Abercrombie, H. J., Hutcheon, I. E., Bloch, J. D., et al., 1994. Silica Activity and the Smectite-Illite Reaction. Geology, 22(6):539-542. https://doi.org/10.1130/0091-7613(1994)022<0539:saatsi>2.3.co; 2 doi: 10.1130/0091-7613(1994)022<0539:saatsi>2.3.co;2 |
Bjørlykke, K., Egeberg, P. K., 1993. Quartz Cementation in Sedimentary Basins. AAPG Bulletin, 77(9):1538-1548 |
Blatt, H., Schultz, D. J., 1976. Size Distribution of Quartz in Mudrocks. Sedimentology, 23(6):857-866. https://doi.org/10.1111/j.1365-3091.1976.tb00113.x |
Blood, R., Lash, G., Bridges, L., 2013. Biogenic Silica in the Devonian Shale Succession of the Appalachian Basin, USA. AAPG Search and Discovery Article 50864 |
Boggs, S. Jr., 2006. Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge University Press, Cambridge. 177 |
Boström, K., Kraemer, T., Gartner, S., 1973. Provenance and Accumulation Rates of Opaline Silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific Pelagic Sediments. Chemical Geology, 11(2):123-148. https://doi.org/10.1016/0009-2541(73)90049-1 |
Chen, X., Rong, J. Y., Mitchell, C. E., et al., 2000. Late Ordovician to Earliest Silurian Graptolite and Brachiopod Biozonation from the Yangtze Region, South China, with a Global Correlation. Geological Magazine, 137(6):623-650. https://doi.org/10.1017/s0016756800004702 |
Chen, X., Rong, J. Y., Fan, J. X., et al., 2006. The Global Boundary Stratotype Section and Point (GSSP) for the Base of the Hirnantian Stage (the Uppermost of the Ordovician System). Episodes, 29(3):183-196. https://doi.org/10.18814/epiiugs/2006/v29i3/004 |
Chen, X., Rong, J. Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3/4):353-372. https://doi.org/10.1016/s0031-0182(03)00736-3 |
Chen, X., Melchin, M. J., Sheets, H. D., et al., 2005. Patterns and Processes of Latest Ordovician Graptolite Extinction and Recovery Based on Data from South China. Journal of Paleontology, 79(5):842-861. https://doi.org/10.1666/0022-3360 |
Day-Stirrat, R. J., Milliken, K. L., Dutton, S. P., et al., 2010. Open-System Chemical Behavior in Deep Wilcox Group Mudstones, Texas Gulf Coast, USA. Marine and Petroleum Geology, 27(9):1804-1818. https://doi.org/10.1016/j.marpetgeo.2010.08.006 |
Dowey, P. J., Taylor, K. G., 2017. Extensive Authigenic Quartz Overgrowths in the Gas-Bearing Haynesville-Bossier Shale, USA. Sedimentary Geology, 356:15-25. https://doi.org/10.1016/j.sedgeo.2017.05.001 |
Egeberg, P. K., Aagaard, P., 1989. Origin and Evolution of Formation Waters from Oil Fields on the Norwegian Shelf. Applied Geochemistry, 4(2):131-142. https://doi.org/10.1016/0883-2927(89)90044-9 |
Finnegan, S., Bergmann, K., Eiler, J. M., et al., 2011. The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation. Science, 331(6019):903-906. https://doi.org/10.1126/science.1200803 |
Harris, N. B., Miskimins, J. L., Mnich, C. A., 2011. Mechanical Anisotropy in the Woodford Shale, Permian Basin:Origin, Magnitude, and Scale. The Leading Edge, 30(3):284-291. https://doi.org/10.1190/1.3567259 |
Isaacs, C. M., 1981. Porosity Reduction during Diagenesis of the Monterey Formation, Santa Barbara Coastal Area, California:Abstract. AAPG Bulletin, 65(5):940-941 |
Isaacs, C. M., 1982. Influence of Rock Composition on Kinetics of Silica Phase Changes in the Monterey Formation, Santa Barbara Area, California. Geology, 10(6):304. https://doi.org/10.1130/0091-7613(1982)10<304:iorcok>2.0.co; 2 doi: 10.1130/0091-7613(1982)10<304:iorcok>2.0.co;2 |
Jiang, Z. X., Duan, H. J., Liang, C., et al., 2017. Classification of Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Journal of Earth Science, 28(6):693-976. https://doi.org/10.1007/s12583-016-0920-0 |
Jurkowska, A., Świerczewska-Gładysz, E., Bąk, M., et al., 2019. The Role of Biogenic Silica in the Formation of Upper Cretaceous Pelagic Carbonates and Its Palaeoecological Implications. Cretaceous Research, 93:170-187. https://doi.org/10.1016/j.cretres.2018.09.009 |
Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2017. Sedimentary Characteristics and Paleoenvironment of Shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and Its Shale Gas Potential. Journal of Earth Science, 28(6):1020-1031. https://doi.org/10.1007/s12583-016-0932-x |
Liu, Z. H., Algeo, T. J., Guo, X. S., et al., 2017. Paleo-Environmental Cyclicity in the Early Silurian Yangtze Sea (South China):Tectonic or Glacio-Eustatic Control?. Palaeogeography, Palaeoclimatology, Palaeoecology, 466:59-76. https://doi.org/10.1016/j.palaeo.2016.11.007 |
McLennan, S. M., Taylor, S. R., McCulloch, M. T., et al., 1990. Geochemical and Nd-Sr Isotopic Composition of Deep-Sea Turbidites:Crustal Evolution and Plate Tectonic Associations. Geochimica et Cosmochimica Acta, 54(7):2015-2050. https://doi.org/10.1016/0016-7037(90)90269-q |
Mendhe, V. A., Mishra, S., Khangar, R. G., et al., 2017. Organo-Petrographic and Pore Facets of Permian Shale Beds of Jharia Basin with Implications to Shale Gas Reservoir. Journal of Earth Science, 28(5):897-916. https://doi.org/10.1007/s12583-017-0779-8 |
Metcalfe, L., 1994. Late Palaeozoic and Mesozoic Palaeogeography of Eastern Pangaea and Tethys. Canada Society of Petroleum Geologists Memoir, 17:97-111 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00206814.2010.543791 |
Milliken, K. L., 2014. A Compositional Classification for Grain Assemblages in Fine-Grained Sediments and Sedimentary Rocks. Journal of Sedimentary Research, 84(12):1185-1199 |
Milliken, K. L., Day-Stirrat, R. J., 2013. Cementation in Mudrocks: Brief Review with Examples from Cratonic Basin Mudrocls. In: Chatellier, J., Jarvie, D., eds., AAPG Memoir, 103: 133-150 |
Milliken, K. L., Ergene, S. M., Ozkan, A., 2016. Quartz Types, Authigenic and Detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sedimentary Geology, 339:273-288. https://doi.org/10.1016/j.sedgeo.2016.03.012 |
Milliken, K. L., Esch, W. L., Reed, R. M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8):1553-1578. https://doi.org/10.1306/12011111129 |
Mondol, N. H., Bjørlykke, K., Jahren, J., et al., 2007. Experimental Mechanical Compaction of Clay Mineral Aggregates—Changes in Physical Properties of Mudstones during Burial. Marine and Petroleum Geology, 24(5):289-311. https://doi.org/10.1016/j.marpetgeo.2007.03.006 |
Nadeau, P. H., Peacor, D. R., Yan, J., et al., 2002. I-S Precipitation in Pore Space as the Cause of Geopressuring in Mesozoic Mudstones, Egersund Basin, Norwegian Continental Shelf. American Mineralogist, 87(11/12):1580-1589. https://doi.org/10.2138/am-2002-11-1208 |
Nelson, D. M., Tréguer, P., Brzezinski, M. A., et al., 1995. Production and Dissolution of Biogenic Silica in the Ocean:Revised Global Estimates, Comparison with Regional Data and Relationship to Biogenic Sedimentation. Global Biogeochemical Cycles, 9(3):359-372. https://doi.org/10.1029/95gb01070 |
Peltonen, C., Marcussen, Ø., Bjørlykke, K., et al., 2009. Clay Mineral Diagenesis and Quartz Cementation in Mudstones:The Effects of Smectite to Illite Reaction on Rock Properties. Marine and Petroleum Geology, 26(6):887-898. https://doi.org/10.1016/j.marpetgeo.2008.01.021 |
Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4):325-394. https://doi.org/10.1016/s0009-2541(97)00150-2 |
Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9):1713-1744. https://doi.org/10.1306/03051514151 |
Ran, B., Liu, S. G., Jansa, L., et al., 2015. Origin of the Upper Ordovician-Lower Silurian Cherts of the Yangtze Block, South China, and Their Palaeogeographic Significance. Journal of Asian Earth Sciences, 108:1-17. https://doi.org/10.1016/j.jseaes.2015.04.007 |
Sprunt, E. S., 1981. Causes of Quartz Cathodoluminescence Colors. Scanning Electron Microscopy, 1:525-535 |
Środoń, J., 1999. Nature of Mixed-Layer Clays and Mechanisms of Their Formation and Alteration. Annual Review of Earth and Planetary Sciences, 27(1):19-53. https://doi.org/10.1146/annurev.earth.27.1.19 |
Stixrude, L., Peacor, D. R., 2002. First-Principles Study of Illite-Smectite and Implications for Clay Mineral Systems. Nature, 420(6912):165-168. https://doi.org/10.1038/nature01155 |
Su, W. B., Huff, W. D., Ettensohn, F. R., et al., 2009. K-Bentonite, Black-Shale and Flysch Successions at the Ordovician-Silurian Transition, South China:Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana. Gondwana Research, 15(1):111-130. https://doi.org/10.1016/j.gr.2008.06.004 |
Thyberg, B., Jahren, J., Winje, T., et al., 2010. Quartz Cementation in Late Cretaceous Mudstones, Northern North Sea:Changes in Rock Properties due to Dissolution of Smectite and Precipitation of Micro-Quartz Crystals. Marine and Petroleum Geology, 27(8):1752-1764. https://doi.org/10.1016/j.marpetgeo.2009.07.005 |
Tréguer, P. J., De La Rocha, C. L., 2013. The World Ocean Silica Cycle. Annual Review of Marine Science, 5(1):477-501. https://doi.org/10.1146/annurev-marine-121211-172346 |
Tréguer, P., Bowler, C., Moriceau, B., et al., 2017. Influence of Diatom Diversity on the Ocean Biological Carbon Pump. Nature Geoscience, 11(1):27-37. https://doi.org/10.1038/s41561-017-0028-x |
van de Kamp, P. C., 2008. Smectite-Illite-Muscovite Transformations, Quartz Dissolution, and Silica Release in Shales. Clays and Clay Minerals, 56(1):66-81. https://doi.org/10.1346/ccmn.2008.0560106 |
Wang, K., Orth, C. J., Attrep, M. Jr., et al., 1993. The Great Latest Ordovician Extinction on the South China Plate:Chemostratigraphic Studies of the Ordovician-Silurian Boundary Interval on the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 104(1/2/3/4):61-79. https://doi.org/10.1016/0031-0182(93)90120-8 |
Wedepohl, K. H., 1971. Environmental Influences on the Chemical Composition of Shales and Clays. In: Ahrens, L. H., Press, F., Runcorn, S. K., et al., eds., Physics and Chemistry of the Earth, Vol. 8. Oxford, Pergamon. 307-331 |
Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation:A Review-Part 1:Bulk Properties, Multi-Scale Geometry and Gas Adsorption. Journal of Earth Science, 28(5):739-757. https://doi.org/10.1007/s12583-017-0732-x |
Worden, R. H., Morad, S., 2000. Quartz Cementation in Oil Field Sandstones: A Review of the Key Controversies. In: Worden, R. H., Morad, S., eds., Quartz Cementation in Sandstones. Alden Press, Oxford, Northampton. 1-20 |
Wright, A. M., Ratcliffe, K. T., Spain, D., 2010. Application of Inorganic Whole Rock Geochemistry to Shale Resource Plays. Canadian Unconventional Resources and International Petroleum Conference, 19-21 October, Calgary, Alberta, Canada. 19-21. https://doi.org/10.2118/137946-ms |
Yamamoto, K., 1987. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1/2):65-108. https://doi.org/10.1016/0037-0738(87)90017-0 |
Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2009. Geochemical Changes across the Ordovician-Silurian Transition on the Yangtze Platform, South China. Science in China Series D:Earth Sciences, 52(1):38-54. https://doi.org/10.1007/s11430-008-0143-z |
Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2010. Large-Scale Climatic Fluctuations in the Latest Ordovician on the Yangtze Block, South China. Geology, 38(7):599-602. https://doi.org/10.1130/g30961.1 |
Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2012. Predominance of Stratified Anoxic Yangtze Sea Interrupted by Short-Term Oxygenation during the Ordo-Silurian Transition. Chemical Geology, 291:69-78. https://doi.org/10.1016/j.chemgeo.2011.09.015 |
Zhang, T. S., Kershaw, S., Wan, Y., et al., 2000. Geochemical and Facies Evidence for Palaeoenvironmental Change during the Late Ordovician Hirnantian Glaciation in South Sichuan Province, China. Global and Planetary Change, 24(2):133-152. https://doi.org/10.1016/s0921-8181(99)00063-6 |
Zhao, J. H., Jin, Z. K., Jin, Z. J., et al., 2017. Origin of Authigenic Quartz in Organic-Rich Shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China:Implications for Pore Evolution. Journal of Natural Gas Science and Engineering, 38:21-38. https://doi.org/10.1016/j.jngse.2016.11.037 |
Zhu, B., Jiang, S. Y., Pi, D. H., et al., 2018. Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China:Implications for Redox and Open vs. Restricted Basin Conditions. Journal of Earth Science, 29(2):342-352. https://doi.org/10.1007/s12583-017-0907-5 |