Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 2
Apr 2020
Turn off MathJax
Article Contents
Bao Zhang, Detian Yan, Hassan Jasmine Drawarh, Xiangrong Yang, Jin He, Liwei Zhang. Formation Mechanism and Numerical Model of Quartz in Fine-Grained Organic-Rich Shales: A Case Study of Wufeng and Longmaxi Formations in Western Hubei Province, South China. Journal of Earth Science, 2020, 31(2): 354-367. doi: 10.1007/s12583-019-1247-4
Citation: Bao Zhang, Detian Yan, Hassan Jasmine Drawarh, Xiangrong Yang, Jin He, Liwei Zhang. Formation Mechanism and Numerical Model of Quartz in Fine-Grained Organic-Rich Shales: A Case Study of Wufeng and Longmaxi Formations in Western Hubei Province, South China. Journal of Earth Science, 2020, 31(2): 354-367. doi: 10.1007/s12583-019-1247-4

Formation Mechanism and Numerical Model of Quartz in Fine-Grained Organic-Rich Shales: A Case Study of Wufeng and Longmaxi Formations in Western Hubei Province, South China

doi: 10.1007/s12583-019-1247-4
Funds:

the Natural Science Foundation of Hubei Province 2019CFA028

the National Natural Science Foundation of China 41572327

the National Natural Science Foundation of China 41690131

the National Natural Science Foundation of China 4127300

the Program of Introducing Talents of Discipline to Universities of China B14031

More Information
  • Corresponding author: Detian Yan
  • Received Date: 20 Apr 2019
  • Accepted Date: 14 Jun 2019
  • Publish Date: 01 Feb 2020
  • The difference in quartz types in shales not only affects the porosity and permeability of the rocks,but also reflects the difference in the sedimentary environments. We established the formation mechanism and numerical model of quartz in shales of Wufeng and Longmaxi formations in the Wangjiawan Section,South China,based on thin-section studies using SEM (scanning electron microscope),SEM-CL (cathodoluminescence),XRD (X-ray diffraction) and geochemical analyses. There are two types of quartz in the shales:detrital quartz and authigenic quartz. Detrital quartz is mostly silt-size,typically ranging from 10 to 60 μm in size and subangular to angular monocrystal in shape,and brighter than authigenic quartz by CL intensity; authigenic quartz is present in two phases in shape:grain overgrowths and crystallite grains. Overgrowth surfaces are subhedral. Crystallite grains are typically less than 10 μm in size,euhedral or subhedral monocrystal in shape. Authigenic quartz can be subdivided into biogenic quartz and clay mineral transformed quartz according to the source of silicon. In the numerical model,the content of detrital quartz is relatively consistent (20%); the content of biogenic quartz ranges from 40% to 70%,with a sharp fall (0-30%) in the Guanyinqiao mudstone. During the Katian,a lower anoxic and dense water column make the dissolution of biogenic silica well preserved. Biogenic quartz is the major contributor to the sediment. During the Early Hirnantian interval,due to the drop of sea level and the oxygenation of seafloor,the sediment is mainly composed of clay transformed quartz and detrital quartz. During the Latest Hirnatian and Rhuddanian,rapid sea level rise and anoxic ocean enhance the preservation of the biogenic silica,thereby biogenic quartz re-emerges as the major contributors to the sediment. Authigenic crystallite grains and grain overgrowths have filled in primary pore space and have decreased the interparticle porosity,however,as a rigid framework,they can suppress compaction and maintain the internal pore structure. The formation of authigenic quartz results in the increase of total quartz,which fortifies the brittleness of rocks and is beneficial to the development of shale gas.

     

  • loading
  • Abercrombie, H. J., Hutcheon, I. E., Bloch, J. D., et al., 1994. Silica Activity and the Smectite-Illite Reaction. Geology, 22(6):539-542. https://doi.org/10.1130/0091-7613(1994)022<0539:saatsi>2.3.co; 2 doi: 10.1130/0091-7613(1994)022<0539:saatsi>2.3.co;2
    Bjørlykke, K., Egeberg, P. K., 1993. Quartz Cementation in Sedimentary Basins. AAPG Bulletin, 77(9):1538-1548
    Blatt, H., Schultz, D. J., 1976. Size Distribution of Quartz in Mudrocks. Sedimentology, 23(6):857-866. https://doi.org/10.1111/j.1365-3091.1976.tb00113.x
    Blood, R., Lash, G., Bridges, L., 2013. Biogenic Silica in the Devonian Shale Succession of the Appalachian Basin, USA. AAPG Search and Discovery Article 50864
    Boggs, S. Jr., 2006. Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge University Press, Cambridge. 177
    Boström, K., Kraemer, T., Gartner, S., 1973. Provenance and Accumulation Rates of Opaline Silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific Pelagic Sediments. Chemical Geology, 11(2):123-148. https://doi.org/10.1016/0009-2541(73)90049-1
    Chen, X., Rong, J. Y., Mitchell, C. E., et al., 2000. Late Ordovician to Earliest Silurian Graptolite and Brachiopod Biozonation from the Yangtze Region, South China, with a Global Correlation. Geological Magazine, 137(6):623-650. https://doi.org/10.1017/s0016756800004702
    Chen, X., Rong, J. Y., Fan, J. X., et al., 2006. The Global Boundary Stratotype Section and Point (GSSP) for the Base of the Hirnantian Stage (the Uppermost of the Ordovician System). Episodes, 29(3):183-196. https://doi.org/10.18814/epiiugs/2006/v29i3/004
    Chen, X., Rong, J. Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3/4):353-372. https://doi.org/10.1016/s0031-0182(03)00736-3
    Chen, X., Melchin, M. J., Sheets, H. D., et al., 2005. Patterns and Processes of Latest Ordovician Graptolite Extinction and Recovery Based on Data from South China. Journal of Paleontology, 79(5):842-861. https://doi.org/10.1666/0022-3360
    Day-Stirrat, R. J., Milliken, K. L., Dutton, S. P., et al., 2010. Open-System Chemical Behavior in Deep Wilcox Group Mudstones, Texas Gulf Coast, USA. Marine and Petroleum Geology, 27(9):1804-1818. https://doi.org/10.1016/j.marpetgeo.2010.08.006
    Dowey, P. J., Taylor, K. G., 2017. Extensive Authigenic Quartz Overgrowths in the Gas-Bearing Haynesville-Bossier Shale, USA. Sedimentary Geology, 356:15-25. https://doi.org/10.1016/j.sedgeo.2017.05.001
    Egeberg, P. K., Aagaard, P., 1989. Origin and Evolution of Formation Waters from Oil Fields on the Norwegian Shelf. Applied Geochemistry, 4(2):131-142. https://doi.org/10.1016/0883-2927(89)90044-9
    Finnegan, S., Bergmann, K., Eiler, J. M., et al., 2011. The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation. Science, 331(6019):903-906. https://doi.org/10.1126/science.1200803
    Harris, N. B., Miskimins, J. L., Mnich, C. A., 2011. Mechanical Anisotropy in the Woodford Shale, Permian Basin:Origin, Magnitude, and Scale. The Leading Edge, 30(3):284-291. https://doi.org/10.1190/1.3567259
    Isaacs, C. M., 1981. Porosity Reduction during Diagenesis of the Monterey Formation, Santa Barbara Coastal Area, California:Abstract. AAPG Bulletin, 65(5):940-941
    Isaacs, C. M., 1982. Influence of Rock Composition on Kinetics of Silica Phase Changes in the Monterey Formation, Santa Barbara Area, California. Geology, 10(6):304. https://doi.org/10.1130/0091-7613(1982)10<304:iorcok>2.0.co; 2 doi: 10.1130/0091-7613(1982)10<304:iorcok>2.0.co;2
    Jiang, Z. X., Duan, H. J., Liang, C., et al., 2017. Classification of Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Journal of Earth Science, 28(6):693-976. https://doi.org/10.1007/s12583-016-0920-0
    Jurkowska, A., Świerczewska-Gładysz, E., Bąk, M., et al., 2019. The Role of Biogenic Silica in the Formation of Upper Cretaceous Pelagic Carbonates and Its Palaeoecological Implications. Cretaceous Research, 93:170-187. https://doi.org/10.1016/j.cretres.2018.09.009
    Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2017. Sedimentary Characteristics and Paleoenvironment of Shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and Its Shale Gas Potential. Journal of Earth Science, 28(6):1020-1031. https://doi.org/10.1007/s12583-016-0932-x
    Liu, Z. H., Algeo, T. J., Guo, X. S., et al., 2017. Paleo-Environmental Cyclicity in the Early Silurian Yangtze Sea (South China):Tectonic or Glacio-Eustatic Control?. Palaeogeography, Palaeoclimatology, Palaeoecology, 466:59-76. https://doi.org/10.1016/j.palaeo.2016.11.007
    McLennan, S. M., Taylor, S. R., McCulloch, M. T., et al., 1990. Geochemical and Nd-Sr Isotopic Composition of Deep-Sea Turbidites:Crustal Evolution and Plate Tectonic Associations. Geochimica et Cosmochimica Acta, 54(7):2015-2050. https://doi.org/10.1016/0016-7037(90)90269-q
    Mendhe, V. A., Mishra, S., Khangar, R. G., et al., 2017. Organo-Petrographic and Pore Facets of Permian Shale Beds of Jharia Basin with Implications to Shale Gas Reservoir. Journal of Earth Science, 28(5):897-916. https://doi.org/10.1007/s12583-017-0779-8
    Metcalfe, L., 1994. Late Palaeozoic and Mesozoic Palaeogeography of Eastern Pangaea and Tethys. Canada Society of Petroleum Geologists Memoir, 17:97-111 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00206814.2010.543791
    Milliken, K. L., 2014. A Compositional Classification for Grain Assemblages in Fine-Grained Sediments and Sedimentary Rocks. Journal of Sedimentary Research, 84(12):1185-1199
    Milliken, K. L., Day-Stirrat, R. J., 2013. Cementation in Mudrocks: Brief Review with Examples from Cratonic Basin Mudrocls. In: Chatellier, J., Jarvie, D., eds., AAPG Memoir, 103: 133-150
    Milliken, K. L., Ergene, S. M., Ozkan, A., 2016. Quartz Types, Authigenic and Detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sedimentary Geology, 339:273-288. https://doi.org/10.1016/j.sedgeo.2016.03.012
    Milliken, K. L., Esch, W. L., Reed, R. M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8):1553-1578. https://doi.org/10.1306/12011111129
    Mondol, N. H., Bjørlykke, K., Jahren, J., et al., 2007. Experimental Mechanical Compaction of Clay Mineral Aggregates—Changes in Physical Properties of Mudstones during Burial. Marine and Petroleum Geology, 24(5):289-311. https://doi.org/10.1016/j.marpetgeo.2007.03.006
    Nadeau, P. H., Peacor, D. R., Yan, J., et al., 2002. I-S Precipitation in Pore Space as the Cause of Geopressuring in Mesozoic Mudstones, Egersund Basin, Norwegian Continental Shelf. American Mineralogist, 87(11/12):1580-1589. https://doi.org/10.2138/am-2002-11-1208
    Nelson, D. M., Tréguer, P., Brzezinski, M. A., et al., 1995. Production and Dissolution of Biogenic Silica in the Ocean:Revised Global Estimates, Comparison with Regional Data and Relationship to Biogenic Sedimentation. Global Biogeochemical Cycles, 9(3):359-372. https://doi.org/10.1029/95gb01070
    Peltonen, C., Marcussen, Ø., Bjørlykke, K., et al., 2009. Clay Mineral Diagenesis and Quartz Cementation in Mudstones:The Effects of Smectite to Illite Reaction on Rock Properties. Marine and Petroleum Geology, 26(6):887-898. https://doi.org/10.1016/j.marpetgeo.2008.01.021
    Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4):325-394. https://doi.org/10.1016/s0009-2541(97)00150-2
    Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9):1713-1744. https://doi.org/10.1306/03051514151
    Ran, B., Liu, S. G., Jansa, L., et al., 2015. Origin of the Upper Ordovician-Lower Silurian Cherts of the Yangtze Block, South China, and Their Palaeogeographic Significance. Journal of Asian Earth Sciences, 108:1-17. https://doi.org/10.1016/j.jseaes.2015.04.007
    Sprunt, E. S., 1981. Causes of Quartz Cathodoluminescence Colors. Scanning Electron Microscopy, 1:525-535
    Środoń, J., 1999. Nature of Mixed-Layer Clays and Mechanisms of Their Formation and Alteration. Annual Review of Earth and Planetary Sciences, 27(1):19-53. https://doi.org/10.1146/annurev.earth.27.1.19
    Stixrude, L., Peacor, D. R., 2002. First-Principles Study of Illite-Smectite and Implications for Clay Mineral Systems. Nature, 420(6912):165-168. https://doi.org/10.1038/nature01155
    Su, W. B., Huff, W. D., Ettensohn, F. R., et al., 2009. K-Bentonite, Black-Shale and Flysch Successions at the Ordovician-Silurian Transition, South China:Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana. Gondwana Research, 15(1):111-130. https://doi.org/10.1016/j.gr.2008.06.004
    Thyberg, B., Jahren, J., Winje, T., et al., 2010. Quartz Cementation in Late Cretaceous Mudstones, Northern North Sea:Changes in Rock Properties due to Dissolution of Smectite and Precipitation of Micro-Quartz Crystals. Marine and Petroleum Geology, 27(8):1752-1764. https://doi.org/10.1016/j.marpetgeo.2009.07.005
    Tréguer, P. J., De La Rocha, C. L., 2013. The World Ocean Silica Cycle. Annual Review of Marine Science, 5(1):477-501. https://doi.org/10.1146/annurev-marine-121211-172346
    Tréguer, P., Bowler, C., Moriceau, B., et al., 2017. Influence of Diatom Diversity on the Ocean Biological Carbon Pump. Nature Geoscience, 11(1):27-37. https://doi.org/10.1038/s41561-017-0028-x
    van de Kamp, P. C., 2008. Smectite-Illite-Muscovite Transformations, Quartz Dissolution, and Silica Release in Shales. Clays and Clay Minerals, 56(1):66-81. https://doi.org/10.1346/ccmn.2008.0560106
    Wang, K., Orth, C. J., Attrep, M. Jr., et al., 1993. The Great Latest Ordovician Extinction on the South China Plate:Chemostratigraphic Studies of the Ordovician-Silurian Boundary Interval on the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 104(1/2/3/4):61-79. https://doi.org/10.1016/0031-0182(93)90120-8
    Wedepohl, K. H., 1971. Environmental Influences on the Chemical Composition of Shales and Clays. In: Ahrens, L. H., Press, F., Runcorn, S. K., et al., eds., Physics and Chemistry of the Earth, Vol. 8. Oxford, Pergamon. 307-331
    Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation:A Review-Part 1:Bulk Properties, Multi-Scale Geometry and Gas Adsorption. Journal of Earth Science, 28(5):739-757. https://doi.org/10.1007/s12583-017-0732-x
    Worden, R. H., Morad, S., 2000. Quartz Cementation in Oil Field Sandstones: A Review of the Key Controversies. In: Worden, R. H., Morad, S., eds., Quartz Cementation in Sandstones. Alden Press, Oxford, Northampton. 1-20
    Wright, A. M., Ratcliffe, K. T., Spain, D., 2010. Application of Inorganic Whole Rock Geochemistry to Shale Resource Plays. Canadian Unconventional Resources and International Petroleum Conference, 19-21 October, Calgary, Alberta, Canada. 19-21. https://doi.org/10.2118/137946-ms
    Yamamoto, K., 1987. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1/2):65-108. https://doi.org/10.1016/0037-0738(87)90017-0
    Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2009. Geochemical Changes across the Ordovician-Silurian Transition on the Yangtze Platform, South China. Science in China Series D:Earth Sciences, 52(1):38-54. https://doi.org/10.1007/s11430-008-0143-z
    Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2010. Large-Scale Climatic Fluctuations in the Latest Ordovician on the Yangtze Block, South China. Geology, 38(7):599-602. https://doi.org/10.1130/g30961.1
    Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2012. Predominance of Stratified Anoxic Yangtze Sea Interrupted by Short-Term Oxygenation during the Ordo-Silurian Transition. Chemical Geology, 291:69-78. https://doi.org/10.1016/j.chemgeo.2011.09.015
    Zhang, T. S., Kershaw, S., Wan, Y., et al., 2000. Geochemical and Facies Evidence for Palaeoenvironmental Change during the Late Ordovician Hirnantian Glaciation in South Sichuan Province, China. Global and Planetary Change, 24(2):133-152. https://doi.org/10.1016/s0921-8181(99)00063-6
    Zhao, J. H., Jin, Z. K., Jin, Z. J., et al., 2017. Origin of Authigenic Quartz in Organic-Rich Shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China:Implications for Pore Evolution. Journal of Natural Gas Science and Engineering, 38:21-38. https://doi.org/10.1016/j.jngse.2016.11.037
    Zhu, B., Jiang, S. Y., Pi, D. H., et al., 2018. Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China:Implications for Redox and Open vs. Restricted Basin Conditions. Journal of Earth Science, 29(2):342-352. https://doi.org/10.1007/s12583-017-0907-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(289) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return