Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Shaoting Ma, Xu-Ping Li, Hao Liu, Fanmei Kong, Han Wang. Ultrahigh Temperature Metamorphic Record of Pelitic Granulites in the Huangtuyao Area of the Huai'an Complex, North China Craton. Journal of Earth Science, 2019, 30(6): 1178-1196. doi: 10.1007/s12583-019-1245-6
Citation: Shaoting Ma, Xu-Ping Li, Hao Liu, Fanmei Kong, Han Wang. Ultrahigh Temperature Metamorphic Record of Pelitic Granulites in the Huangtuyao Area of the Huai'an Complex, North China Craton. Journal of Earth Science, 2019, 30(6): 1178-1196. doi: 10.1007/s12583-019-1245-6

Ultrahigh Temperature Metamorphic Record of Pelitic Granulites in the Huangtuyao Area of the Huai'an Complex, North China Craton

doi: 10.1007/s12583-019-1245-6
More Information
  • Corresponding author: Xu-Ping Li
  • Received Date: 30 May 2019
  • Accepted Date: 01 Sep 2019
  • Publish Date: 01 Dec 2019
  • Pelitic granulite from the Huangtuyao area, occurrs in the Huai'an Complex, is located in the Trans-North China Orogen of the North China Craton. On the basis of petrolography, mineral com-ponent, and phase equilibrium modeling studies, the P-T conditions and mineral assemblages of pelitic granulites can be divided into four metamorphic stages:the prograde metamorphic stage M1 defined by the stable mineral assemblage of Grt1 (garnet core)+Pl+Bt+Kfs+Qz+Rt, the peak pressure Pmax stage M2 indicated by Grt2 (garnet mantle)+Kfs±(Ky)+Rt+Qz+Liq (melt), peak temperature Tmax stage M3 characterized by Grt3 (garnet rim)+Sill+Pl+Kfs+Qz+Ilm+Liq, and retrograde stage M4 represented by Grt (in matrix)+Kfs+ Sill+Bt+Pl+Qz+Ilm. By using the THERMOCALC V340, the P-T conditions are estimated at ~13.8-14.1 kbar and ~840-850℃ at stage M2, and 7-7.2 kbar and 909-915℃ for the Tmax stage M3, indicating an ultra-high temperature (UHT) metamorphic overprinting during decompression and heating process after high pressure granulite facies metamorphism. The mineral assemblages and their P-T conditions presented a clockwise P-T trajectory for the Huangtuyao pelitic granulites. The major metamorphic events at ~1.95 and ~1.88 Ga obtained by the zircon U-Pb dating suggest that pelitic granulites from the Huangtuyao area has undergone HP granulite metamorphism which probably occurred in the prograde metamorphism and related to the collision between the Ordos and the Yinshan blocks, and afterwards UHT metamorphism is related to crustal extension after continental-continental collision.

     

  • loading
  • Benisek, A., Kroll, H., Cemič, L., 2004. New Developments in Two-Feldspar Thermometry. American Mineralogist, 89(10): 1496-1504. https://doi.org/10.2138/am-2004-1018
    Cao, Y. T., Liu, L., Wang, C., et al., 2019. Multi-Stage Metamorphism of the UHP Pelitic Gneiss from the Southern Altyn Tagh HP/UHP Belt, Western China: Petrological and Geochronological Evidence. Journal of Earth Science, 30(3): 603-620. https://doi.org/10.1007/s12583-019-0896-7
    Chen, S., Li, X.-P., Kong, F. M., et al., 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219-1235. https://doi.org/10.1007/s12583-017-0956-9
    Dallwitz, W. B., 1968. Co-Existing Sapphirine and Quartz in Granulite from Enderby Land, Antarctica. Nature, 219(5153): 476-477. https://doi.org/10.1038/219476a0
    Das, K., Dasgupta, S., Miura, H., 2001. Stability of Osumilite Coexisting with Spinel Solid Solution in Metapelitic Granulites at High Oxygen Fugacity. American Mineralogist, 86(11/12): 1423-1434. https://doi.org/10.2138/am-2001-11-1211
    Ellis, D. J., Sheraton, J. W., England, R. N., et al., 1980. Osumilite- Sapphirine-Quartz Granulites from Enderby Land Antarctica? Mineral Assemblages and Reactions. Contributions to Mineralogy and Petrology, 72(2): 123-143. https://doi.org/10.1007/bf00399473
    Florence, F. P., Spear, F. S., 1991. Effects of Diffusional Modification of Garnet Growth Zoning on P-T Path Calculations. Contributions to Mineralogy and Petrology, 107(4): 487-500. https://doi.org/10.1007/bf00310683
    Fuhrman, M. L., Lindsley, D. H., 1988. Ternary-Feldspar Modeling and Thermometry. American Mineralogist, 73: 201-215 http://cn.bing.com/academic/profile?id=b15b44719f45f92c582dffea48ee1bfb&encoded=0&v=paper_preview&mkt=zh-cn
    Glassley, W., 1982. Fluid Evolution and Graphite Genesis in the Deep Continental Crust. Nature, 295(5846): 229-231. https://doi.org/10.1038/295229a0
    Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93-1.92 Ga Caused by Gabbronorite Intrusions: Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222/223: 124-142. https://doi.org/10.1016/j.precamres.2011.07.020
    Guo, J. H., O'Brien, P. J., Zhai, M. G., 2002. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 20(8): 741-756. https://doi.org/10.1046/j.1525-1314.2002.00401.x
    Harley, S. L., 1989. The Origins of Granulites: A Metamorphic Perspective. Geological Magazine, 126(3): 215-247. https://doi.org/10.1017/s0016756800022330
    Harley, S. L., 1998. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 138(1): 81-107. https://doi.org/10.1144/gsl.sp.1996.138.01.06
    Harley, S. L., 2004. Extending Our Understanding of Ultrahigh Temperature Crustal Metamorphism. Journal of Mineralogical and Petrological Sciences, 99(4): 140-158. https://doi.org/10.2465/jmps.99.140
    Harley, S. L., 2008. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 26(2): 125-154. https://doi.org/10.1111/j.1525-1314.2008.00765.x
    Harley, S. L., Kelly, N. M., Möller, A., 2007. Zircon Behaviour and the Thermal Histories of Mountain Chains. Elements, 3(1): 25-30. https://doi.org/10.2113/gselements.3.1.25
    Hensen, B. J., 1987. P-T Grids for Silica-Undersaturated Granulites in the Systems MAS (n+4) and FMAS (n+3)-Tools for the Derivation of P-T Paths of Metamorphism. Journal of Metamorphic Geology, 5(2): 255-271. https://doi.org/10.1111/j.1525-1314.1987.tb00383.x
    Hermann, J., Rubatto, D., 2003. Relating Zircon and Monazite Domains to Garnet Growth Zones: Age and Duration of Granulite Facies Metamorphism in the Val Malenco Lower Crust. Journal of Metamorphic Geology, 21(9): 833-852. https://doi.org/10.1046/j.1525-1314.2003.00484.x
    Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
    Hu, Z. C., Liu, Y. S., Chen, L., et al., 2011. Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses during Laser Ablation ICP-MS Analysis at High Spatial Resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425-430. https://doi.org/10.1039/c0ja00145g
    Indares, A., Kendrick J., 2018. Tracking the Anatectic Record of Aluminous Granulites: New Approaches and Limitations, with Examples from the Grenville Orogeny. Granulites & Granulites 2018, July 10-13, 2018, Ullapool, Scotland. 32
    Indares, A., White, R. W., Powell, R., 2008. Phase Equilibria Modelling of Kyanite-Bearing Anatectic Paragneisses from the Central Grenville Province. Journal of Metamorphic Geology, 26(8): 815-836. https://doi.org/10.1111/j.1525-1314.2008.00788.x
    Jiao, S. J., Fitzsimons, I. C. W., Guo, J. H., 2017. Paleoproterozoic UHT Metamorphism in the Daqingshan Terrane, North China Craton: New Constraints from Phase Equilibria Modeling and SIMS U-Pb Zircon Dating. Precambrian Research, 303: 208-227. https://doi.org/10.1016/j.precamres.2017.03.024
    Jiao, S. J., Fitzsimons, I. C. W., Zi, J.-W., et al., 2018. Texturally-Constrained SHRIMP U-Th-Pb Monazite Geochronology Reveals Two Paleoproterozoic UHT Episodes in the Khondalite Belt, North China Craton. Granulites & Granulites 2018, July 10-13, 2018, Ullapool, Scotland. 48
    Jiao, S. J., Guo, J. H., Wang, L. J., et al., 2015. Short-Lived High-Temperature Prograde and Retrograde Metamorphism in Shaerqin Sapphirine-Bearing Metapelites from the Daqingshan Terrane, North China Craton. Precambrian Research, 269: 31-57. https://doi.org/10.1016/j.precamres.2015.08.002
    Jiao, S. J., Guo, J. H., 2011. Application of the Two-Feldspar Geothermometer to Ultrahigh-Temperature (UHT) Rocks in the Khondalite Belt, North China Craton and Its Implications. American Mineralogist, 96(2/3): 250-260. https://doi.org/10.2138/am.2011.3500
    Jiao, S. J., Guo, J. H., Harley, S. L., et al., 2013. New Constraints from Garnetite on the P-T Path of the Khondalite Belt: Implications for the Tectonic Evolution of the North China Craton. Journal of Petrology, 54(9): 1725-1758. https://doi.org/10.1093/petrology/egt029
    Kelsey, D. E., White, R. W., Holland, T. J. B., et al., 2004. Calculated Phase Equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for Sapphirine-Quartz- Bearing Mineral Assemblages. Journal of Metamorphic Geology, 22(6): 559-578. https://doi.org/10.1111/j.1525-1314.2004.00533.x
    Korhonen, F. J., Brown, M., Clark, C., et al., 2013. Osumilite-Melt Interactions in Ultrahigh Temperature Granulites: Phase Equilibria Modelling and Implications for the P-T-t Evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31(8): 881-907. https://doi.org/10.1111/jmg.12049
    Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. https://doi.org/10.1016/j.gr.2011.01.004
    Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/s1367-9120(03)00071-3
    Li, X.-P., Wang, H., Kong, F. M., 2019. Probe into the Genesis of High Temperature-Ultrahigh Temperature Metamorphism: The Enlightenment from the Western Khondalite Belt of the North China Craton and the Namaqua Mobile Belt and the Bushveld Metamorphic Complex of South Africa. Acta Petrologica Sinica, 35(2): 295-311. https://doi.org/10.18654/1000-0569/2019.02.02 (in Chinese with English Abstract)
    Li, X.-P., Wang, X., Chen, S., et al., 2018. Petrology and Zircon U-Pb Dating of Meta-Calcsilicate from the Jiaobei Terrane in the Jiao-Liao-Ji Belt of the North China Craton. Precambrian Research, 313: 221-241. https://doi.org/10.1016/j.precamres.2018.04.018
    Li, X.-P., Yang, Z. Y., Zhao, G. C., et al., 2011. Geochronology of Khondalite-Series Rocks of the Jining Complex: Confirmation of Depositional Age and Tectonometamorphic Evolution of the North China Craton. International Geology Review, 53(10): 1194-1211. https://doi.org/10.1080/00206810903548984
    Li, X. W., Wei, C. J., 2016. Phase Equilibria Modelling and Zircon Age Dating of Pelitic Granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 34(6): 595-615. https://doi.org/10.1111/jmg.12195
    Li, X. W., Wei, C. J., 2018. Ultrahigh-Temperature Metamorphism in the Tuguiwula Area, Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 36(4): 489-509. https://doi.org/10.1111/jmg.12301
    Li, Y., Zhang, C., Liu, X. Y., et al., 2019. Metamorphism and Oceanic Crust Exhumation〞Constrained by the Jilang Eclogite and Meta-Quartzite from the Sumdo (U)HP Metamorphic Belt. Journal of Earth Science, 30(3): 510-524. https://doi.org/10.1007/s12583-019-0894-9
    Liao, Y., Wei, C. J., 2019. Ultrahigh-Temperature Mafic Granulite in the Huai'an Complex, North China Craton: Evidence from Phase Equilibria Modelling and Amphibole Thermometers. Gondwana Research, 76: 62-76. https://doi.org/10.1016/j.gr.2019.05.010
    Liu, H., Li, X.-P., Kong, F. M., et al., 2019. Ultra-High Temperature Overprinting of High Pressure Pelitic Granulites in the Huai'an Complex, North China Craton: Evidence from Thermodynamic Modeling and Isotope Geochronology. Gondwana Research, 72: 15-33. https://doi.org/10.1016/j.gr.2019.02.003
    Liu, S. J., Li, J. H., Santosh, M., 2010. First Application of the Revised Ti-in-Zircon Geothermometer to Paleoproterozoic Ultrahigh- Temperature Granulites of Tuguiwula, Inner Mongolia, North China Craton. Contributions to Mineralogy and Petrology, 159(2): 225-235. https://doi.org/10.1007/s00410-009-0425-2
    Liu, S. J., Tsunogae, T., Li, W. S., et al., 2012. Paleoproterozoic Granulites from Heling'er: Implications for Regional Ultrahigh-Temperature Metamorphism in the North China Craton. Lithos, 148: 54-70. https://doi.org/10.1016/j.lithos.2012.05.024
    Liu, F. L., 1996. Mineral Evolution and the Significance of Garnet of Khondalite Series in the Area of Hongsipu-Huangtuyao. Journal of Changchun University Earth Sciences, 26(3): 278-284. http://doi.org/10.1007/10.13278/j.cnki.jjuese.1996.03.007 (in Chinese with English Abstract)
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Ludwig, K. R., 2003. Users Manual for Isoplot/Ex (Rev. 2.49). Ageochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 1A: 55
    Meng, Y. K., Santosh, M., Li, R. H., et al., 2018. Petrogenesis and Tectonic Implications of Early Cretaceous Volcanic Rocks from Lingshan Island in the Sulu Orogenic Belt. Lithos, 312/313: 244-257. https://doi.org/10.1016/j.lithos.2018.05.009
    Pattison, D. R. M., 2006. The Fate of Graphite in Prograde Metamorphism of Pelites: An Example from the Ballachulish Aureole, Scotland. Lithos, 88(1/2/3/4): 85-99. https://doi.org/10.1016/j.lithos.2005.08.006
    Peng, P., Guo, J. H., Windley, B. F., et al., 2012. Petrogenesis of Late Paleoproterozoic Liangcheng Charnockites and S-Type Granites in the Central-Northern Margin of the North China Craton: Implications for Ridge Subduction. Precambrian Research, 222/223: 107-123. https://doi.org/10.1016/j.precamres.2011.06.002
    Powell, R., Holland, T. J. B., 1988. An Internally Consistent Dataset with Uncertainties and Correlations: 3. Applications to Geobarometry, Worked Examples and a Computer Program. Journal of Metamorphic Geology, 6(2): 173-204. https://doi.org/10.1111/j.1525-1314.1988.tb00415.x
    Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123-138. https://doi.org/10.1016/s0009-2541(01)00355-2
    Sandiford, M. A., Powell, R., 1986. Pyroxene Exsolution in Granulites from Fyfe Hills, Enderby Land, Antarctica: Evidence for 1 000 ℃ Metamorphic Temperatures in Archaean Continental Crust. American Mineralogist, 72: 946-954
    Santosh, M., Sajeev, K., Li, J. H., et al., 2009a. Counterclockwise Exhumation of a Hot Orogen: The Paleoproterozoic Ultrahigh- Temperature Granulites in the North China Craton. Lithos, 110(1/2/3/4): 140-152. https://doi.org/10.1016/j.lithos.2008.12.010
    Santosh, M., Wan, Y. S., Liu, D. Y., et al., 2009b. Anatomy of Zircons from an Ultrahot Orogen: The Amalgamation of the North China Craton within the Supercontinent Columbia. The Journal of Geology, 117(4): 429-443. https://doi.org/10.1086/598949
    Santosh, M., Kusky, T., 2010. Origin of Paired High Pressure-Ultrahigh- Temperature Orogens: A Ridge Subduction and Slab Window Model. Terra Nova, 22(1): 35-42. https://doi.org/10.1111/j.1365-3121.2009.00914.x
    Santosh, M., Liu, S. J., Tsunogae, T., et al., 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222/223: 77-106. https://doi.org/10.1016/j.precamres.2011.05.003
    Santosh, M., Tsunogae, T., Li, J. H., et al., 2007. Discovery of Sapphirine- Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263-285. https://doi.org/10.1016/j.gr.2006.10.009
    Sawyer, E. W., 1999. Criteria for the Recognition of Partial Melting. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(3): 269-279. https://doi.org/10.1016/s1464-1895(99)00029-0
    Shimizu, H., Tsunogae, T., Santosh, M., 2013. Petrology and Phase Equilibrium Modeling of Sapphirine+Quartz Assemblage from the Napier Complex, East Antarctica: Diagnostic Evidence for Neoarchean Ultrahigh-Temperature Metamorphism. Geoscience Frontiers, 4(6): 655-666. https://doi.org/10.1016/j.gsf.2012.09.001
    Spear, F. S., Hickmott, D. D., Selverstone, J., 1990. Metamorphic Consequences of Thrust Emplacement, Fall Mountain, New Hampshire. Geological Society of America Bulletin, 102(10): 1344-1360. https://doi.org/10.1130/0016-7606(1990)102<1344:mcotef>2.3.co;2 doi: 10.1130/0016-7606(1990)102<1344:mcotef>2.3.co;2
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tateishi, K., Tsunogae, T., Santosh, M., et al., 2004. First Report of Sapphirine+Quartz Assemblage from Southern India: Implications for Ultrahigh-Temperature Metamorphism. Gondwana Research, 7(4): 899-912. https://doi.org/10.1016/s1342-937x(05)71073-x
    Tsunogae, T., Osanai, Y., Owada, M., et al., 2003. High Fluorine Pargasites in Ultrahigh Temperature Granulites from Tonagh Island in the Archean Napier Complex, East Antarctica. Lithos, 70(1/2): 21-38. https://doi.org/10.1016/s0024-4937(03)00087-2
    Wan, Y. S., Song, B., Liu, D. Y., et al., 2006. SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton: Evidence for a Major Late Palaeoproterozoic Tectonothermal Event. Precambrian Research, 149(3/4): 249-271. https://doi.org/10.1016/j.precamres.2006.06.006
    Wang, F., Li, X.-P., Chu, H., et al., 2011. Petrology and Metamorphism of Khondalites from the Jining Complex, North China Craton. International Geology Review, 53(2): 212-229. https://doi.org/10.1080/00206810903028144
    Wang, H. Z., Zhang, H. F., Zhai, M. G., et al., 2016. Granulite Facies Metamorphism and Crust Melting in the Huai'an Terrane at ~1.95 Ga, North China Craton: New Constraints from Geology, Zircon U-Pb, Lu-Hf Isotope and Metamorphic Conditions of Granulites. Precambrian Research, 286: 126-151. https://doi.org/10.1016/j.precamres.2016.09.012
    Wang, S. J., Xu, Z. Y., Dong, X. J., et al., 2018. Geochemical Characteristics and Zircon U-Pb Age of the Granodiorite-Norite Gabbro in the Northern Margin of the North China Block and Their Formation Mechanism. Earth Science, 43(9): 3267-3284. https://doi.org/10.3799/dqkx.2017.585 (in Chinese with English Abstract)
    Wang, S. J., Schertl, H.-P., Pang, Y. M., 2019. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences. https://doi.org/10.1139/cjes-2019-0003
    Wang, X., Li, X.-P., Han, Z. Z., 2018. Zircon Ages and Geochemistry of Amphibolitic Rocks from the Paleoproterozoic Erdaowa Group in the Khondalite Belt, North China Craton and Their Tectonic Implications. Precambrian Research, 317: 253-267. https://doi.org/10.1016/j.precamres.2018.09.005
    Wei, C. J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1): 24-43. https://doi.org/10.3799/dqkx.2018.002 (in Chinese with English Abstract)
    White, R. W., Powell, R., Holland, T. J. B., 2008. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139-153. https://doi.org/10.1046/j.0263-4929.2000.00303.x
    White, R. W., Powell, R., Holland, T. J. B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5): 511-527. https://doi.org/10.1111/j.1525-1314.2007.00711.x
    White, R. W., Powell, R., Holland, T. J. B., et al., 2014. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3): 261-286. https://doi.org/10.1111/jmg.12071
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185-187. https://doi.org/10.2138/am.2010.3371
    Wu, C., Sun, M., Li, H., et al., 2006. LA-ICP-MS U-Pb Zircon Ages of the Khondalites from the Wulashan and Jining High-Grade Terrain in Northern Margin of the North China Craton: Constraints on Sedimentary Age of the Khondalite. Acta Petrologica Sinica, 22: 2639-2654. https://doi.org/1000-0569/2006/022(11)-2639-54 (in Chinese with English Abstract)
    Wu, J. L., Zhang, H. F., Zhai, M. G., et al., 2017. Paleoproterozoic High-Pressure-High-Temperature Pelitic Granulites from Datong in the North China Craton and Their Geological Implications: Constraints from Petrology and Phase Equilibrium Modeling. Precambrian Research, 303: 727-748. https://doi.org/10.1016/j.precamres.2017.09.011
    Wu, C. H., Li, H. M., Zhong, C. T., et al., 1998. The Ages of Zircon and Rutile (Cooling) from Khondalite in Huangtuyao, Inner Mongolia. Geology Review, 44(6): 618-626. https://doi.org/10.16509/j.georeview.1998.06.011 (in Chinese with English Abstract)
    Wu, J. L., Zhang, H. F., Zhai, M. G., et al., 2016. Discovery of Pelitic High-Pressure Granulite from Manjinggou of the Huai'an Complex, North China Craton: Metamorphic P-T Evolution and Geological Implications. Precambrian Research, 278: 323-336. https://doi.org/10.1016/j.precamres.2016.03.001
    Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/bf03184122
    Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3/4): 308-322. https://doi.org/10.1016/j.lithos.2007.07.008
    Yang, Q. Y., Santosh, M., Tsunogae, T., 2014. Ultrahigh-Temperature Metamorphism under Isobaric Heating: New Evidence from the North China Craton. Journal of Asian Earth Sciences, 95: 2-16. https://doi.org/10.1016/j.jseaes.2014.01.018
    Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
    Zhai, M. G., Guo, J. H., Li, J. H., et al., 1995. The Discoveries of Retrograde Eclogites in North China Craton in Archaean. China Science Bulletin, 40: 1590-1594. https://doi.org/10.1007/BF00000353
    Zhai, M. G., Guo, J. H., Yan, Y. H., et al., 1992. Discovery and Preliminary Study of Archaean High-Pressure Basic Granulites Terrain in North China. Science China (B), 36: 1402-1408. https://doi.org/10.1360/zb1992-22-12-1325 (in Chinese) doi: 10.1360/zb1992-22-12-1325(inChinese)
    Zhang, H. T., Li, J. H., Liu, S. J., et al., 2012. Spinel+Quartz-Bearing Ultrahigh-Temperature Granulites from Xumayao, Inner Mongolia Suture Zone, North China Craton: Petrology, Phase Equilibria and Counterclockwise P-T Path. Geoscience Frontiers, 3(5): 603-611. https://doi.org/10.1016/j.gsf.2012.01.003
    Zhang, H. F., Zhai, M. G., Santosh, M., et al., 2011. Geochronology and Petrogenesis of Neoarchean Potassic Meta-Granites from Huai'an Complex: Implications for the Evolution of the North China Craton. Gondwana Research, 20(1): 82-105. https://doi.org/10.1016/j.gr.2011.01.009
    Zhang, H. F., Zhai, M. G., Santosh, M., et al., 2014. Paleoproterozoic Granulites from the Xinghe Graphite Mine, North China Craton: Geology, Zircon U-Pb Geochronology and Implications for the Timing of Deformation, Mineralization and Metamorphism. Ore Geology Reviews, 63: 478-497. https://doi.org/10.1016/j.oregeorev.2014.03.014
    Zhang, J. H., Tian, H., Wang, H. C., et al., 2019. Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton: Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1): 1-22. https://doi.org/10.3799/dqkx.2018.259 (in Chinese with English Abstract)
    Zhang, J. S., Dirks, P. H. G. M., Passchier, C. W., 1994. Extensional Collapse and Uplift in a Polymetamorphic Granulite Terrain in the Archaean and Palaeoproterozoic of North China. Precambrian Research, 67(1/2): 37-57. https://doi.org/10.1016/0301-9268(94)90004-3
    Zhang, Y. C., Li, X.-P., Sun, G. M., et al., 2019. Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling. Journal of Earth Science, 30(3): 549-562. https://doi.org/10.1007/s12583-019-1222-0
    Zhang, Z. M., Xiang, H., Dong, X., et al., 2017. Oligocene HP Metamorphism and Anatexis of the Higher Himalayan Crystalline Sequence in Yadong Region, East-Central Himalaya. Gondwana Research, 41: 173-187. https://doi.org/10.1016/j.gr.2015.03.002
    Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1010-1025. https://doi.org/10.1007/s12583-018-0852-y
    Zhao, G. C., Cawood, P. A., Li. S. Z., et al., 2012 Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222/223: 55-76. http://doi.org/10.1016/j.precamres.2012.09.016
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136: 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107: 45-73. https://doi.org/10.1016/S0301-9268(00)00154-6
    Zhao, G. C., Wilde, S. A., Guo, J., et al., 2010. Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton. Precambrian Research, 177: 266-276. https://doi.org/10.1016/j.precamres.2009.12.007
    Zhao, G. C., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex: Constraints on Late Archean to Paleoproterozoic Crustal Accretion and Collision of the Trans-North China Orogen. Amrican Journal of Science, 308: 270-303. https://doi.org/10.1016/j.gca.2006.06.1332
    Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views(914) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return