Aitchison, J. C., Badengzhu, Davis, A. M., et al., 2000. Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet). Earth and Planetary Science Letters, 183(1/2):231-244. https://doi.org/10.1016/s0012-821x(00)00287-9 |
Aitchison, J. C., McDermid, I. R. C., Ali, J. R., et al., 2007. Shoshonites in Southern Tibet Record Late Jurassic Rifting of a Tethyan Intraoceanic Island Arc. The Journal of Geology, 115(2):197-213. https://doi.org/10.1086/510642 |
Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western An-atolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2):67-95. https://doi.org/10.1016/s0377-0273(00)00182-7 |
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x |
Badengzhu, 1979. Xizang Autonomous Region Zhanang: Sangri Regional Geology Reconnaissance Map, Geological Scale 1: 50 000. Team 2# of Xizang Geological Survey, Lhasa (in Chinese) |
Barley, M. E., Pickard, A. L., Zaw, K., et al., 2003. Jurassic to Miocene Magmatism and Metamorphism in the Mogok Metamorphic Belt and the India-Eurasia Collision in Myanmar. Tectonics, 22(3):4-11. https://doi.org/10.1029/2002tc001398 |
Brophy, J. G., 2009. La-SiO2 and Yb-SiO2 Systematics in Mid-Ocean Ridge Magmas:Implications for the Origin of Oceanic Plagiogranite. Con-tributions to Mineralogy and Petrology, 158(1):99-111. https://doi.org/10.1007/s00410-008-0372-3 |
Brophy, J. G., Pu, X. F., 2012. Rare Earth Element-SiO2 Systematics of Mid-Ocean Ridge Plagiogranites and Host Gabbros from the Fournier Oceanic Fragment, New Brunswick, Canada:A Field Evaluation of some Model Predictions. Contributions to Mineralogy and Petrology, 164(2):191-204. https://doi.org/10.1007/s00410-012-0732-x |
Cao, Y. T., Liu, L., Wang, C., et al., 2019a. Multi-Stage Metamorphism of the UHP Pelitic Gneiss from the Southern Altyn Tagh HP/UHP Belt, Western China:Petrological and Geochronological Evidence. Journal of Earth Science, 30(3):603-620. https://doi.org/10.1007/s12583-019-0896-7 |
Cao, Y. T., Liu, L., Wang, C., et al., 2019b. Timing and Nature of the Partial Melting Processes during the Exhumation of the Garnet-Bearing Biotite Gneiss in the Southern Altyn Tagh HP/UHP Belt, Western China. Journal of Asian Earth Sciences, 170:274-293. https://doi.org/10.1016/j.jseaes.2018.11.005 |
Chen, Y. H., Yang, J. S., Zhang, L., et al., 2015. Mineralogical Study of the Hornblende Gabbro in Zetang Ophiolite, Southern Tibet, and Its Genetic Implications. Geology in China, 42(5):1421-1442 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201505016 |
Cheng, H., Xia, B., Zheng, H., et al., 2018. Chronology, Geochemistry and Tectonic Significance of Daba Ophiolites in Western Segment of Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4):975-990. https://doi.org/10.3799/dqkx.2018.703 (in Chinese with English Ab-stract) |
Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34(9):745-748. https://doi.org/10.1130/g22725.1 |
Coleman, R. G., Peterman, Z. E., 1975. Oceanic Plagiogranite. Journal of Geophysical Research, 80:1099-1108. https://doi.org/10.1029/jb080i008p01099 |
Dai, J. G., Wang, C. S., Hébert, R., et al., 2011. Petrology and Geochemistry of Peridotites in the Zhongba Ophiolite, Yarlung Zangbo Suture Zone:Implications for the Early Cretaceous Intra-Oceanic Subduction Zone within the Neo-Tethys. Chemical Geology, 288(3/4):133-148. https://doi.org/10.1016/j.chemgeo.2011.07.011 |
Dai, J. G., Wang, C. S, Polat, A., et al., 2013. Rapid Forearc Spreading between 130 and 120 Ma:Evidence from Geochronology and Geo-chemistry of the Xigaze Ophiolite, Southern Tibet. Lithos, 172/173:1-16. https://doi.org/10.1016/j.lithos.2013.03.011 |
Davis, A. M., Aitchison, J. C., Badengzhu, et al., 2002. Paleogene Island Arc Collision-Related Conglomerates, Yarlung-Tsangpo Suture Zone, Tibet. Sedimentary Geology, 150(3/4):247-273. https://doi.org/10.1016/s0037-0738(01)00199-3 |
Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 |
DePaolo, D. J., Wasserburg, G. J., 1976a. Nd Isotopic Variations and Petrogenetic Models. Geophysical Research Letters, 3(5):249-252. https://doi.org/10.1029/gl003i005p00249 |
DePaolo, D. J., Wasserburg, G. J., 1976b. Inferences about Magma Sources and Mantle Structure from Variations of 143Nd/144Nd. Geophysical Research Letters, 3(12):743-746. https://doi.org/10.1029/gl003i012p00743 |
Dilek, Y., Furnes, H., 2009. Structure and Geochemistry of Tethyan Ophio-lites and Their Petrogenesis in Subduction Rollback Systems. Lithos, 113(1/2):1-20. https://doi.org/10.1016/j.lithos.2009.04.022 |
Dilek, Y., Furnes, H., Shallo, M., 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ Evolution of a Marginal Basin Oceanic Crust. Lithos, 100(1/2/3/4):174-209. https://doi.org/10.1016/j.lithos.2007.06.026 |
Dong, H. W., Meng, Y. K., Xu, Z. Q., et al., 2019. Timing of Displacement along the YardoiDetachment Fault, Southern Tibet:Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 30(3):535-548. https://doi.org/10.1007/s12583-019-1223-z |
Dong, X., Zhang, Z. M., 2015. Cambrian Granitoids from the Southeastern Tibetan Plateau:Research on Petrology and Zircon Hf Isotope. Acta Petrologica Sinica, 31(5):1183-1199 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505001 |
Du, L., Long, X. P., Yuan, C., et al., 2018. Petrogenesis of Late Paleozoic Diorites and A-Type Granites in the Central Eastern Tianshan, NW China:Response to Post-Collisional Extension Triggered by Slab Breakoff. Lithos, 318/319:47-59. https://doi.org/10.1016/j.lithos.2018.08.006 |
Dubois-Côté, V., Hébert, R., Dupuis, C., et al., 2005. Petrological and Geochemical Evidence for the Origin of the Yarlung Zangbo Ophiolites, Southern Tibet. Chemical Geology, 214(3/4):265-286. https://doi.org/10.1016/j.chemgeo.2004.10.004 |
Ferlito, C., 2011. Bimodal Geochemical Evolution at Sheveluch Stratovolcano, Kamchatka, Russia:Consequence of a Complex Subduction at the Junction of the Kuril Kamchatka and Aleutian Island Arcs. Earth-Science Reviews, 105(1/2):49-69. https://doi.org/10.1016/j.earscirev.2010.12.003 |
Floyd, P. A., 1991. Oceanic Basalts. Blackie and Son Limited, New York |
Frey, F. A., Green, D. H., Roy, S. D., 1978. Integrated Models of Basalt Petrogenesis:A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19(3):463-513. https://doi.org/10.1093/petrology/19.3.463 |
Furnes, H., Dilek, Y., 2017. Geochemical Characterization and Petrogenesis of Intermediate to Silicic Rocks in Ophiolites:A Global Synthesis. Earth-Science Reviews, 166:1-37. https://doi.org/10.1016/j.earscirev.2017.01.001 |
Gao, S., Zhang, H. F., 2012. Geochemistry. Geological Publishing House, Beijing. 1-410 (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fuzszxb201602011 |
Gill, J., Whelan, P., 1989. Early Rifting of an Oceanic Island Arc (Fiji) Produced Shoshonitic to Tholeiitic Basalts. Journal of Geophysical Research:Solid Earth, 94(B4):4561-4578. https://doi.org/10.1029/jb094ib04p04561 |
Goolaerts, A., Mattielli, N., de Jong, J., et al., 2004. Hf and Lu Isotopic Reference Values for the Zircon Standard 91500 by MC-ICP-MS. Chemical Geology, 206(1/2):1-9. https://doi.org/10.1016/j.chemgeo.2004.01.008 |
Griffin, W. L., Afonso, J. C., Belousova, E. A., et al., 2016. Mantle Recy-cling:Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications. Journal of Petrology, 57(4):655-684. https://doi.org/10.1093/petrology/egw011 |
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LA-MC-ICP-MS Analysis of Zircon Megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 |
Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China:In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 |
Guo, L. S., Liu, Y. L., Liu, S. W., et al., 2013. Petrogenesis of Early to Middle Jurassic Granitoid Rocks from the Gangdese Belt, Southern Tibet:Implications for Early History of the Neo-Tethys. Lithos, 179:320-333. https://doi.org/10.1016/j.lithos.2013.06.011 |
Harrison, T. M., Yin, A., Grove, M., et al., 2000. The Zedong Window:A Record of Superposed Tertiary Convergence in Southeastern Tibet. Journal of Geophysical Research:Solid Earth, 105(B8):19211-19230. https://doi.org/10.1029/2000jb900078 |
Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himala-yan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 |
Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055 |
Ishizaka, K., Yanagi, T., 1975. Occurrence of Oceanic Plagiogranites in the Older Tectonic Zone, Southwest Japan. Earth and Planetary Science Letters, 27(3):371-377. https://doi.org/10.1016/0012-821x(75)90054-0 |
Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1):47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 |
Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262:229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020 |
Johnson, K. T. M., Dick, H. J. B., Shimizu, N., 1990. Melting in the Oceanic Upper Mantle:An Ion Microprobe Study of Diopsides in Abyssal Per-idotites. Journal of Geophysical Research, 95:2661-2678. https://doi.org/10.1029/jb095ib03p02661 |
Kang, L., Xiao, P. X., Gao, X. F., et al., 2015. Geochemical Characteristics, Petrogenesis and Tectonic Setting of Oceanic Plagiogranites Belt in the Northwestern Margin of Western Kunlun. Acta Petrologica Sinica, 31(9):2566-2582 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201509008 |
Kang, Z. Q., Xu, J. F., Wilde, S. A., et al., 2014. Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane:Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200:157-168. https://doi.org/10.1016/j.lithos.2014.04.019 |
Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J., et al., 1990. High-Field-Strength Element Depletions in Arc Basalts due to Mantle-Magma Interaction. Nature, 345(6275):521-524. https://doi.org/10.1038/345521a0 |
Kuibida, M. L., Kruk, N. N., Murzin, O. V., et al., 2013. Geologic Position, Age, and Petrogenesis of Plagiogranites in Northern Rudny Altai. Rus-sian Geology and Geophysics, 54(10):1305-1318. https://doi.org/10.1016/j.rgg.2013.09.012 |
Li, C. F., Li, X. H., Li, Q. L., et al., 2011a. Directly Determining 143Nd/144Nd Isotope Ratios Using Thermal Ionization Mass Spectrometry for Geological Samples without Separation of Sm-Nd. Journal of Analytical Atomic Spectrometry, 26:2012-2022. https://doi.org/10.1039/c0ja00081g |
Li, C. F., Li, X. H., Li, Q. L., et al., 2011b. An Evaluation of a Single-Step Extraction Chromatography Separation Method for Sm-Nd Isotope Analysis of Micro Samples of Silicate Rocks by High-Sensitivity Thermal Ionization Mass Spectrometry. Analytica Chimica Acta, 706:297-304. https://doi.org/10.1016/j.aca.2011.08.036 |
Li, C., 1987. The Longmucuo-Shuanghu-Lancangjiang Plate Suture and the North Boundary of Distribution of Gondwana Facies Permo-Carboniferous System in Northern Xizang, China. Journal of Changchun College of Geology, 17(2):155-166 (in Chinese with Eng-lish Abstract) |
Li, G. W., Fang, A. M., Wu, F. Y., et al., 2009. Studies on the U-Pb Ages and Hf Isotopes of Zircons in the Aoyitake Plagioclase, West Tarim. Acta Petrologica Sinica, 25(1):166-172 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200901014 |
Li, Q., Xia, B., Huang, Q. T., et al., 2014. The Origin and Evolution of Zedang Ophiolite in the Eastern Yarlung-Zangbo Suture Zone, Southern Tibet. Acta Geologica Sinica, 88(2):145-166 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201402001 |
Li, X.-P., Chen, H. K., Wang, Z. L., et al., 2015. Spinel Peridotite, Olivine Websterite and the Textural Evolution of the Purang Ophiolite Complex, Western Tibet. Journal of Asian Earth Sciences, 110:55-71. https://doi.org/10.1016/j.jseaes.2014.06.023 |
Liu, F., Yang, J. S., Dilek, Y., et al., 2015. Geochronology and Geochemistry of Basaltic Lavas in the Dongbo and Purang Ophiolites of the Yar-lung-Zangbo Suture Zone:Plume-Influenced Continental Margin-Type Oceanic Lithosphere in Southern Tibet. Gondwana Research, 27:701-718. https://doi.org/10.1016/j.gr.2014.08.002 |
Lu, F. X., Sang, L. K., 2002. Petrolgoy. Geological Publishing House, Beijing. 1-399 (in Chinese) |
Ma, L., Wang, Q., Li, Z. X., et al., 2013. Early Late Cretaceous (ca. 93 Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese:Lith-osphere-Asthenosphere Interaction during Slab Roll-back and an Insight into Early Late Cretaceous (ca. 100-80 Ma) Magmatic "Flare-up" in Southern Lhasa (Tibet). Lithos, 172/173:17-30. https://doi.org/10.1016/j.lithos.2013.03.007 |
Ma, S. W., Meng, Y. K., Xu, Z. Q., et al., 2017. The Discovery of Late Triassic Mylonitic Granite and Geologic Significance in the Middle Gangdese Batholiths, Southern Tibet. Journal of Geodynamics, 104:49-64. https://doi.org/10.1016/j.jog.2016.10.007 |
Ma, X. X., Meert, J. G., Xu, Z. Q., et al., 2018. Late Triassic Intra-Oceanic Arc System within Neotethys:Evidence from Cumulate Appinite in the Gangdese Belt, Southern Tibet. Lithosphere, 10(4):545-565. https://doi.org/10.1130/l682.1 |
Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2):265-282. https://doi.org/10.1007/s12583-016-0925-8 |
Mahoney, J. J., Frei, R., Tejada, M. L. G., et al., 1998. Tracing the Indian Ocean Mantle Domain through Time:Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor. Journal of Petrology, 39(7):1285-1306. https://doi.org/10.1093/petroj/39.7.1285 |
McDermid, I. R. C., Aitchison, J. C., Davis, A. M., et al., 2002. The Zedong Terrane:A Late Jurassic Intra-Oceanic Magmatic Arc within the Yarlung-Tsangpo Suture Zone, Southeastern Tibet. Chemical Geology, 187(3/4):267-277. https://doi.org/10.1016/s0009-2541(02)00040-2 |
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4 |
Meng, Y. K., Xiong, F. H., Xu, Z. Q., et al., 2019. Petrogenesis of Late Cretaceous Mafic Enclaves and Their Host Granites in the Nyemo Region of Southern Tibet:Implications for the Tectonic-Magmatic Evolution of the Central Gangdese Belt. Journal of Asian Earth Sciences, 176:27-41. https://doi.org/10.1016/j.jseaes.2019.01.041 |
Meng, Y. K., Xu, Z. Q., Ma, S. W., et al., 2018a. Late Triassic Granites from the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet. Acta Geologica Sinica-English Edition, 92(2):462-481. https://doi.org/10.1111/1755-6724.13537 |
Meng, Y. K., Xu, Z. Q., Gao, C. S., et al., 2018b. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet. Acta Petrologica Sinica, 34(3):513-546 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803001 |
Meng, Y. K., Ma, S. W., Xu, Z. Q., et al., 2018c. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4):1142-1163. https://doi.org/10.3799/dqkx.2018.713 (in Chinese with English Ab-stract) |
Meng, Y. K., Xu, Z. Q., Santosh, M., et al., 2016a. Late Triassic Crustal Growth in Southern Tibet:Evidence from the Gangdese Magmatic Belt. Gondwana Research, 37:449-464. https://doi.org/10.1016/j.gr.2015.10.007 |
Meng, Y. K., Dong, H. W., Cong, Y., et al., 2016b. The Early-Stage Evolution of the Neo-Tethys Ocean:Evidence from Granitoids in the Middle Gangdese Batholith, Southern Tibet. Journal of Geodynamics, 94/95:34-49. https://doi.org/10.1016/j.jog.2016.01.003 |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/igneous Rock System. Earth-Science Reviews, 37(3/4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 |
Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Conti-nental Margins. American Journal of Science, 274(4):321-355. https://doi.org/10.2475/ajs.274.4.321 |
Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1/2/3/4):49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003 |
Moyen, J. F., Laurent, O., 2018. Archaean Tectonic Systems:A View from Igneous Rocks. Lithos, 302/303:99-125. https://doi.org/10.1016/j.lithos.2017.11.038 |
Natland, J. H., Dick, H. J. B., Miller, D. J., et al., 2002. Proceedings of the Ocean Drilling Program. College Station, Science Research. 1-69 |
Pearce, J. A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenoliths. Shiva Publishing, Nantwich. 158-185 |
Pearce, J. A., 1987. An Expert System for the Tectonic Characterization of Ancient Volcanic Rocks. Journal of Volcanology and Geothermal Research, 32(1/2/3):51-65. https://doi.org/10.1016/0377-0273(87)90036-9 |
Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016 |
Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5 |
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/bf00375192 |
Peate, D. W., Pearce, J. A., 1998. Causes of Spatial Compositional Variations in Mariana Arc Lavas:Trace Element Evidence. The Island Arc, 7(3):479-495. https://doi.org/10.1111/j.1440-1738.1998.00205.x |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contri-butions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 |
Peng, Z. X., Mahoney, J., Hooper, P., et al., 1994. A Role for Lower Continental Crust in Flood Basalt Genesis? Isotopic and Incompatible Element Study of the Lower Six Formations of the Western Deccan Traps. Geochimica et Cosmochimica Acta, 58(1):267-288. https://doi.org/10.1016/0016-7037(94)90464-2 |
Popov, V. S., Bogatov, V. I., Zhuravlev, D. Z., 2002. Sources of Granite Magmas and Middle and Southern Urals Earth Crust Formation:Sm-Nd and Rb-Sr Isotopic Data. Petrologia, 10:389-410 (in Russian) |
Pu, W., Zhao, K. D., Ling, H. F., et al., 2004. High Precision Nd Isotope Measurement by Triton TI Mass Spectrometry. Acta Geoscientia Sinica, 25:271-274 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200402033 |
Qu, X. M., Xin, H. B., Xu, W. Y., 2007. Collation of Age of Ore-Hosting Volcanics in Xiongcun Superlarge Cu-Au Deposit on Basis of Three Zircon U-Pb SHRIMP Ages. Mineral Deposits, 26(5):512-518 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200705003 |
Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891 |
Richards, J. P., Kerrich, R., 2007. Adakite-Like Rocks:Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4):537-576. https://doi.org/10.2113/gsecongeo.102.4.537 |
Rollinson, H. R., 1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. Longmans Singapore Publishers (Pte), Singapore |
Rollinson, H., 2009. New Models for the Genesis of Plagiogranites in the Oman Ophiolite. Lithos, 112(3/4):603-614. https://doi.org/10.1016/j.lithos.2009.06.006 |
Saccani, E., Allahyari, K., Beccaluva, L., et al., 2013. Geochemistry and Petrology of the Kermanshah Ophiolites (Iran):Implication for the In-teraction between Passive Rifting, Oceanic Accretion, and OIB-Type Components in the Southern Neo-Tethys Ocean. Gondwana Research, 24(1):392-411. https://doi.org/10.1016/j.gr.2012.10.009 |
Schärer, U., Xu, R. H., Allègre, C. J., 1984. UPb Geochronology of Gangdese (Transhimalaya) Plutonism in the Lhasa-Xigaze Region, Tibet. Earth and Planetary Science Letters, 69(2):311-320. https://doi.org/10.1016/0012-821x(84)90190-0 |
Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2):297-312. https://doi.org/10.1007/s00410-009-0478-2 |
Searle, M. P., Khan, M. A., Fraser, J. E., et al., 1999. The Tectonic Evolution of the Kohistan-Karakoram Collision Belt along the Karakoram Highway Transect, North Pakistan. Tectonics, 18(6):929-949. https://doi.org/10.1029/1999tc900042 |
Searle, M. P., Noble, S. R., Cottle, J. M., et al., 2007. Tectonic Evolution of the Mogok Metamorphic Belt, Burma (Myanmar) Constrained by U-Th-Pb Dating of Metamorphic and Magmatic Rocks. Tectonics, 26(3):623-626. https://doi.org/10.1029/2006tc002083 |
Shastry, A., Srivastava, R. K., Chandra, R., et al., 2002. Geochemical Characteristics and Genesis of Oceanic Plagiogranites Associated with South Andaman Ophiolite Suite, India:A Late Stage Silicate Liquid Immiscible Product. Journal of the Geological Society of India, 59(3):233-241 |
Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1):101-118. https://doi.org/10.1016/0012-821x(82)90120-0 |
Sisson, T. W., Grove, T. L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2):143-166. https://doi.org/10.1007/bf00283225 |
Sisson, T. W., Grove, T. L., Coleman, D. S., 1996. Hornblende Gabbro Sill Complex at Onion Valley, California, and a Mixing Origin for the Sierra Nevada Batholith. Contributions to Mineralogy and Petrology, 126(1/2):81-108. https://doi.org/10.1007/s004100050237 |
Smith, I. E. M., Stewart, R. B., Price, R. C., et al., 2010. Are Arc-Type Rocks the Products of Magma Crystallisation? Observations from a Simple Oceanic Arc Volcano:Raoul Island, Kermadec Arc, SW Pacific. Journal of Volcanology and Geothermal Research, 190(1/2):219-234. https://doi.org/10.1016/j.jvolgeores.2009.05.006 |
Su, B. X., Teng, F. Z., Hu, Y., et al., 2015. Iron and Magnesium Isotope Fractionation in Oceanic Lithosphere and Sub-Arc Mantle:Perspectives from Ophiolites. Earth and Planetary Science Letters, 430:523-532. https://doi.org/10.1016/j.epsl.2015.08.020 |
Su, B. X., Zhou, M. F., Jing, J. J., et al., 2019. Distinctive Melt Activity and Chromite Mineralization in Luobusa and Purang Ophiolites, Southern Tibet:Constraints from Trace Element Compositions of Chromite and Olivine. Science Bulletin, 64(2):108-121. https://doi.org/10.1016/j.scib.2018.12.018 |
Sun, C. H., Stern, R. J., 2001. Genesis of Mariana Shoshonites:Contribution of the Subduction Component. Journal of Geophysical Research:Solid Earth, 106(B1):589-608. https://doi.org/10.1029/2000jb900342 |
Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5):1026-1039. https://doi.org/10.1007/s12583-018-0854-9 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Sun, S. S., Nesbitt, R. W., Sharaskin, A. Y., 1979. Geochemical Characteristics of Mid-Ocean Ridge Basalts. Earth and Planetary Science Letters, 44(1):119-138. https://doi.org/10.1016/0012-821x(79)90013-x |
Tang, J. X., Li, F. J., Li, Z. J., et al., 2010. Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet:Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite. Mineral Deposits, 29 (3):461-475 (in Chinese with English Abstract) |
Van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan Subducted Slabs under India. Earth and Planetary Science Letters, 171(1):7-20. https://doi.org/10.1016/s0012-821x(99)00131-4 |
Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4):533-556. https://doi.org/10.1016/s0016-7037(98)00274-9 |
Wang, J. G., Hu, X. M., Garzanti, E., et al., 2013. Upper Oligocene-Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet:Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. The Journal of Geology, 121(4):425-444. https://doi.org/10.1086/670722 |
Wang, L., Zeng, L. S., Gao, L. E., et al., 2012. Remnant Jurassic Intraoceanic Arc System in Southern Tibet:Geochemistry and Tectonic Implications. Acta Petrologica Sinica, 28(6):1741-1754 (in Chinese with English Abstract) |
Wang, S. J., Li, X. P., Duan, W. Y., et al., 2019a. Record of Early-Stage Rodingitization from the Purang Ophiolite Complex, Western Tibet. Journal of Earth Science. https://doi.org/10.1007/s12583-019-1244-7 |
Wang, S. J., Li, X. P., Schertl, H. P., et al., 2019b. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1):77-97. https://doi.org/10.1007/s00710-018-0636-1 |
Wei, D. L., 2007. Geochemical Characteristics and Tectonic Significance of the Zedong Ophiolite, Yarlung-Zangbo Suture Zone: [Dissertation]. Graduate School of the Chinese Academy of Sciences, Beijing. 1-107 (in Chinese with English Abstract) |
Wen, D., Liu, D., Chung, S., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3/4):191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003 |
Wilson, M., 1989. Igneous Petrogenesis:A Global Tectonic Approach, Chapters 6-7. Unwin Hyman, London |
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 |
Winter, J. D., 2010. Principles of Igneous and Metamorphic Petrology, Second Edition, Chapters 16-17. Prentice Hall, New Jersey |
Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2):53-72. https://doi.org/10.1016/j.epsl.2004.12.005 |
Xia, B., Guo, L. Z., Shi, Y. Q., 1998. Ophiolites and Tectonics in the Southwest Tibet. Sun Yat-Sen University Press, Guangzhou (in Chinese) |
Xiong, F. H., Liu, Z., Kapsiotis, A., et al., 2019. Petrogenesis of Lherzolites from the Purang Ophiolite, Yarlung-Zangbo Suture Zone, Tibet:Origin and Significance of Ultra-High Pressure and other 'Unusual' Minerals in the Neo-Tethyan Lithospheric Mantle. International Geology Review, 61(17):2184-2210. https://doi.org/10.1080/00206814.2019.1584771 |
Xiong, F. H., Yang, J. S., Badengzhu, et al., 2014. Different Type of Chromitite and Genetic Model from Luobusa Ophiolite Tibet. Acta Petrologica Sinica, 30(8):2137-2163 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408003 |
Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2015. Origin of Podiform Chromitite, a New Model Based on the Luobusa Ophiolite, Tibet. Gondwana Research, 27(2):525-542. https://doi.org/10.1016/j.gr.2014.04.008 |
Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2016. Diamonds and other Exotic Minerals Recovered from Peridotites of the Dangqiong Ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet. Acta Geologica Sinica-English Edition, 90(2):425-439. https://doi.org/10.1111/1755-6724.12681 |
Xiong, F. H., Yang, J. S., Xu, X. Z., et al., 2018. Compositional and Isotopic Heterogeneities in the Neo-Tethyan Upper Mantle Recorded by Coex-isting Al-Rich and Cr-Rich Chromitites in the Purang Peridotite Massif, SW Tibet (China). Journal of Asian Earth Sciences, 159:109-129. https://doi.org/10.1016/j.jseaes.2018.03.024 |
Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2016. Southward Trench Migration at~130-120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites. Earth and Planetary Science Letters, 438:57-65. https://doi.org/10.1016/j.epsl.2016.01.014 |
Xu, J. F., Castillo, P. R., 2004. Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere:Implications for the Origin of the Indian Ocean Mantle Domain. Tectonophysics, 393(1/2/3/4):9-27. https://doi.org/10.1016/j.tecto.2004.07.028 |
Xu, X. Z., Yang, J. S., Guo, G. L., et al., 2011. Lithological Research on the Purang Mantle Peridotite in Western Yarlung-Zangbo Suture Zone in Tibet. Acta Petrologica Sinica, 27:3179-3196 (in Chinese with English Abstract) |
Xu, Z. Q., Dilek, Y., Yang, J. S., et al., 2015. Crustal Structure of the Indus-Tsangpo Suture Zone and Its Ophiolites in Southern Tibet. Gondwana Research, 27(2):507-524. https://doi.org/10.1016/j.gr.2014.08.001 |
Yamamoto, S., Komiya, T., Yamamoto, H., et al., 2013. Recycled Crustal Zircons from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet. Island Arc, 22(1):89-103. https://doi.org/10.1111/iar.12011 |
Yang, J. S., Meng, F. C., Xu, X. Z., et al., 2015. Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals. Gondwana Research, 27(2):459-485. https://doi.org/10.1016/j.gr.2014.07.004 |
Yang, J. S., Robinson, P. T., Dilek, Y., 2014. Diamonds in Ophiolites:A Little-Known Diamond Occurrence. Elements, 10:123-126. https://doi.org/10.2113/gselements.10.2.123 |
Yang, Z. M., Hou, Z. Q., Xia, D. X., et al., 2008. Relationship between Western Porphyry and Mineralization in Qulong Copper Deposit of Tibet and Its Enlightenment to Further Exploration. Mineral Deposits, 27:28-36 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200801003 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Yin, A., Harrison, T. M., Ryerson, F. J., et al., 1994. Tertiary Structural Evolution of the Gangdese Thrust System, Southeastern Tibet. Journal of Geophysical Research:Solid Earth, 99(B9):18175-18201. https://doi.org/10.1029/94jb00504 |
Yu, Y. P., Xie, C. M., Wang, M., et al., 2019. Geochemical Features and Geological Significance of Early Jurassic Granites in Milashan Area, Southern Tibet. Earth Science, 44(7): 2295–2307. https://doi.org/10.3799/ dqkx.2019.023 (in Chinese with English Abstract) doi: 10.3799/dqkx.2019.023 |
Zhang, H. F., Xu, W. C., Guo, J. Q., et al., 2007. Zircon U-Pb and Hf Isotopic Composition of Deformed Granite in the Southern Margin of the Gangdese Belt, Tibet: Evidence for Early Jurassic Subduction of Neo-Tethyan Oceanic Slab. Acta Petrologica Sinica, 23(6): 1347–1353 (in Chinese with English Abstract) |
Zhang, L. L., Liu, C. Z., Wu, F. Y., et al., 2014. Zedong Terrane Revisited: An Intra-Oceanic Arc within Neo-Tethys or a Part of the Asian Active Continental Margin?. Journal of Asian Earth Sciences, 80: 34–55. https://doi.org/10.1016/j.jseaes.2013.10.029 |
Zhang, P. F., Zhou, M. F., Liu, Q. Y., et al., 2019. Modification of Mantle Rocks by Plastic Flow below Spreading Centers: Fe Isotopic and Fabric Evidence from the Luobusa Ophiolite, Tibet. Geochimica et Cosmochimica Acta, 253: 84–110. https://doi.org/10.1016/j.gca.2019.03.008 |
Zhang, S. Q., Mahoney, J. J., Mo, X. X., et al., 2005. Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics.Journal of Petrology, 46(4): 829–858. https://doi.org/10.1093/petrology/egi002 |
Zhang, X., Li, X. P., Wang, Z. L., et al., 2016. Mineralogical and Petrogeochemical Characteristics of the Garnet Amphibolites in the Xigaze Ophiolite, Tibet. Acta Petrologica Sinica, 32(12): 3685–3702 (in Chinese with English Abstract) |
Zhang, Y., Meng, F. X., Niu, Y. L., 2016. Hf Isotope Systematics of Seamounts near the East Pacific Rise (EPR) and Geodynamic Implications. Lithos, 262: 107–119. https://doi.org/10.1016/j.lithos.2016.06.026 |
Zhao, J. N., 2018. Petro-Geochemistry and Chronology of Saga Ophiolite in Mid-Western Part of Yarlung-Zangbo Ophiolite Belt and Its Tectonic Significance. Acta Scientiarum Naturalium University Sunyatseni, 57(6): 29–40 http://d.old.wanfangdata.com.cn/Periodical/zsdxxb201806004 |
Zhou, M. F., Robinson, P. T., Malpas, J., et al., 2005. REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615–639. https://doi.org/10.1093/petrology/egh091 |
Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442–471. https://doi.org/10.2747/0020-6814.50.5.442 |
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241–255. https://doi.org/10.1016/j.epsl.2010.11.005 |