Benisek, A., Kroll, H., Cemič, L., 2004. New Developments in Two-Feldspar Thermometry. American Mineralogist, 89(10): 1496-1504. https://doi.org/10.2138/am-2004-1018 |
Cao, Y. T., Liu, L., Wang, C., et al., 2019. Multi-Stage Metamorphism of the UHP Pelitic Gneiss from the Southern Altyn Tagh HP/UHP Belt, Western China: Petrological and Geochronological Evidence. Journal of Earth Science, 30(3): 603-620. https://doi.org/10.1007/s12583-019-0896-7 |
Chen, S., Li, X.-P., Kong, F. M., et al., 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219-1235. https://doi.org/10.1007/s12583-017-0956-9 |
Dallwitz, W. B., 1968. Co-Existing Sapphirine and Quartz in Granulite from Enderby Land, Antarctica. Nature, 219(5153): 476-477. https://doi.org/10.1038/219476a0 |
Das, K., Dasgupta, S., Miura, H., 2001. Stability of Osumilite Coexisting with Spinel Solid Solution in Metapelitic Granulites at High Oxygen Fugacity. American Mineralogist, 86(11/12): 1423-1434. https://doi.org/10.2138/am-2001-11-1211 |
Ellis, D. J., Sheraton, J. W., England, R. N., et al., 1980. Osumilite- Sapphirine-Quartz Granulites from Enderby Land Antarctica? Mineral Assemblages and Reactions. Contributions to Mineralogy and Petrology, 72(2): 123-143. https://doi.org/10.1007/bf00399473 |
Florence, F. P., Spear, F. S., 1991. Effects of Diffusional Modification of Garnet Growth Zoning on P-T Path Calculations. Contributions to Mineralogy and Petrology, 107(4): 487-500. https://doi.org/10.1007/bf00310683 |
Fuhrman, M. L., Lindsley, D. H., 1988. Ternary-Feldspar Modeling and Thermometry. American Mineralogist, 73: 201-215 http://cn.bing.com/academic/profile?id=b15b44719f45f92c582dffea48ee1bfb&encoded=0&v=paper_preview&mkt=zh-cn |
Glassley, W., 1982. Fluid Evolution and Graphite Genesis in the Deep Continental Crust. Nature, 295(5846): 229-231. https://doi.org/10.1038/295229a0 |
Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93-1.92 Ga Caused by Gabbronorite Intrusions: Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222/223: 124-142. https://doi.org/10.1016/j.precamres.2011.07.020 |
Guo, J. H., O'Brien, P. J., Zhai, M. G., 2002. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 20(8): 741-756. https://doi.org/10.1046/j.1525-1314.2002.00401.x |
Harley, S. L., 1989. The Origins of Granulites: A Metamorphic Perspective. Geological Magazine, 126(3): 215-247. https://doi.org/10.1017/s0016756800022330 |
Harley, S. L., 1998. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 138(1): 81-107. https://doi.org/10.1144/gsl.sp.1996.138.01.06 |
Harley, S. L., 2004. Extending Our Understanding of Ultrahigh Temperature Crustal Metamorphism. Journal of Mineralogical and Petrological Sciences, 99(4): 140-158. https://doi.org/10.2465/jmps.99.140 |
Harley, S. L., 2008. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 26(2): 125-154. https://doi.org/10.1111/j.1525-1314.2008.00765.x |
Harley, S. L., Kelly, N. M., Möller, A., 2007. Zircon Behaviour and the Thermal Histories of Mountain Chains. Elements, 3(1): 25-30. https://doi.org/10.2113/gselements.3.1.25 |
Hensen, B. J., 1987. P-T Grids for Silica-Undersaturated Granulites in the Systems MAS (n+4) and FMAS (n+3)-Tools for the Derivation of P-T Paths of Metamorphism. Journal of Metamorphic Geology, 5(2): 255-271. https://doi.org/10.1111/j.1525-1314.1987.tb00383.x |
Hermann, J., Rubatto, D., 2003. Relating Zircon and Monazite Domains to Garnet Growth Zones: Age and Duration of Granulite Facies Metamorphism in the Val Malenco Lower Crust. Journal of Metamorphic Geology, 21(9): 833-852. https://doi.org/10.1046/j.1525-1314.2003.00484.x |
Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x |
Hu, Z. C., Liu, Y. S., Chen, L., et al., 2011. Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses during Laser Ablation ICP-MS Analysis at High Spatial Resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425-430. https://doi.org/10.1039/c0ja00145g |
Indares, A., Kendrick J., 2018. Tracking the Anatectic Record of Aluminous Granulites: New Approaches and Limitations, with Examples from the Grenville Orogeny. Granulites & Granulites 2018, July 10-13, 2018, Ullapool, Scotland. 32 |
Indares, A., White, R. W., Powell, R., 2008. Phase Equilibria Modelling of Kyanite-Bearing Anatectic Paragneisses from the Central Grenville Province. Journal of Metamorphic Geology, 26(8): 815-836. https://doi.org/10.1111/j.1525-1314.2008.00788.x |
Jiao, S. J., Fitzsimons, I. C. W., Guo, J. H., 2017. Paleoproterozoic UHT Metamorphism in the Daqingshan Terrane, North China Craton: New Constraints from Phase Equilibria Modeling and SIMS U-Pb Zircon Dating. Precambrian Research, 303: 208-227. https://doi.org/10.1016/j.precamres.2017.03.024 |
Jiao, S. J., Fitzsimons, I. C. W., Zi, J.-W., et al., 2018. Texturally-Constrained SHRIMP U-Th-Pb Monazite Geochronology Reveals Two Paleoproterozoic UHT Episodes in the Khondalite Belt, North China Craton. Granulites & Granulites 2018, July 10-13, 2018, Ullapool, Scotland. 48 |
Jiao, S. J., Guo, J. H., Wang, L. J., et al., 2015. Short-Lived High-Temperature Prograde and Retrograde Metamorphism in Shaerqin Sapphirine-Bearing Metapelites from the Daqingshan Terrane, North China Craton. Precambrian Research, 269: 31-57. https://doi.org/10.1016/j.precamres.2015.08.002 |
Jiao, S. J., Guo, J. H., 2011. Application of the Two-Feldspar Geothermometer to Ultrahigh-Temperature (UHT) Rocks in the Khondalite Belt, North China Craton and Its Implications. American Mineralogist, 96(2/3): 250-260. https://doi.org/10.2138/am.2011.3500 |
Jiao, S. J., Guo, J. H., Harley, S. L., et al., 2013. New Constraints from Garnetite on the P-T Path of the Khondalite Belt: Implications for the Tectonic Evolution of the North China Craton. Journal of Petrology, 54(9): 1725-1758. https://doi.org/10.1093/petrology/egt029 |
Kelsey, D. E., White, R. W., Holland, T. J. B., et al., 2004. Calculated Phase Equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for Sapphirine-Quartz- Bearing Mineral Assemblages. Journal of Metamorphic Geology, 22(6): 559-578. https://doi.org/10.1111/j.1525-1314.2004.00533.x |
Korhonen, F. J., Brown, M., Clark, C., et al., 2013. Osumilite-Melt Interactions in Ultrahigh Temperature Granulites: Phase Equilibria Modelling and Implications for the P-T-t Evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31(8): 881-907. https://doi.org/10.1111/jmg.12049 |
Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. https://doi.org/10.1016/j.gr.2011.01.004 |
Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/s1367-9120(03)00071-3 |
Li, X.-P., Wang, H., Kong, F. M., 2019. Probe into the Genesis of High Temperature-Ultrahigh Temperature Metamorphism: The Enlightenment from the Western Khondalite Belt of the North China Craton and the Namaqua Mobile Belt and the Bushveld Metamorphic Complex of South Africa. Acta Petrologica Sinica, 35(2): 295-311. https://doi.org/10.18654/1000-0569/2019.02.02 (in Chinese with English Abstract) |
Li, X.-P., Wang, X., Chen, S., et al., 2018. Petrology and Zircon U-Pb Dating of Meta-Calcsilicate from the Jiaobei Terrane in the Jiao-Liao-Ji Belt of the North China Craton. Precambrian Research, 313: 221-241. https://doi.org/10.1016/j.precamres.2018.04.018 |
Li, X.-P., Yang, Z. Y., Zhao, G. C., et al., 2011. Geochronology of Khondalite-Series Rocks of the Jining Complex: Confirmation of Depositional Age and Tectonometamorphic Evolution of the North China Craton. International Geology Review, 53(10): 1194-1211. https://doi.org/10.1080/00206810903548984 |
Li, X. W., Wei, C. J., 2016. Phase Equilibria Modelling and Zircon Age Dating of Pelitic Granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 34(6): 595-615. https://doi.org/10.1111/jmg.12195 |
Li, X. W., Wei, C. J., 2018. Ultrahigh-Temperature Metamorphism in the Tuguiwula Area, Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 36(4): 489-509. https://doi.org/10.1111/jmg.12301 |
Li, Y., Zhang, C., Liu, X. Y., et al., 2019. Metamorphism and Oceanic Crust Exhumation〞Constrained by the Jilang Eclogite and Meta-Quartzite from the Sumdo (U)HP Metamorphic Belt. Journal of Earth Science, 30(3): 510-524. https://doi.org/10.1007/s12583-019-0894-9 |
Liao, Y., Wei, C. J., 2019. Ultrahigh-Temperature Mafic Granulite in the Huai'an Complex, North China Craton: Evidence from Phase Equilibria Modelling and Amphibole Thermometers. Gondwana Research, 76: 62-76. https://doi.org/10.1016/j.gr.2019.05.010 |
Liu, H., Li, X.-P., Kong, F. M., et al., 2019. Ultra-High Temperature Overprinting of High Pressure Pelitic Granulites in the Huai'an Complex, North China Craton: Evidence from Thermodynamic Modeling and Isotope Geochronology. Gondwana Research, 72: 15-33. https://doi.org/10.1016/j.gr.2019.02.003 |
Liu, S. J., Li, J. H., Santosh, M., 2010. First Application of the Revised Ti-in-Zircon Geothermometer to Paleoproterozoic Ultrahigh- Temperature Granulites of Tuguiwula, Inner Mongolia, North China Craton. Contributions to Mineralogy and Petrology, 159(2): 225-235. https://doi.org/10.1007/s00410-009-0425-2 |
Liu, S. J., Tsunogae, T., Li, W. S., et al., 2012. Paleoproterozoic Granulites from Heling'er: Implications for Regional Ultrahigh-Temperature Metamorphism in the North China Craton. Lithos, 148: 54-70. https://doi.org/10.1016/j.lithos.2012.05.024 |
Liu, F. L., 1996. Mineral Evolution and the Significance of Garnet of Khondalite Series in the Area of Hongsipu-Huangtuyao. Journal of Changchun University Earth Sciences, 26(3): 278-284. http://doi.org/10.1007/10.13278/j.cnki.jjuese.1996.03.007 (in Chinese with English Abstract) |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
Ludwig, K. R., 2003. Users Manual for Isoplot/Ex (Rev. 2.49). Ageochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 1A: 55 |
Meng, Y. K., Santosh, M., Li, R. H., et al., 2018. Petrogenesis and Tectonic Implications of Early Cretaceous Volcanic Rocks from Lingshan Island in the Sulu Orogenic Belt. Lithos, 312/313: 244-257. https://doi.org/10.1016/j.lithos.2018.05.009 |
Pattison, D. R. M., 2006. The Fate of Graphite in Prograde Metamorphism of Pelites: An Example from the Ballachulish Aureole, Scotland. Lithos, 88(1/2/3/4): 85-99. https://doi.org/10.1016/j.lithos.2005.08.006 |
Peng, P., Guo, J. H., Windley, B. F., et al., 2012. Petrogenesis of Late Paleoproterozoic Liangcheng Charnockites and S-Type Granites in the Central-Northern Margin of the North China Craton: Implications for Ridge Subduction. Precambrian Research, 222/223: 107-123. https://doi.org/10.1016/j.precamres.2011.06.002 |
Powell, R., Holland, T. J. B., 1988. An Internally Consistent Dataset with Uncertainties and Correlations: 3. Applications to Geobarometry, Worked Examples and a Computer Program. Journal of Metamorphic Geology, 6(2): 173-204. https://doi.org/10.1111/j.1525-1314.1988.tb00415.x |
Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123-138. https://doi.org/10.1016/s0009-2541(01)00355-2 |
Sandiford, M. A., Powell, R., 1986. Pyroxene Exsolution in Granulites from Fyfe Hills, Enderby Land, Antarctica: Evidence for 1 000 ℃ Metamorphic Temperatures in Archaean Continental Crust. American Mineralogist, 72: 946-954 |
Santosh, M., Sajeev, K., Li, J. H., et al., 2009a. Counterclockwise Exhumation of a Hot Orogen: The Paleoproterozoic Ultrahigh- Temperature Granulites in the North China Craton. Lithos, 110(1/2/3/4): 140-152. https://doi.org/10.1016/j.lithos.2008.12.010 |
Santosh, M., Wan, Y. S., Liu, D. Y., et al., 2009b. Anatomy of Zircons from an Ultrahot Orogen: The Amalgamation of the North China Craton within the Supercontinent Columbia. The Journal of Geology, 117(4): 429-443. https://doi.org/10.1086/598949 |
Santosh, M., Kusky, T., 2010. Origin of Paired High Pressure-Ultrahigh- Temperature Orogens: A Ridge Subduction and Slab Window Model. Terra Nova, 22(1): 35-42. https://doi.org/10.1111/j.1365-3121.2009.00914.x |
Santosh, M., Liu, S. J., Tsunogae, T., et al., 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222/223: 77-106. https://doi.org/10.1016/j.precamres.2011.05.003 |
Santosh, M., Tsunogae, T., Li, J. H., et al., 2007. Discovery of Sapphirine- Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263-285. https://doi.org/10.1016/j.gr.2006.10.009 |
Sawyer, E. W., 1999. Criteria for the Recognition of Partial Melting. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(3): 269-279. https://doi.org/10.1016/s1464-1895(99)00029-0 |
Shimizu, H., Tsunogae, T., Santosh, M., 2013. Petrology and Phase Equilibrium Modeling of Sapphirine+Quartz Assemblage from the Napier Complex, East Antarctica: Diagnostic Evidence for Neoarchean Ultrahigh-Temperature Metamorphism. Geoscience Frontiers, 4(6): 655-666. https://doi.org/10.1016/j.gsf.2012.09.001 |
Spear, F. S., Hickmott, D. D., Selverstone, J., 1990. Metamorphic Consequences of Thrust Emplacement, Fall Mountain, New Hampshire. Geological Society of America Bulletin, 102(10): 1344-1360. https://doi.org/10.1130/0016-7606(1990)102<1344:mcotef>2.3.co;2 doi: 10.1130/0016-7606(1990)102<1344:mcotef>2.3.co;2 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Tateishi, K., Tsunogae, T., Santosh, M., et al., 2004. First Report of Sapphirine+Quartz Assemblage from Southern India: Implications for Ultrahigh-Temperature Metamorphism. Gondwana Research, 7(4): 899-912. https://doi.org/10.1016/s1342-937x(05)71073-x |
Tsunogae, T., Osanai, Y., Owada, M., et al., 2003. High Fluorine Pargasites in Ultrahigh Temperature Granulites from Tonagh Island in the Archean Napier Complex, East Antarctica. Lithos, 70(1/2): 21-38. https://doi.org/10.1016/s0024-4937(03)00087-2 |
Wan, Y. S., Song, B., Liu, D. Y., et al., 2006. SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton: Evidence for a Major Late Palaeoproterozoic Tectonothermal Event. Precambrian Research, 149(3/4): 249-271. https://doi.org/10.1016/j.precamres.2006.06.006 |
Wang, F., Li, X.-P., Chu, H., et al., 2011. Petrology and Metamorphism of Khondalites from the Jining Complex, North China Craton. International Geology Review, 53(2): 212-229. https://doi.org/10.1080/00206810903028144 |
Wang, H. Z., Zhang, H. F., Zhai, M. G., et al., 2016. Granulite Facies Metamorphism and Crust Melting in the Huai'an Terrane at ~1.95 Ga, North China Craton: New Constraints from Geology, Zircon U-Pb, Lu-Hf Isotope and Metamorphic Conditions of Granulites. Precambrian Research, 286: 126-151. https://doi.org/10.1016/j.precamres.2016.09.012 |
Wang, S. J., Xu, Z. Y., Dong, X. J., et al., 2018. Geochemical Characteristics and Zircon U-Pb Age of the Granodiorite-Norite Gabbro in the Northern Margin of the North China Block and Their Formation Mechanism. Earth Science, 43(9): 3267-3284. https://doi.org/10.3799/dqkx.2017.585 (in Chinese with English Abstract) |
Wang, S. J., Schertl, H.-P., Pang, Y. M., 2019. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences. https://doi.org/10.1139/cjes-2019-0003 |
Wang, X., Li, X.-P., Han, Z. Z., 2018. Zircon Ages and Geochemistry of Amphibolitic Rocks from the Paleoproterozoic Erdaowa Group in the Khondalite Belt, North China Craton and Their Tectonic Implications. Precambrian Research, 317: 253-267. https://doi.org/10.1016/j.precamres.2018.09.005 |
Wei, C. J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1): 24-43. https://doi.org/10.3799/dqkx.2018.002 (in Chinese with English Abstract) |
White, R. W., Powell, R., Holland, T. J. B., 2008. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139-153. https://doi.org/10.1046/j.0263-4929.2000.00303.x |
White, R. W., Powell, R., Holland, T. J. B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5): 511-527. https://doi.org/10.1111/j.1525-1314.2007.00711.x |
White, R. W., Powell, R., Holland, T. J. B., et al., 2014. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3): 261-286. https://doi.org/10.1111/jmg.12071 |
Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185-187. https://doi.org/10.2138/am.2010.3371 |
Wu, C., Sun, M., Li, H., et al., 2006. LA-ICP-MS U-Pb Zircon Ages of the Khondalites from the Wulashan and Jining High-Grade Terrain in Northern Margin of the North China Craton: Constraints on Sedimentary Age of the Khondalite. Acta Petrologica Sinica, 22: 2639-2654. https://doi.org/1000-0569/2006/022(11)-2639-54 (in Chinese with English Abstract) |
Wu, J. L., Zhang, H. F., Zhai, M. G., et al., 2017. Paleoproterozoic High-Pressure-High-Temperature Pelitic Granulites from Datong in the North China Craton and Their Geological Implications: Constraints from Petrology and Phase Equilibrium Modeling. Precambrian Research, 303: 727-748. https://doi.org/10.1016/j.precamres.2017.09.011 |
Wu, C. H., Li, H. M., Zhong, C. T., et al., 1998. The Ages of Zircon and Rutile (Cooling) from Khondalite in Huangtuyao, Inner Mongolia. Geology Review, 44(6): 618-626. https://doi.org/10.16509/j.georeview.1998.06.011 (in Chinese with English Abstract) |
Wu, J. L., Zhang, H. F., Zhai, M. G., et al., 2016. Discovery of Pelitic High-Pressure Granulite from Manjinggou of the Huai'an Complex, North China Craton: Metamorphic P-T Evolution and Geological Implications. Precambrian Research, 278: 323-336. https://doi.org/10.1016/j.precamres.2016.03.001 |
Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/bf03184122 |
Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3/4): 308-322. https://doi.org/10.1016/j.lithos.2007.07.008 |
Yang, Q. Y., Santosh, M., Tsunogae, T., 2014. Ultrahigh-Temperature Metamorphism under Isobaric Heating: New Evidence from the North China Craton. Journal of Asian Earth Sciences, 95: 2-16. https://doi.org/10.1016/j.jseaes.2014.01.018 |
Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 |
Zhai, M. G., Guo, J. H., Li, J. H., et al., 1995. The Discoveries of Retrograde Eclogites in North China Craton in Archaean. China Science Bulletin, 40: 1590-1594. https://doi.org/10.1007/BF00000353 |
Zhai, M. G., Guo, J. H., Yan, Y. H., et al., 1992. Discovery and Preliminary Study of Archaean High-Pressure Basic Granulites Terrain in North China. Science China (B), 36: 1402-1408. https://doi.org/10.1360/zb1992-22-12-1325 (in Chinese) doi: 10.1360/zb1992-22-12-1325(inChinese) |
Zhang, H. T., Li, J. H., Liu, S. J., et al., 2012. Spinel+Quartz-Bearing Ultrahigh-Temperature Granulites from Xumayao, Inner Mongolia Suture Zone, North China Craton: Petrology, Phase Equilibria and Counterclockwise P-T Path. Geoscience Frontiers, 3(5): 603-611. https://doi.org/10.1016/j.gsf.2012.01.003 |
Zhang, H. F., Zhai, M. G., Santosh, M., et al., 2011. Geochronology and Petrogenesis of Neoarchean Potassic Meta-Granites from Huai'an Complex: Implications for the Evolution of the North China Craton. Gondwana Research, 20(1): 82-105. https://doi.org/10.1016/j.gr.2011.01.009 |
Zhang, H. F., Zhai, M. G., Santosh, M., et al., 2014. Paleoproterozoic Granulites from the Xinghe Graphite Mine, North China Craton: Geology, Zircon U-Pb Geochronology and Implications for the Timing of Deformation, Mineralization and Metamorphism. Ore Geology Reviews, 63: 478-497. https://doi.org/10.1016/j.oregeorev.2014.03.014 |
Zhang, J. H., Tian, H., Wang, H. C., et al., 2019. Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton: Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1): 1-22. https://doi.org/10.3799/dqkx.2018.259 (in Chinese with English Abstract) |
Zhang, J. S., Dirks, P. H. G. M., Passchier, C. W., 1994. Extensional Collapse and Uplift in a Polymetamorphic Granulite Terrain in the Archaean and Palaeoproterozoic of North China. Precambrian Research, 67(1/2): 37-57. https://doi.org/10.1016/0301-9268(94)90004-3 |
Zhang, Y. C., Li, X.-P., Sun, G. M., et al., 2019. Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling. Journal of Earth Science, 30(3): 549-562. https://doi.org/10.1007/s12583-019-1222-0 |
Zhang, Z. M., Xiang, H., Dong, X., et al., 2017. Oligocene HP Metamorphism and Anatexis of the Higher Himalayan Crystalline Sequence in Yadong Region, East-Central Himalaya. Gondwana Research, 41: 173-187. https://doi.org/10.1016/j.gr.2015.03.002 |
Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1010-1025. https://doi.org/10.1007/s12583-018-0852-y |
Zhao, G. C., Cawood, P. A., Li. S. Z., et al., 2012 Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222/223: 55-76. http://doi.org/10.1016/j.precamres.2012.09.016 |
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136: 177-202. https://doi.org/10.1016/j.precamres.2004.10.002 |
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107: 45-73. https://doi.org/10.1016/S0301-9268(00)00154-6 |
Zhao, G. C., Wilde, S. A., Guo, J., et al., 2010. Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton. Precambrian Research, 177: 266-276. https://doi.org/10.1016/j.precamres.2009.12.007 |
Zhao, G. C., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex: Constraints on Late Archean to Paleoproterozoic Crustal Accretion and Collision of the Trans-North China Orogen. Amrican Journal of Science, 308: 270-303. https://doi.org/10.1016/j.gca.2006.06.1332 |
Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016 |