Ophiolites (Central Greece). Lithos, 175/176:16-29. https://doi.org/10.1016/j.lithos.2013.04.021
    Walther, J. V., 1997. Experimental Determination and Interpretation of the Solubility of Corundum in H2O between 350 and 600℃ from 0.5 to 2.2 kbar. Geochimica et Cosmochimica Acta, 61(23):4955-4964. https://doi.org/10.1016/s0016-7037(97)00282-2
    Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture:Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin. https://doi.org/10.1130/b35138.1
    Wang, S. J., Wang, L., Brown, M., et al., 2017. Fluid Generation and Evolution during Exhumation of Deeply Subducted UHP Continental Crust:Petrogenesis of Composite Granite-Quartz Veins in the Sulu Belt, China. Journal of Metamorphic Geology, 35(6):601-629. https://doi.org/10.1111/jmg.12248
    Wang, S. J., Li, X.-P., Schertl, H.-P., et al., 2019a. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1):77-97. https://doi.org/10.1007/s00710-018-0636-1
    Wang, S. J., Schertl, H.-P., Pang, Y. M., 2019b. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences. https://doi.org/10.1139/cjes-2019-0003
    Wang, Z. L., Liu, J. G., Li, X.-P., et al., 2012. Mineralogy of Spinel in the Eastern Purang Ultramafic Rocks, Xizang (Tibet) and Its Geological Implication. Geological Review, 58(6):1038-1045 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201206004
    Wei, C. J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1):25-43. https://doi.org/10.3799/dqkx.2018.002 (in Chinese with English Abstract)
    Wei, C. J., 2011. Approaches and Advancement of the Study of Metamorphic P-T-t Paths. Earth Science Frontiers, 18(2):1-16 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201102001
    Wei, C. J., Wang, W., 2007. Phase Equilibria in the Process of Anatexis in High-Grade Metapelites. Earth Science Frontiers, 14(1):125-134. https://doi.org/10.1016/s1872-5791(07)60006-2
    Wei, C. J., Qian, J. H., Tian, Z. L., 2013. Metamorphic Evolution of Medium-Temperature Ultra-High Pressure (MT-UHP) Eclogites from the South Dabie Orogen, Central China:An Insight from Phase Equilibria Modelling. Journal of Metamorphic Geology, 31(7):755-774. https://doi.org/10.1111/jmg.12043
    White, R. W., Powell, R., Holland, T. J. B., et al., 2000. The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions:Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5):497-511. https://doi.org/10.1046/j.1525-1314.2000.00269.x
    White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2):139-153. https://doi.org/10.1046/j.0263-4929.2000.00303.x
    White, R. W., Powell, R., Holland, T. J. B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5):511-527. https://doi.org/10.1111/j.1525-1314.2007.00711.x
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
    Wu, Y., Chen, S. Y., Qin, M. K., 2018. Zircon U-Pb Ages of Dongcuo Ophiolite in Western Bangonghu-Nujiang Suture Zone and Their Geological Significance. Earth Science, 43(4):1070-1084. https://doi.org/10.3799/dqkx.2018.710 (in Chinese with English Ab-stract)
    Xia, B., Yu, H. X., Chen, G. W., et al., 2003. Geochemistry and Tectonic Environment of the Dagzhuka Ophiolite in the Yarlung-Zangbo Suture Zone, Tibet. Geochemical Journal, 37(3):311-324. https://doi.org/10.2343/geochemj.37.311
    Xia, B., Brown, M., Wang, L., et al., 2018. Phase Equilibrium Modeling of MT-UHP Eclogite:A Case Study of Coesite Eclogite at Yangkou Bay, Sulu Belt, Eastern China. Journal of Petrology, 59(7):1253-1280. https://doi.org/10.1093/petrology/egy060
    Xiong, F. H., Meng, Y. K., Yang, J. S., et al., 2019. Geochronology and Petrogenesis of the Mafic Dykes from the Purang Ophiolite:Implications for Evolution of the Western Yarlung-Tsangpo Suture Zone, Southwestern Tibet. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2019.05.006
    Xiong, F. H., Yang, J. S., Liu, Z., et al., 2013. High-Cr and High-Al Chromitite Found in Western Yarlung-Zangbo Suture Zone in Tibet. Acta Petrologica Sinica, 29:1878-1908 (in Chinese with English Abstract)
    Xiong, F. H., Yang, J. S., Li, Y., et al., 2015. Tectonic Setting of Dongbo Ophiolite in the Western Portion of the Yarlung Zangbo Suture Zone, Tibet. Earth Science, 36(1):31-40 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201501005
    Xu, J. F., Castillo, P. R., 2004. Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere:Implications for the Origin of the Indian Ocean Mantle Domain. Tectonophysics, 393(1/2/3/4):9-27. https://doi.org/10.1016/j.tecto.2004.07.028
    Xu, X. Z., Yang, J. S., Guo, G. L., et al., 2011a. Lithological Research on the Purang Mantle Peridotite in Western Yarlung-Zangbu Suture Zone in Tibet. Acta Petrologica Sinica, 27(11):3179-3196 (in Chinese with English Abstract)
    Xu, X. Z., Yang, J. S., Badengzhu, et al., 2011b. Petrogenesis of the Kang-jinla Peridotite in the Luobusa Ophiolite, Southern Tibet. Journal of Asian Earth Sciences, 42(4):553-568. https://doi.org/10.1016/j.jseaes.2011.05.007
    Yamamoto, S., Komiya, T., Hirose, K., et al., 2009. Coesite and Clinopy-roxene Exsolution Lamellae in Chromites:In-situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet. Lithos, 109(3/4):314-322. https://doi.org/10.1016/j.lithos.2008.05.003
    Yang, J. S., Zhang, Z. M., Li, T. F., et al., 2008. Unusual Minerals from Harzburgite, the Host Rock of the Luobusa Chromite Deposit, Tibet. Acta Petrologica Sinica, 24(7):1445-1452 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807002
    Yang, J. S., Xu, X. Z., Li, Y., et., 2011. Diamonds Recovered from Peridotite of the Purang Ophiolite in the Yarlung-Zangbo Suture of Tibet:A Pro-posal for a New Type of Diamond Occurrence. Acta Petrologica Sinica, 27(11):3171-3178 (in Chinese with English Abstract).
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
    Zanoni, D., Rebay, G., Spalla, M. I., 2016. Ocean Floor and Subduction Record in the Zermatt-Saas Rodingites, Valtournanche, Western Alps. Journal of Metamorphic Geology, 34(9):941-961. https://doi.org/10.1111/jmg.12215
    Zhang, C., Bader, T., Zhang, L. M., et al., 2018. Metamorphic Evolution and Age Constraints of the Garnet-Bearing Mica Schist from the Xindaduo Area of the Sumdo (U)HP Metamorphic Belt, Tibet. Geological Maga-zine, 156(7):1175-1189. https://doi.org/10.1017/s001675681800033x
    Zhang, L. L., Liu, C. Z., Wu, F. Y., et al., 2016. Sr-Nd-Hf Isotopes of the Intrusive Rocks in the Cretaceous Xigaze Ophiolite, Southern Tibet:Constraints on Its Formation Setting. Lithos, 258/259:133-148. https://doi.org/10.1016/j.lithos.2016.04.026
    Zhang, X., Li, X.-P., Wang, Z. L., et al., 2016. Mineralogical and Petrogeochemical Characteristics of the Garnet Amphibolites in the Xigaze Ophiolite, Tibet. Acta Petrologica Sinica, 32:3685-3702 (in Chinese with English Abstract)
    Zhang, Z. M., Ding, H. X., Dong, X., et al., 2019. Two Contrasting Eclogite Types in the Himalayan Orogen and Differential Subduction of Indian Continent. Earth Science, 44(5):1602-1619. https://doi.org/10.3799/dqkx.2019.040 (in Chinese with English Abstract)
    Zheng, Y. F., 2019. Subduction Zone Geochemistry. Geoscience Frontiers, 10(4):1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003
    Zhou, W. D., Yang, J. S., Zhao, J. H., et al., 2015. Petrogenesis of Peridotites from the Purang Ophiolite in the Western Part of Yarlung Zangbo Suture Zone, Southern Tibet:A New Perspective. Geology in China, 42(5):1354-1378 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(1133) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return