Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Yuanku Meng, Fahui Xiong, Jingsui Yang, Zhao Liu, Kieran A. Iles, Paul T. Robinson, Xiangzhen Xu. Tectonic Implications and Petrogenesis of the Various Types of Magmatic Rocks from the Zedang Area in Southern Tibet. Journal of Earth Science, 2019, 30(6): 1125-1143. doi: 10.1007/s12583-019-1248-3
Citation: Yuanku Meng, Fahui Xiong, Jingsui Yang, Zhao Liu, Kieran A. Iles, Paul T. Robinson, Xiangzhen Xu. Tectonic Implications and Petrogenesis of the Various Types of Magmatic Rocks from the Zedang Area in Southern Tibet. Journal of Earth Science, 2019, 30(6): 1125-1143. doi: 10.1007/s12583-019-1248-3

Tectonic Implications and Petrogenesis of the Various Types of Magmatic Rocks from the Zedang Area in Southern Tibet

doi: 10.1007/s12583-019-1248-3
More Information
  • Corresponding author: Fahui Xiong
  • Received Date: 21 May 2019
  • Accepted Date: 25 Aug 2019
  • Publish Date: 01 Dec 2019
  • In this study, we report systematically field observations, geochronology, whole-rock geochemistry and Sr-Nd-Hf isotopic dataset on the various types of magmatic rocks collected from the Zedang area. Chemically, the diabase and gabbro have a low-K calc-alkaline affinity, whereas the basalt and plagiogranite have medium to high-K calc-alkaline characteristics. In addition, the basalts are highly enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), but strongly depleted in high strength field elements (HFSE), indicating that their magma source probably was derived from a subduction- or arc-related setting. In contrast, both the gabbro and diabase mainly demonstrate an N-MORB-like affinity consistent with normal mid-oceanic ridge basalt (N-MORB) origin. The zircon U-Pb dating results suggest that the basalts were crystallized earlier at ca. 158-161 Ma (Oxfordian stage), but the gabbro was crystallized at ca. 131 Ma (Hauterivian stage of Early Cre-taceous). The zircon U-Pb dating results correspond with the field observations that the veins of gabbro intruded basalt. Furthermore, the plagiogranite has a weighted mean age of ca. 160 Ma (MSWD=2.1) consistent with the basalt within the uncertainty. The basalt and the plagiogranite have significantly positive εHf(t) values (+5.8 to +15.6 and +8.6 to +16.1, respectively), suggesting that they were originated from partial melting of a depleted source. However, basalt and plagiogranite are characterized by the wide variations of εHf(t) values indicating minor amounts of exotic crustal material input during the later magma evolution. Additionally, the basalt shows duplex geochemical features of island-arc and mid-oceanic ridge basalt, corresponding to the supra-subduction zone-(SSZ) type affinity. To sum up, two distinct magmatic events identified in this study probably suggest an intra-oceanic arc system ex-isting in the Zedang area during the Late Jurassic, but the intra-oceanic arc subduction extinguished in the Early Cretaceous as suggested by the N-MORB-like gabbro and diabase. Integrated with regional background and different rock types, as well as geochemical features, we conclude that intra-oceanic arc subduction setting developed during the Late Jurassic in the Zedang area, southern Tibet.

     

  • loading
  • Aitchison, J. C., Badengzhu, Davis, A. M., et al., 2000. Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet). Earth and Planetary Science Letters, 183(1/2):231-244. https://doi.org/10.1016/s0012-821x(00)00287-9
    Aitchison, J. C., McDermid, I. R. C., Ali, J. R., et al., 2007. Shoshonites in Southern Tibet Record Late Jurassic Rifting of a Tethyan Intraoceanic Island Arc. The Journal of Geology, 115(2):197-213. https://doi.org/10.1086/510642
    Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western An-atolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2):67-95. https://doi.org/10.1016/s0377-0273(00)00182-7
    Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
    Badengzhu, 1979. Xizang Autonomous Region Zhanang: Sangri Regional Geology Reconnaissance Map, Geological Scale 1: 50 000. Team 2# of Xizang Geological Survey, Lhasa (in Chinese)
    Barley, M. E., Pickard, A. L., Zaw, K., et al., 2003. Jurassic to Miocene Magmatism and Metamorphism in the Mogok Metamorphic Belt and the India-Eurasia Collision in Myanmar. Tectonics, 22(3):4-11. https://doi.org/10.1029/2002tc001398
    Brophy, J. G., 2009. La-SiO2 and Yb-SiO2 Systematics in Mid-Ocean Ridge Magmas:Implications for the Origin of Oceanic Plagiogranite. Con-tributions to Mineralogy and Petrology, 158(1):99-111. https://doi.org/10.1007/s00410-008-0372-3
    Brophy, J. G., Pu, X. F., 2012. Rare Earth Element-SiO2 Systematics of Mid-Ocean Ridge Plagiogranites and Host Gabbros from the Fournier Oceanic Fragment, New Brunswick, Canada:A Field Evaluation of some Model Predictions. Contributions to Mineralogy and Petrology, 164(2):191-204. https://doi.org/10.1007/s00410-012-0732-x
    Cao, Y. T., Liu, L., Wang, C., et al., 2019a. Multi-Stage Metamorphism of the UHP Pelitic Gneiss from the Southern Altyn Tagh HP/UHP Belt, Western China:Petrological and Geochronological Evidence. Journal of Earth Science, 30(3):603-620. https://doi.org/10.1007/s12583-019-0896-7
    Cao, Y. T., Liu, L., Wang, C., et al., 2019b. Timing and Nature of the Partial Melting Processes during the Exhumation of the Garnet-Bearing Biotite Gneiss in the Southern Altyn Tagh HP/UHP Belt, Western China. Journal of Asian Earth Sciences, 170:274-293. https://doi.org/10.1016/j.jseaes.2018.11.005
    Chen, Y. H., Yang, J. S., Zhang, L., et al., 2015. Mineralogical Study of the Hornblende Gabbro in Zetang Ophiolite, Southern Tibet, and Its Genetic Implications. Geology in China, 42(5):1421-1442 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201505016
    Cheng, H., Xia, B., Zheng, H., et al., 2018. Chronology, Geochemistry and Tectonic Significance of Daba Ophiolites in Western Segment of Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4):975-990. https://doi.org/10.3799/dqkx.2018.703 (in Chinese with English Ab-stract)
    Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34(9):745-748. https://doi.org/10.1130/g22725.1
    Coleman, R. G., Peterman, Z. E., 1975. Oceanic Plagiogranite. Journal of Geophysical Research, 80:1099-1108. https://doi.org/10.1029/jb080i008p01099
    Dai, J. G., Wang, C. S., Hébert, R., et al., 2011. Petrology and Geochemistry of Peridotites in the Zhongba Ophiolite, Yarlung Zangbo Suture Zone:Implications for the Early Cretaceous Intra-Oceanic Subduction Zone within the Neo-Tethys. Chemical Geology, 288(3/4):133-148. https://doi.org/10.1016/j.chemgeo.2011.07.011
    Dai, J. G., Wang, C. S, Polat, A., et al., 2013. Rapid Forearc Spreading between 130 and 120 Ma:Evidence from Geochronology and Geo-chemistry of the Xigaze Ophiolite, Southern Tibet. Lithos, 172/173:1-16. https://doi.org/10.1016/j.lithos.2013.03.011
    Davis, A. M., Aitchison, J. C., Badengzhu, et al., 2002. Paleogene Island Arc Collision-Related Conglomerates, Yarlung-Tsangpo Suture Zone, Tibet. Sedimentary Geology, 150(3/4):247-273. https://doi.org/10.1016/s0037-0738(01)00199-3
    Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
    DePaolo, D. J., Wasserburg, G. J., 1976a. Nd Isotopic Variations and Petrogenetic Models. Geophysical Research Letters, 3(5):249-252. https://doi.org/10.1029/gl003i005p00249
    DePaolo, D. J., Wasserburg, G. J., 1976b. Inferences about Magma Sources and Mantle Structure from Variations of 143Nd/144Nd. Geophysical Research Letters, 3(12):743-746. https://doi.org/10.1029/gl003i012p00743
    Dilek, Y., Furnes, H., 2009. Structure and Geochemistry of Tethyan Ophio-lites and Their Petrogenesis in Subduction Rollback Systems. Lithos, 113(1/2):1-20. https://doi.org/10.1016/j.lithos.2009.04.022
    Dilek, Y., Furnes, H., Shallo, M., 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ Evolution of a Marginal Basin Oceanic Crust. Lithos, 100(1/2/3/4):174-209. https://doi.org/10.1016/j.lithos.2007.06.026
    Dong, H. W., Meng, Y. K., Xu, Z. Q., et al., 2019. Timing of Displacement along the YardoiDetachment Fault, Southern Tibet:Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 30(3):535-548. https://doi.org/10.1007/s12583-019-1223-z
    Dong, X., Zhang, Z. M., 2015. Cambrian Granitoids from the Southeastern Tibetan Plateau:Research on Petrology and Zircon Hf Isotope. Acta Petrologica Sinica, 31(5):1183-1199 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505001
    Du, L., Long, X. P., Yuan, C., et al., 2018. Petrogenesis of Late Paleozoic Diorites and A-Type Granites in the Central Eastern Tianshan, NW China:Response to Post-Collisional Extension Triggered by Slab Breakoff. Lithos, 318/319:47-59. https://doi.org/10.1016/j.lithos.2018.08.006
    Dubois-Côté, V., Hébert, R., Dupuis, C., et al., 2005. Petrological and Geochemical Evidence for the Origin of the Yarlung Zangbo Ophiolites, Southern Tibet. Chemical Geology, 214(3/4):265-286. https://doi.org/10.1016/j.chemgeo.2004.10.004
    Ferlito, C., 2011. Bimodal Geochemical Evolution at Sheveluch Stratovolcano, Kamchatka, Russia:Consequence of a Complex Subduction at the Junction of the Kuril Kamchatka and Aleutian Island Arcs. Earth-Science Reviews, 105(1/2):49-69. https://doi.org/10.1016/j.earscirev.2010.12.003
    Floyd, P. A., 1991. Oceanic Basalts. Blackie and Son Limited, New York
    Frey, F. A., Green, D. H., Roy, S. D., 1978. Integrated Models of Basalt Petrogenesis:A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19(3):463-513. https://doi.org/10.1093/petrology/19.3.463
    Furnes, H., Dilek, Y., 2017. Geochemical Characterization and Petrogenesis of Intermediate to Silicic Rocks in Ophiolites:A Global Synthesis. Earth-Science Reviews, 166:1-37. https://doi.org/10.1016/j.earscirev.2017.01.001
    Gao, S., Zhang, H. F., 2012. Geochemistry. Geological Publishing House, Beijing. 1-410 (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fuzszxb201602011
    Gill, J., Whelan, P., 1989. Early Rifting of an Oceanic Island Arc (Fiji) Produced Shoshonitic to Tholeiitic Basalts. Journal of Geophysical Research:Solid Earth, 94(B4):4561-4578. https://doi.org/10.1029/jb094ib04p04561
    Goolaerts, A., Mattielli, N., de Jong, J., et al., 2004. Hf and Lu Isotopic Reference Values for the Zircon Standard 91500 by MC-ICP-MS. Chemical Geology, 206(1/2):1-9. https://doi.org/10.1016/j.chemgeo.2004.01.008
    Griffin, W. L., Afonso, J. C., Belousova, E. A., et al., 2016. Mantle Recy-cling:Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications. Journal of Petrology, 57(4):655-684. https://doi.org/10.1093/petrology/egw011
    Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LA-MC-ICP-MS Analysis of Zircon Megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
    Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China:In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
    Guo, L. S., Liu, Y. L., Liu, S. W., et al., 2013. Petrogenesis of Early to Middle Jurassic Granitoid Rocks from the Gangdese Belt, Southern Tibet:Implications for Early History of the Neo-Tethys. Lithos, 179:320-333. https://doi.org/10.1016/j.lithos.2013.06.011
    Harrison, T. M., Yin, A., Grove, M., et al., 2000. The Zedong Window:A Record of Superposed Tertiary Convergence in Southeastern Tibet. Journal of Geophysical Research:Solid Earth, 105(B8):19211-19230. https://doi.org/10.1029/2000jb900078
    Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himala-yan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
    Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055
    Ishizaka, K., Yanagi, T., 1975. Occurrence of Oceanic Plagiogranites in the Older Tectonic Zone, Southwest Japan. Earth and Planetary Science Letters, 27(3):371-377. https://doi.org/10.1016/0012-821x(75)90054-0
    Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1):47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262:229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
    Johnson, K. T. M., Dick, H. J. B., Shimizu, N., 1990. Melting in the Oceanic Upper Mantle:An Ion Microprobe Study of Diopsides in Abyssal Per-idotites. Journal of Geophysical Research, 95:2661-2678. https://doi.org/10.1029/jb095ib03p02661
    Kang, L., Xiao, P. X., Gao, X. F., et al., 2015. Geochemical Characteristics, Petrogenesis and Tectonic Setting of Oceanic Plagiogranites Belt in the Northwestern Margin of Western Kunlun. Acta Petrologica Sinica, 31(9):2566-2582 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201509008
    Kang, Z. Q., Xu, J. F., Wilde, S. A., et al., 2014. Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane:Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200:157-168. https://doi.org/10.1016/j.lithos.2014.04.019
    Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J., et al., 1990. High-Field-Strength Element Depletions in Arc Basalts due to Mantle-Magma Interaction. Nature, 345(6275):521-524. https://doi.org/10.1038/345521a0
    Kuibida, M. L., Kruk, N. N., Murzin, O. V., et al., 2013. Geologic Position, Age, and Petrogenesis of Plagiogranites in Northern Rudny Altai. Rus-sian Geology and Geophysics, 54(10):1305-1318. https://doi.org/10.1016/j.rgg.2013.09.012
    Li, C. F., Li, X. H., Li, Q. L., et al., 2011a. Directly Determining 143Nd/144Nd Isotope Ratios Using Thermal Ionization Mass Spectrometry for Geological Samples without Separation of Sm-Nd. Journal of Analytical Atomic Spectrometry, 26:2012-2022. https://doi.org/10.1039/c0ja00081g
    Li, C. F., Li, X. H., Li, Q. L., et al., 2011b. An Evaluation of a Single-Step Extraction Chromatography Separation Method for Sm-Nd Isotope Analysis of Micro Samples of Silicate Rocks by High-Sensitivity Thermal Ionization Mass Spectrometry. Analytica Chimica Acta, 706:297-304. https://doi.org/10.1016/j.aca.2011.08.036
    Li, C., 1987. The Longmucuo-Shuanghu-Lancangjiang Plate Suture and the North Boundary of Distribution of Gondwana Facies Permo-Carboniferous System in Northern Xizang, China. Journal of Changchun College of Geology, 17(2):155-166 (in Chinese with Eng-lish Abstract)
    Li, G. W., Fang, A. M., Wu, F. Y., et al., 2009. Studies on the U-Pb Ages and Hf Isotopes of Zircons in the Aoyitake Plagioclase, West Tarim. Acta Petrologica Sinica, 25(1):166-172 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200901014
    Li, Q., Xia, B., Huang, Q. T., et al., 2014. The Origin and Evolution of Zedang Ophiolite in the Eastern Yarlung-Zangbo Suture Zone, Southern Tibet. Acta Geologica Sinica, 88(2):145-166 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201402001
    Li, X.-P., Chen, H. K., Wang, Z. L., et al., 2015. Spinel Peridotite, Olivine Websterite and the Textural Evolution of the Purang Ophiolite Complex, Western Tibet. Journal of Asian Earth Sciences, 110:55-71. https://doi.org/10.1016/j.jseaes.2014.06.023
    Liu, F., Yang, J. S., Dilek, Y., et al., 2015. Geochronology and Geochemistry of Basaltic Lavas in the Dongbo and Purang Ophiolites of the Yar-lung-Zangbo Suture Zone:Plume-Influenced Continental Margin-Type Oceanic Lithosphere in Southern Tibet. Gondwana Research, 27:701-718. https://doi.org/10.1016/j.gr.2014.08.002
    Lu, F. X., Sang, L. K., 2002. Petrolgoy. Geological Publishing House, Beijing. 1-399 (in Chinese)
    Ma, L., Wang, Q., Li, Z. X., et al., 2013. Early Late Cretaceous (ca. 93 Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese:Lith-osphere-Asthenosphere Interaction during Slab Roll-back and an Insight into Early Late Cretaceous (ca. 100-80 Ma) Magmatic "Flare-up" in Southern Lhasa (Tibet). Lithos, 172/173:17-30. https://doi.org/10.1016/j.lithos.2013.03.007
    Ma, S. W., Meng, Y. K., Xu, Z. Q., et al., 2017. The Discovery of Late Triassic Mylonitic Granite and Geologic Significance in the Middle Gangdese Batholiths, Southern Tibet. Journal of Geodynamics, 104:49-64. https://doi.org/10.1016/j.jog.2016.10.007
    Ma, X. X., Meert, J. G., Xu, Z. Q., et al., 2018. Late Triassic Intra-Oceanic Arc System within Neotethys:Evidence from Cumulate Appinite in the Gangdese Belt, Southern Tibet. Lithosphere, 10(4):545-565. https://doi.org/10.1130/l682.1
    Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2):265-282. https://doi.org/10.1007/s12583-016-0925-8
    Mahoney, J. J., Frei, R., Tejada, M. L. G., et al., 1998. Tracing the Indian Ocean Mantle Domain through Time:Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor. Journal of Petrology, 39(7):1285-1306. https://doi.org/10.1093/petroj/39.7.1285
    McDermid, I. R. C., Aitchison, J. C., Davis, A. M., et al., 2002. The Zedong Terrane:A Late Jurassic Intra-Oceanic Magmatic Arc within the Yarlung-Tsangpo Suture Zone, Southeastern Tibet. Chemical Geology, 187(3/4):267-277. https://doi.org/10.1016/s0009-2541(02)00040-2
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
    Meng, Y. K., Xiong, F. H., Xu, Z. Q., et al., 2019. Petrogenesis of Late Cretaceous Mafic Enclaves and Their Host Granites in the Nyemo Region of Southern Tibet:Implications for the Tectonic-Magmatic Evolution of the Central Gangdese Belt. Journal of Asian Earth Sciences, 176:27-41. https://doi.org/10.1016/j.jseaes.2019.01.041
    Meng, Y. K., Xu, Z. Q., Ma, S. W., et al., 2018a. Late Triassic Granites from the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet. Acta Geologica Sinica-English Edition, 92(2):462-481. https://doi.org/10.1111/1755-6724.13537
    Meng, Y. K., Xu, Z. Q., Gao, C. S., et al., 2018b. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet. Acta Petrologica Sinica, 34(3):513-546 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803001
    Meng, Y. K., Ma, S. W., Xu, Z. Q., et al., 2018c. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4):1142-1163. https://doi.org/10.3799/dqkx.2018.713 (in Chinese with English Ab-stract)
    Meng, Y. K., Xu, Z. Q., Santosh, M., et al., 2016a. Late Triassic Crustal Growth in Southern Tibet:Evidence from the Gangdese Magmatic Belt. Gondwana Research, 37:449-464. https://doi.org/10.1016/j.gr.2015.10.007
    Meng, Y. K., Dong, H. W., Cong, Y., et al., 2016b. The Early-Stage Evolution of the Neo-Tethys Ocean:Evidence from Granitoids in the Middle Gangdese Batholith, Southern Tibet. Journal of Geodynamics, 94/95:34-49. https://doi.org/10.1016/j.jog.2016.01.003
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/igneous Rock System. Earth-Science Reviews, 37(3/4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
    Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Conti-nental Margins. American Journal of Science, 274(4):321-355. https://doi.org/10.2475/ajs.274.4.321
    Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1/2/3/4):49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
    Moyen, J. F., Laurent, O., 2018. Archaean Tectonic Systems:A View from Igneous Rocks. Lithos, 302/303:99-125. https://doi.org/10.1016/j.lithos.2017.11.038
    Natland, J. H., Dick, H. J. B., Miller, D. J., et al., 2002. Proceedings of the Ocean Drilling Program. College Station, Science Research. 1-69
    Pearce, J. A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenoliths. Shiva Publishing, Nantwich. 158-185
    Pearce, J. A., 1987. An Expert System for the Tectonic Characterization of Ancient Volcanic Rocks. Journal of Volcanology and Geothermal Research, 32(1/2/3):51-65. https://doi.org/10.1016/0377-0273(87)90036-9
    Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016
    Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5
    Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/bf00375192
    Peate, D. W., Pearce, J. A., 1998. Causes of Spatial Compositional Variations in Mariana Arc Lavas:Trace Element Evidence. The Island Arc, 7(3):479-495. https://doi.org/10.1111/j.1440-1738.1998.00205.x
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contri-butions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
    Peng, Z. X., Mahoney, J., Hooper, P., et al., 1994. A Role for Lower Continental Crust in Flood Basalt Genesis? Isotopic and Incompatible Element Study of the Lower Six Formations of the Western Deccan Traps. Geochimica et Cosmochimica Acta, 58(1):267-288. https://doi.org/10.1016/0016-7037(94)90464-2
    Popov, V. S., Bogatov, V. I., Zhuravlev, D. Z., 2002. Sources of Granite Magmas and Middle and Southern Urals Earth Crust Formation:Sm-Nd and Rb-Sr Isotopic Data. Petrologia, 10:389-410 (in Russian)
    Pu, W., Zhao, K. D., Ling, H. F., et al., 2004. High Precision Nd Isotope Measurement by Triton TI Mass Spectrometry. Acta Geoscientia Sinica, 25:271-274 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200402033
    Qu, X. M., Xin, H. B., Xu, W. Y., 2007. Collation of Age of Ore-Hosting Volcanics in Xiongcun Superlarge Cu-Au Deposit on Basis of Three Zircon U-Pb SHRIMP Ages. Mineral Deposits, 26(5):512-518 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200705003
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
    Richards, J. P., Kerrich, R., 2007. Adakite-Like Rocks:Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4):537-576. https://doi.org/10.2113/gsecongeo.102.4.537
    Rollinson, H. R., 1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. Longmans Singapore Publishers (Pte), Singapore
    Rollinson, H., 2009. New Models for the Genesis of Plagiogranites in the Oman Ophiolite. Lithos, 112(3/4):603-614. https://doi.org/10.1016/j.lithos.2009.06.006
    Saccani, E., Allahyari, K., Beccaluva, L., et al., 2013. Geochemistry and Petrology of the Kermanshah Ophiolites (Iran):Implication for the In-teraction between Passive Rifting, Oceanic Accretion, and OIB-Type Components in the Southern Neo-Tethys Ocean. Gondwana Research, 24(1):392-411. https://doi.org/10.1016/j.gr.2012.10.009
    Schärer, U., Xu, R. H., Allègre, C. J., 1984. UPb Geochronology of Gangdese (Transhimalaya) Plutonism in the Lhasa-Xigaze Region, Tibet. Earth and Planetary Science Letters, 69(2):311-320. https://doi.org/10.1016/0012-821x(84)90190-0
    Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2):297-312. https://doi.org/10.1007/s00410-009-0478-2
    Searle, M. P., Khan, M. A., Fraser, J. E., et al., 1999. The Tectonic Evolution of the Kohistan-Karakoram Collision Belt along the Karakoram Highway Transect, North Pakistan. Tectonics, 18(6):929-949. https://doi.org/10.1029/1999tc900042
    Searle, M. P., Noble, S. R., Cottle, J. M., et al., 2007. Tectonic Evolution of the Mogok Metamorphic Belt, Burma (Myanmar) Constrained by U-Th-Pb Dating of Metamorphic and Magmatic Rocks. Tectonics, 26(3):623-626. https://doi.org/10.1029/2006tc002083
    Shastry, A., Srivastava, R. K., Chandra, R., et al., 2002. Geochemical Characteristics and Genesis of Oceanic Plagiogranites Associated with South Andaman Ophiolite Suite, India:A Late Stage Silicate Liquid Immiscible Product. Journal of the Geological Society of India, 59(3):233-241
    Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1):101-118. https://doi.org/10.1016/0012-821x(82)90120-0
    Sisson, T. W., Grove, T. L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2):143-166. https://doi.org/10.1007/bf00283225
    Sisson, T. W., Grove, T. L., Coleman, D. S., 1996. Hornblende Gabbro Sill Complex at Onion Valley, California, and a Mixing Origin for the Sierra Nevada Batholith. Contributions to Mineralogy and Petrology, 126(1/2):81-108. https://doi.org/10.1007/s004100050237
    Smith, I. E. M., Stewart, R. B., Price, R. C., et al., 2010. Are Arc-Type Rocks the Products of Magma Crystallisation? Observations from a Simple Oceanic Arc Volcano:Raoul Island, Kermadec Arc, SW Pacific. Journal of Volcanology and Geothermal Research, 190(1/2):219-234. https://doi.org/10.1016/j.jvolgeores.2009.05.006
    Su, B. X., Teng, F. Z., Hu, Y., et al., 2015. Iron and Magnesium Isotope Fractionation in Oceanic Lithosphere and Sub-Arc Mantle:Perspectives from Ophiolites. Earth and Planetary Science Letters, 430:523-532. https://doi.org/10.1016/j.epsl.2015.08.020
    Su, B. X., Zhou, M. F., Jing, J. J., et al., 2019. Distinctive Melt Activity and Chromite Mineralization in Luobusa and Purang Ophiolites, Southern Tibet:Constraints from Trace Element Compositions of Chromite and Olivine. Science Bulletin, 64(2):108-121. https://doi.org/10.1016/j.scib.2018.12.018
    Sun, C. H., Stern, R. J., 2001. Genesis of Mariana Shoshonites:Contribution of the Subduction Component. Journal of Geophysical Research:Solid Earth, 106(B1):589-608. https://doi.org/10.1029/2000jb900342
    Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5):1026-1039. https://doi.org/10.1007/s12583-018-0854-9
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sun, S. S., Nesbitt, R. W., Sharaskin, A. Y., 1979. Geochemical Characteristics of Mid-Ocean Ridge Basalts. Earth and Planetary Science Letters, 44(1):119-138. https://doi.org/10.1016/0012-821x(79)90013-x
    Tang, J. X., Li, F. J., Li, Z. J., et al., 2010. Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet:Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite. Mineral Deposits, 29 (3):461-475 (in Chinese with English Abstract)
    Van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan Subducted Slabs under India. Earth and Planetary Science Letters, 171(1):7-20. https://doi.org/10.1016/s0012-821x(99)00131-4
    Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4):533-556. https://doi.org/10.1016/s0016-7037(98)00274-9
    Wang, J. G., Hu, X. M., Garzanti, E., et al., 2013. Upper Oligocene-Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet:Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. The Journal of Geology, 121(4):425-444. https://doi.org/10.1086/670722
    Wang, L., Zeng, L. S., Gao, L. E., et al., 2012. Remnant Jurassic Intraoceanic Arc System in Southern Tibet:Geochemistry and Tectonic Implications. Acta Petrologica Sinica, 28(6):1741-1754 (in Chinese with English Abstract)
    Wang, S. J., Li, X. P., Duan, W. Y., et al., 2019a. Record of Early-Stage Rodingitization from the Purang Ophiolite Complex, Western Tibet. Journal of Earth Science. https://doi.org/10.1007/s12583-019-1244-7
    Wang, S. J., Li, X. P., Schertl, H. P., et al., 2019b. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1):77-97. https://doi.org/10.1007/s00710-018-0636-1
    Wei, D. L., 2007. Geochemical Characteristics and Tectonic Significance of the Zedong Ophiolite, Yarlung-Zangbo Suture Zone: [Dissertation]. Graduate School of the Chinese Academy of Sciences, Beijing. 1-107 (in Chinese with English Abstract)
    Wen, D., Liu, D., Chung, S., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3/4):191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003
    Wilson, M., 1989. Igneous Petrogenesis:A Global Tectonic Approach, Chapters 6-7. Unwin Hyman, London
    Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
    Winter, J. D., 2010. Principles of Igneous and Metamorphic Petrology, Second Edition, Chapters 16-17. Prentice Hall, New Jersey
    Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2):53-72. https://doi.org/10.1016/j.epsl.2004.12.005
    Xia, B., Guo, L. Z., Shi, Y. Q., 1998. Ophiolites and Tectonics in the Southwest Tibet. Sun Yat-Sen University Press, Guangzhou (in Chinese)
    Xiong, F. H., Liu, Z., Kapsiotis, A., et al., 2019. Petrogenesis of Lherzolites from the Purang Ophiolite, Yarlung-Zangbo Suture Zone, Tibet:Origin and Significance of Ultra-High Pressure and other 'Unusual' Minerals in the Neo-Tethyan Lithospheric Mantle. International Geology Review, 61(17):2184-2210. https://doi.org/10.1080/00206814.2019.1584771
    Xiong, F. H., Yang, J. S., Badengzhu, et al., 2014. Different Type of Chromitite and Genetic Model from Luobusa Ophiolite Tibet. Acta Petrologica Sinica, 30(8):2137-2163 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408003
    Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2015. Origin of Podiform Chromitite, a New Model Based on the Luobusa Ophiolite, Tibet. Gondwana Research, 27(2):525-542. https://doi.org/10.1016/j.gr.2014.04.008
    Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2016. Diamonds and other Exotic Minerals Recovered from Peridotites of the Dangqiong Ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet. Acta Geologica Sinica-English Edition, 90(2):425-439. https://doi.org/10.1111/1755-6724.12681
    Xiong, F. H., Yang, J. S., Xu, X. Z., et al., 2018. Compositional and Isotopic Heterogeneities in the Neo-Tethyan Upper Mantle Recorded by Coex-isting Al-Rich and Cr-Rich Chromitites in the Purang Peridotite Massif, SW Tibet (China). Journal of Asian Earth Sciences, 159:109-129. https://doi.org/10.1016/j.jseaes.2018.03.024
    Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2016. Southward Trench Migration at~130-120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites. Earth and Planetary Science Letters, 438:57-65. https://doi.org/10.1016/j.epsl.2016.01.014
    Xu, J. F., Castillo, P. R., 2004. Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere:Implications for the Origin of the Indian Ocean Mantle Domain. Tectonophysics, 393(1/2/3/4):9-27. https://doi.org/10.1016/j.tecto.2004.07.028
    Xu, X. Z., Yang, J. S., Guo, G. L., et al., 2011. Lithological Research on the Purang Mantle Peridotite in Western Yarlung-Zangbo Suture Zone in Tibet. Acta Petrologica Sinica, 27:3179-3196 (in Chinese with English Abstract)
    Xu, Z. Q., Dilek, Y., Yang, J. S., et al., 2015. Crustal Structure of the Indus-Tsangpo Suture Zone and Its Ophiolites in Southern Tibet. Gondwana Research, 27(2):507-524. https://doi.org/10.1016/j.gr.2014.08.001
    Yamamoto, S., Komiya, T., Yamamoto, H., et al., 2013. Recycled Crustal Zircons from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet. Island Arc, 22(1):89-103. https://doi.org/10.1111/iar.12011
    Yang, J. S., Meng, F. C., Xu, X. Z., et al., 2015. Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals. Gondwana Research, 27(2):459-485. https://doi.org/10.1016/j.gr.2014.07.004
    Yang, J. S., Robinson, P. T., Dilek, Y., 2014. Diamonds in Ophiolites:A Little-Known Diamond Occurrence. Elements, 10:123-126. https://doi.org/10.2113/gselements.10.2.123
    Yang, Z. M., Hou, Z. Q., Xia, D. X., et al., 2008. Relationship between Western Porphyry and Mineralization in Qulong Copper Deposit of Tibet and Its Enlightenment to Further Exploration. Mineral Deposits, 27:28-36 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200801003
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
    Yin, A., Harrison, T. M., Ryerson, F. J., et al., 1994. Tertiary Structural Evolution of the Gangdese Thrust System, Southeastern Tibet. Journal of Geophysical Research:Solid Earth, 99(B9):18175-18201. https://doi.org/10.1029/94jb00504
    Yu, Y. P., Xie, C. M., Wang, M., et al., 2019. Geochemical Features and Geological Significance of Early Jurassic Granites in Milashan Area, Southern Tibet. Earth Science, 44(7): 2295–2307. https://doi.org/10.3799/ dqkx.2019.023 (in Chinese with English Abstract) doi: 10.3799/dqkx.2019.023
    Zhang, H. F., Xu, W. C., Guo, J. Q., et al., 2007. Zircon U-Pb and Hf Isotopic Composition of Deformed Granite in the Southern Margin of the Gangdese Belt, Tibet: Evidence for Early Jurassic Subduction of Neo-Tethyan Oceanic Slab. Acta Petrologica Sinica, 23(6): 1347–1353 (in Chinese with English Abstract)
    Zhang, L. L., Liu, C. Z., Wu, F. Y., et al., 2014. Zedong Terrane Revisited: An Intra-Oceanic Arc within Neo-Tethys or a Part of the Asian Active Continental Margin?. Journal of Asian Earth Sciences, 80: 34–55. https://doi.org/10.1016/j.jseaes.2013.10.029
    Zhang, P. F., Zhou, M. F., Liu, Q. Y., et al., 2019. Modification of Mantle Rocks by Plastic Flow below Spreading Centers: Fe Isotopic and Fabric Evidence from the Luobusa Ophiolite, Tibet. Geochimica et Cosmochimica Acta, 253: 84–110. https://doi.org/10.1016/j.gca.2019.03.008
    Zhang, S. Q., Mahoney, J. J., Mo, X. X., et al., 2005. Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics.Journal of Petrology, 46(4): 829–858. https://doi.org/10.1093/petrology/egi002
    Zhang, X., Li, X. P., Wang, Z. L., et al., 2016. Mineralogical and Petrogeochemical Characteristics of the Garnet Amphibolites in the Xigaze Ophiolite, Tibet. Acta Petrologica Sinica, 32(12): 3685–3702 (in Chinese with English Abstract)
    Zhang, Y., Meng, F. X., Niu, Y. L., 2016. Hf Isotope Systematics of Seamounts near the East Pacific Rise (EPR) and Geodynamic Implications. Lithos, 262: 107–119. https://doi.org/10.1016/j.lithos.2016.06.026
    Zhao, J. N., 2018. Petro-Geochemistry and Chronology of Saga Ophiolite in Mid-Western Part of Yarlung-Zangbo Ophiolite Belt and Its Tectonic Significance. Acta Scientiarum Naturalium University Sunyatseni, 57(6): 29–40 http://d.old.wanfangdata.com.cn/Periodical/zsdxxb201806004
    Zhou, M. F., Robinson, P. T., Malpas, J., et al., 2005. REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615–639. https://doi.org/10.1093/petrology/egh091
    Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442–471. https://doi.org/10.2747/0020-6814.50.5.442
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241–255. https://doi.org/10.1016/j.epsl.2010.11.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(1360) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return