Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Hans-Peter Schertl, Andreas Hertwig, Walter V. Maresch. Cathodoluminescence Microscopy of Zircon in HP- and UHP- Metamorphic Rocks: A Fundamental Technique for Assessing the Problem of Inclusions versus Pseudo-Inclusions. Journal of Earth Science, 2019, 30(6): 1095-1107. doi: 10.1007/s12583-019-1246-5
Citation: Hans-Peter Schertl, Andreas Hertwig, Walter V. Maresch. Cathodoluminescence Microscopy of Zircon in HP- and UHP- Metamorphic Rocks: A Fundamental Technique for Assessing the Problem of Inclusions versus Pseudo-Inclusions. Journal of Earth Science, 2019, 30(6): 1095-1107. doi: 10.1007/s12583-019-1246-5

Cathodoluminescence Microscopy of Zircon in HP- and UHP- Metamorphic Rocks: A Fundamental Technique for Assessing the Problem of Inclusions versus Pseudo-Inclusions

doi: 10.1007/s12583-019-1246-5
More Information
  • Corresponding author: Hans-Peter Schertl
  • Received Date: 10 Jun 2019
  • Accepted Date: 29 Aug 2019
  • Publish Date: 01 Dec 2019
  • This paper shows how a faulty approach to the study of mineral inclusions in zircon can lead to misleading interpretations of the geological context. We present and discuss two well-documented ex-amples. Zircon grains separated from HP metamorphic jadeitite of the Rio San Juan Complex, Dominican Republic, and from UHP pyrope quartzite of the Dora Maira Massif, northern Italy, were studied using cathodoluminescence (CL) techniques, in combination with mineral inclusion and age data. In general, zircon from both localities shows inherited magmatic core domains with oscillatory zoning and metamorphic rims. The magmatic cores of zircon from the jadeitite yield ages of 115-117 Ma and host jadeite and omphacite which are of metamorphic origin and formed at about 78 Ma. Zircon from lawsonite blueschist, representing the country rock of the jadeitite, contains domains with oscillatory zoning that are nearly identical in age to the zircon cores from the adjacent jadeitite, and also contains younger metamorphic minerals such as lawsonite, albite, phengite (Si3.68), chlorite, and omphacite. Similar observations were made on the magmatic cores of zircon from the pyrope quartzite. These are about 275 Ma in age and host pyrope, phengite (Si3.55), talc, and kyanite, all of which formed during UHP metamorphism at about 35 Ma. Zircon from the biotite-phengite-gneiss country rock (metagranite) shows oscillatory zoning and yields ages that are identical to those of the magmatic cores of zircon from pyrope quartzite, which thus reflect granitic intrusion ages. The country-rock zircon also encloses metamorphic minerals with ages of about 35 Ma. Such minerals are, for example, garnet and phengite, as well as a polymineralic assemblage of clinopyroxene+garnet+phengite+quartz, that point to formation at UHP metamorphic conditions around 40 kbar/750℃. Based on these examples we suggest an effective approach centered on key evidence from CL studies to show that magmatic domains of zircon may actually contain pseudo-inclusions which were not entrapped during an early stage of formation, but were instead introduced during later metamorphic or metasomatic events along microcracks representing pathways for fluid influx. Cathodoluminescence microscopy is thus an excellent tool for avoiding such pitfalls by allowing distinction between true inclusions and pseudo-inclusions in zircon.

     

  • loading
  • Ames, L., Tilton, G. R., Zhou, G. Z., 1993. Timing of Collision of the Sino-Korean and Yangtse Cratons:U-Pb Zircon Dating of Coesite-Bearing Eclogites. Geology, 21(4):339-342. https://doi.org/10.1130/0091-7613(1993)021<0339:tocots>2.3.co; 2 doi: 10.1130/0091-7613(1993)021<0339:tocots>2.3.co;2
    Baxter, E. F., Scherer, E. E., 2013. Garnet Geochronology:Timekeeper of Tectonometamorphic Processes. Elements, 9(6):433-438. https://doi.org/10.2113/gselements.9.6.433
    Burchard, M., 1999. Experimentelle Bestimmung von Phasenbeziehungen der Granitischen Nebengesteine der Dora-Maira-Pyrop-Quarzite bei 15-45 kbar, Temperaturen von 675-1 000℃ und Variablen H2O-Gehalten: [Dissertation]. Ruhr-Universität, Bochum. 434 (in German)
    Chen, Y. X., Zhou, K., Zheng, Y. F., et al., 2017. Zircon Geochemical Constraints on the Protolith Nature and Metasomatic Process of the Mg-Rich Whiteschist from the Western Alps. Chemical Geology, 467:177-195. https://doi.org/10.1016/j.chemgeo.2017.08.013
    Chopin, C., 1984. Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences. Contributions to Mineralogy and Petrology, 86(2):107-118. https://doi.org/10.1007/bf00381838
    Chopin, C., Henry, C., Michard, A., 1991. Geology and Petrology of the Coesite-Bearing Terrain, Dora Maira Massif, Western Alps. European Journal of Mineralogy, 3(2):263-292. https://doi.org/10.1127/ejm/3/2/0263
    Compagnoni, R., Hirajima, T., Turello, R., et al., 1994. The Brossasco-Isasca unit of the Dora-Maira Massif. In: Compagnoni, R., Messiga, B., eds., High Pressure Metamorphism in the Western Alps, Guide-Book to the Field Excursion B1 of the 16th General Meeting of the IMA. Sep-tember 10-15, Pisa. 87-105
    Compagnoni, R., Rolfo, F., Castelli, D., 2012. Jadeitite from the Monviso Meta-Ophiolite, Western Alps:Occurrence and Genesis. European Journal of Mineralogy, 24(2):333-343. https://doi.org/10.1127/0935-1221/2011/0023-2164
    Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
    Draper, G., Nagle, F., 1991. Geology, Structure and Tectonic Development of the Río San Juan Complex, Northern Dominican Republic. In: Mann, P., Draper, G., Lewis, J., eds., Geologic and Tectonic Development of the North America-Caribbean Plate Boundary Zone in Hispaniola. Ge-ological Society of America, Special Papers, 262: 77-95
    Duchêne, S., Blichert-Toft, J., Luais, B., et al., 1997. The Lu-Hf Dating of Garnets and the Ages of the Alpine High-Pressure Metamorphism. Nature, 387(6633):586-589. https://doi.org/10.1038/42446
    Escuder-Viruete, J., Pérez-Estaún, A., Booth-Rea, G., et al., 2011. Tectono-metamorphic Evolution of the Samaná Complex, Northern Hispaniola:Implications for the Burial and Exhumation of High-Pressure Rocks in a Collisional Accretionary Wedge. Lithos, 125(1/2):190-210. https://doi.org/10.1016/j.lithos.2011.02.006
    Ferrando, S., Frezzotti, M. L., Petrelli, M., et al., 2009. Metasomatism of Continental Crust during Subduction:The UHP Whiteschists from the Southern Dora-Maira Massif (Italian Western Alps). Journal of Metamorphic Geology, 27(9):739-756. https://doi.org/10.1111/j.1525-1314.2009.00837.x
    Fu, B., Valley, J. W., Kita, N. T., et al., 2010. Multiple Origins of Zircons in Jadeitite. Contributions to Mineralogy and Petrology, 159(6):769-780. https://doi.org/10.1007/s00410-009-0453-y
    Gauthiez-Putallaz, L., Rubatto, D., Hermann, J., 2016. Dating Prograde Fluid Pulses during Subduction by in situ U-Pb and Oxygen Isotope Analysis. Contributions to Mineralogy and Petrology, 171(2):1-20. https://doi.org/10.1007/s00410-015-1226-4
    Gebauer, D., Schertl, H.-P., Brix, M., et al., 1997. 35 Ma Old Ultrahigh-Pressure Metamorphism and Evidence for very Rapid Exhumation in the Dora Maira Massif, Western Alps. Lithos, 41(1/2/3):5-24. https://doi.org/10.1016/s0024-4937(97)82002-6
    Gerdes, A., Zeh, A., 2006. Combined U-Pb and Hf Isotope LA-(MC-)ICP-MS Analyses of Detrital Zircons:Comparison with SHRIMP and New Constraints for the Provenance and Age of an Armorican Metasediment in Central Germany. Earth and Planetary Science Letters, 249(1/2):47-61. https://doi.org/10.1016/j.epsl.2006.06.039
    Gilotti, J. A., McClelland, W. C., Wooden, J. L., 2014. Zircon Captures Exhumation of an Ultrahigh-Pressure Terrane, North-East Greenland Caledonides. Gondwana Research, 25(1):235-256. https://doi.org/10.1016/j.gr.2013.03.018
    Hanchar, J. M., Miller, C. F., 1993. Zircon Zonation Patterns as Revealed by Cathodoluminescence and Backscattered Electron Images:Implications for Interpretation of Complex Crustal Histories. Chemical Geology, 110(1/2/3):1-13. https://doi.org/10.1016/0009-2541(93)90244-d
    Harlow, G. E., Sorensen, S. S., 2005. Jade (Nephrite and Jadeitite) and Serpentinite:Metasomatic Connections. International Geology Review, 47(2):113-146. https://doi.org/10.2747/0020-6814.47.2.113
    Hermann, J., 2003. Experimental Evidence for Diamond-Facies Metamor-phism in the Dora-Maira Massif. Lithos, 70(3/4):163-182. https://doi.org/10.1016/s0024-4937(03)00097-5
    Hertwig, A., 2014. Genesis of Jadeitites and Their Country Rocks, Río San Juan Complex, Dominican Republic: [Dissertation]. Ruhr-Universität, Bochum. 378 (in German)
    Hertwig, A., Maresch, W. V., 2015. Field Guide Volume. XI International Eclogite Conference. Jan. 31-Feb. 7, 2015, Río San Juan, Dominican Republic
    Hertwig, A., McClelland, W. C., Kitajima, K., et al., 2016. Inherited Igneous Zircons in Jadeitite Predate High-Pressure Metamorphism and Jadeitite Formation in the Jagua Clara Serpentinite Mélange of the Rio San Juan Complex (Dominican Republic). Contributions to Mineralogy and Petrology, 171(5):1-26. https://doi.org/10.1007/s00410-016-1256-6
    Hoskin, P. W. O., Black, L. P., 2002. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4):423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
    Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7):627. https://doi.org/10.1130/0091-7613(2000)28<627:reecoz>2.0.co; 2 doi: 10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2
    Katayama, I., Zayachkovsky, A. A., Maruyama, S., 2000. Prograde Pressure-Temperature Records from Inclusions in Zircons from Ultrahigh-Pressure-High-Pressure Rocks of the Kokchetav Massif, Northern Ka-zakhstan. The Island Arc, 9(3):417-427. https://doi.org/10.1046/j.1440-1738.2000.00286.x
    Krebs, M., Maresch, W. V., Schertl, H.-P., et al., 2008. The Dynamics of Intra-Oceanic Subduction Zones:A Direct Comparison between Fossil Petrological Evidence (Rio San Juan Complex, Dominican Republic) and Numerical Simulation. Lithos, 103(1/2):106-137. https://doi.org/10.1016/j.lithos.2007.09.003
    Krebs, M., Schertl, H.-P., Maresch, W. V., et al., 2011. Mass Flow in Serpentinite-Hosted Subduction Channels:P-T-t Path Patterns of Metamorphic Blocks in the Rio San Juan Mélange (Dominican Republic). Journal of Asian Earth Sciences, 42(4):569-595. https://doi.org/10.1016/j.jseaes.2011.01.011
    Kröner, A., Jaeckel, P., Williams, I. S., 1994. Pb-Loss Patterns in Zircons from a High-Grade Metamorphic Terrain as Revealed by Different Dating Methods:U-Pb and Pb-Pb Ages for Igneous and Metamorphic Zircons from Northern Sri Lanka. Precambrian Research, 66(1/2/3/4):151-181. https://doi.org/10.1016/0301-9268(94)90049-3
    Li, X.-P., Wang, X., Chen, S., et al., 2018. Petrology and Zircon U-Pb Dating of Meta-Calcsilicate from the Jiaobei Terrane in the Jiao-Liao-Ji Belt of the North China Craton. Precambrian Research, 313:221-241. https://doi.org/10.1016/j.precamres.2018.04.018
    Liou, J. G., Zhang, R. Y., Jahn, B. M., 1997. Petrology, Geochemistry and Isotope Data on a Ultrahigh-Pressure Jadeite Quartzite from Shuanghe, Dabie Mountains, East-Central China. Lithos, 41(1/2/3):59-78. https://doi.org/10.1016/s0024-4937(97)82005-1
    Liu, F. L., Gerdes, A., Liou, J. G., et al., 2006. SHRIMP U-Pb Zircon Dating from Sulu-Dabie Dolomitic Marble, Eastern China:Constraints on Prograde, Ultrahigh-Pressure and Retrograde Metamorphic Ages. Journal of Metamorphic Geology, 24(7):569-589. https://doi.org/10.1111/j.1525-1314.2006.00655.x
    Liu, F. L., Xu, Z. Q., Liou, J. G., et al., 2002. Ultrahigh-Pressure Mineral Inclusions in Zircons from Gneissic Core Samples of the Chinese Continental Scientific Drilling Site in Eastern China. European Journal of Mineralogy, 14(3):499-512. https://doi.org/10.1127/0935-1221/2002/0014-0499
    Liu, F. L., Xu, Z. Q., Liou, J. G., et al., 2007. Ultrahigh-Pressure Mineral Assemblages in Zircons from the Surface to 5 158 m Depth in Cores of the Main Drill Hole, Chinese Continental Scientific Drilling Project, Southwestern Sulu Belt, China. International Geology Review, 49(5):454-478. https://doi.org/10.2747/0020-6814.49.5.454
    Liu, F. L., Gerdes, A., Liou, J., et al., 2009. Unique Coesite-Bearing Zircon from Allanite-Bearing Gneisses:U-Pb, REE and Lu-Hf Properties and Implications for the Evolution of the Sulu UHP Terrane, China. Euro-pean Journal of Mineralogy, 21(6):1225-1250. https://doi.org/10.1127/0935-1221/2009/0021-1965
    Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism:A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1):1-39. https://doi.org/10.1016/j.jseaes.2010.08.007
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4
    Morimoto, N., Fabries, J., Ferguson, A. K., et al., 1988. Nomenclature of Pyroxenes. Mineralogical Magazine, 52(367):535-550. https://doi.org/10.1180/minmag.1988.052.367.15
    Parkinson, C. D., Katayama, I., 1999. Present-Day Ultrahigh-Pressure Conditions of Coesite Inclusions in Zircon and Garnet:Evidence from Laser Raman Microspectroscopy. Geology, 27(11):979-982. https://doi.org/10.1130/0091-7613(1999)027<0979:pdupco>2.3.co; 2 doi: 10.1130/0091-7613(1999)027<0979:pdupco>2.3.co;2
    Rubatto, D., 2002. Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2):123-138. https://doi.org/10.1016/s0009-2541(01)00355-2
    Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe:Some Examples from the Western Alps. Cathodoluminescence in Geosciences. Springer Verlag Berlin, Heidelberg. 373-400
    Rubatto, D., Hermann, J., 2001. Exhumation as Fast as Subduction?. Geology, 29(1):3-6. https://doi.org/10.1130/0091-7613(2001)029<0003:eafas>2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0003:eafas>2.0.co;2
    Schaltegger, U., Fanning, C. M., Günther, D., et al., 1999. Growth, Annealing and Recrystallization of Zircon and Preservation of Monazite in High-Grade Metamorphism:Conventional and in-situ U-Pb Isotope, Cathodoluminescence and Microchemical Evidence. Contributions to Mineralogy and Petrology, 134(2/3):186-201. https://doi.org/10.1007/s004100050478
    Scherer, E. E., Cameron, K. L., Blichert-Toft, J., 2000. Lu-Hf Garnet Geochronology:Closure Temperature Relative to the Sm-Nd System and the Effects of Trace Mineral Inclusions. Geochimica et Cosmochimica Acta, 64(19):3413-3432. https://doi.org/10.1016/s0016-7037(00)00440-3
    Schertl, H.-P., Hammerschmidt, K., 2016. Tracking the Incidence of Excess Argon in White Mica Ar-Ar Data from UHP Conditions to Upper Crustal Levels in the Dora-Maira Massif, Western Alps. European Journal of Mineralogy, 28(6):1255-1275. https://doi.org/10.1127/ejm/2016/0028-2613
    Schertl, H.-P., Schreyer, W., 1996. Mineral Inclusions in Heavy Minerals of the Ultrahigh-Pressure Metamorphic Rocks of the Dora-Maira Massif and Their Bearing on the Relative Timing of the Petrological Events. In: Basu, A., Hart, S. R., eds., Earth Process: Reading the Isotopic Code. AGU Geophys. Monogr., 95: 331-342. https: //doi.org/10.1029/gm095p0331
    Schertl, H.-P., Schreyer, W., 2008. Geochemistry of Coesite-Bearing "Pyrope Quartzite" and Related Rocks from the Dora-Maira Massif, Western Alps. European Journal of Mineralogy, 20(5):791-809. https://doi.org/10.1127/0935-1221/2008/0020-1862
    Schertl, H.-P., Schreyer, W., Chopin, C., 1991. The Pyrope-Coesite Rocks and Their Country Rocks at Parigi, Dora Maira Massif, Western Alps:Detailed Petrography, Mineral Chemistry and PT-Path. Contributions to Mineralogy and Petrology, 108(1/2):1-21. https://doi.org/10.1007/bf00307322
    Schertl, H.-P., Neuser, R. D., Sobolev, N. V., et al., 2004. UHP-Metamorphic Rocks from Dora Maira/Western Alps and Kokchetav/Kazakhstan:New Insights Using Cathodoluminescence Petrography. European Journal of Mineralogy, 16(1):49-57. https://doi.org/10.1127/0935-1221/2004/0016-0049
    Schertl, H.-P., Medenbach, O., Neuser, R. D., 2005. UHP-Metamorphic Rocks from Dora Maira, Western Alps:Cathodoluminescence of Silica and Twinning of Coesite. Russian Geology and Geophysics, 46:1327-1332 http://www.researchgate.net/publication/253691860_UHP-Metamorphic_Pyrope_Quartzites_From_Dora_Maira_Cathodoluminescence_of_Silica_and_Twinning_of_Coesite
    Schertl, H.-P., Maresch, W. V., Stanek, K. P., et al., 2012. New Occurrences of Jadeitite, Jadeite Quartzite and Jadeite-Lawsonite Quartzite in the Dominican Republic, Hispaniola:Petrological and Geochronological Overview. European Journal of Mineralogy, 24(2):199-216. https://doi.org/10.1127/0935-1221/2012/0024-2201
    Schertl, H. P., Polednia, J., Neuser, R. D., et al., 2018. Natural End Member Samples of Pyrope and Grossular:A Cathodoluminescence-Microscopy and -Spectra Case Study. Journal of Earth Science, 29(5):989-1004. https://doi.org/10.1007/s12583-018-0842-0
    Sobolev, N. V., Shatsky, V. S., Vavilov, M. A., et al., 1994. Zircon of High Pressure Metamorphic Rocks of Folded Areas as Unique Container of Inclusions of Diamond, Coesite and Coexisting Minerals. Doklady Akademii Nauk, 354:488-492 http://cn.bing.com/academic/profile?id=ee9f44abdff7971ec01158cb8a7b82a5&encoded=0&v=paper_preview&mkt=zh-cn
    Sorensen, S., Harlow, G. E., Rumble, D. III, 2006. The Origin of Jadeitite-Forming Subduction-Zone Fluids:CL-Guided SIMS Oxygen-Isotope and Trace-Element Evidence. American Mineralogist, 91(7):979-996. https://doi.org/10.2138/am.2006.1949
    Tilton, G. R., Schreyer, W., Schertl, H.-P., 1989. Pb-Sr-Nd Isotopic Behavior of Deeply Subducted Crustal Rocks from the Dora Maira Massif, Western Alps, Italy. Geochimica et Cosmochimica Acta, 53(6):1391-1400. https://doi.org/10.1016/0016-7037(89)90071-9
    Tilton, G. R., Schreyer, W., Schertl, H.-P., 1991. Pb-Sr-Nd Isotopic Behavior of Deeply Subducted Crustal Rocks from the Dora Maira Massif, Western Alps, Italy-Ⅱ:What is the Age of the Ultrahigh-Pressure Metamorphism?. Contributions to Mineralogy and Petrology, 108(1/2):22-33. https://doi.org/10.1007/bf00307323
    Tsujimori, T., Harlow, G. E., 2012. Petrogenetic Relationships between Jadeitite and Associated High-Pressure and Low-Temperature Metamorphic Rocks in Worldwide Jadeitite Localities:A Review. European Journal of Mineralogy, 24(2):371-390. https://doi.org/10.1127/0935-1221/2012/0024-2193
    Valley, J. W., Chiarenzelli, J. R., McLelland, J. M., 1994. Oxygen Isotope Geochemistry of Zircon. Earth and Planetary Science Letters, 126(4):187-206. https://doi.org/10.1016/0012-821x(94)90106-6
    Vavra, G., 1990. On the Kinematics of Zircon Growth and Its Petrogenetic Significance:A Cathodoluminescence Study. Contributions to Mineralogy and Petrology, 106(1):90-99. https://doi.org/10.1007/bf00306410
    Vavra, G., 1993. A Guide to Quantitative Morphology of Accessory Zircon. Chemical Geology, 110(1/2/3):15-28. https://doi.org/10.1016/0009-2541(93)90245-e
    Vavra, G., 1994. Systematics of Internal Zircon Morphology in Major Variscan Granitoid Types. Contributions to Mineralogy and Petrology, 117(4):331-344. https://doi.org/10.1007/bf00307269
    Vavra, G., Gebauer, D., Schmid, R., et al., 1996. Multiple Zircon Growth and Recrystallization during Polyphase Late Carboniferous to Triassic Metamorphism in Granulites of the Ivrea Zone (Southern Alps):An Ion Microprobe (SHRIMP) Study. Contributions to Mineralogy and Pe-trology, 122(4):337-358. https://doi.org/10.1007/s004100050132
    Vavra, G., Schmid, R., Gebauer, D., 1999. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons:Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4):380-404. https://doi.org/10.1007/s004100050492
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
    Yui, T. F., Maki, K., Usuki, T., et al., 2010. Genesis of Guatemala Jadeitite and Related Fluid Characteristics:Insight from Zircon. Chemical Geology, 270(1/2/3/4):45-55. https://doi.org/10.1016/j.chemgeo.2009.11.004
    Zhang, Z. M., Shen, K., Xiao, Y. L., et al., 2006. Mineral and Fluid Inclu-sions in Zircon of UHP Metamorphic Rocks from the CCSD-Main Drill Hole:A Record of Metamorphism and Fluid Activity. Lithos, 92(3/4):378-398. https://doi.org/10.1016/j.lithos.2006.04.003
    Zhang, Z. M., Schertl, H.-P., Wang, J. L., et al., 2009. Source of Coesite Inclusions within Inherited Magmatic Zircon from Sulu UHP Rocks, Eastern China, and Their Bearing for Fluid-Rock Interaction and SHRIMP Dating. Journal of Metamorphic Geology, 27(4):317-333. https://doi.org/10.1111/j.1525-1314.2009.00819.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(1736) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return