Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x |
Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67–95. https://doi.org/10.1016/s0377-0273(00)00182-7 |
Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Elsevier Science Publishing Company, Amsterdam |
Buchs, D. M., Arculus, R. J., Baumgartner, P. O., et al., 2011. Oceanic Intraplate Volcanoes Exposed: Example from Seamounts Accreted in Panama. Geology, 39(4): 335–338. https://doi.org/10.1130/g31703.1 |
Buchs, D. M., Baumgartner, P. O., Baumgartner-Mora, C., et al., 2009. Late Cretaceous to Miocene Seamount Accretion and Mélange Formation in the Osa and Burica Peninsulas (Southern Costa Rica): Episodic Growth of a Convergent Margin. Geological Society, London, Special Publications, 328(1): 411–456. https://doi.org/10.1144/sp328.17 |
Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567–1574. https://doi.org/10.1039/b206707b |
Clarke, A. P., Vannucchi, P., Morgan, J., 2018. Seamount Chain-Subduction Zone Interactions: Implications for Accretionary and Erosive Subduction Zone Behavior. Geology, 46(4): 367–370. https://doi.org/10.1130/g40063.1 |
Dan, W., Wang, Q., White, W. M., et al., 2018. Rapid Formation of Eclogites during a nearly Closed Ocean: Revisiting the Pianshishan Eclogite in Qiangtang, Central Tibetan Plateau. Chemical Geology, 477: 112–122. https://doi.org/10.1016/j.chemgeo.2017.12.012 |
Ducea, M. N., Lutkov, V., Minaev, V. T., et al., 2003. Building the Pamirs: The View from the Underside. Geology, 31(10): 849–852. https://doi.org/10.1130/g19707.1 |
Fielding, E., Isacks, B., Barazangi, M., et al., 1994. How Flat is Tibet?. Geology, 22(2): 163–167. https://doi.org/10.1130/0091-7613(1994)022<0163:hfit>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0163:hfit>2.3.co;2 |
Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5): 1065–1073. https://doi.org/10.2113/gscanmin.38.5.1065 |
Hacker, B., Luffi, P., Lutkov, V., et al., 2005. Near-Ultrahigh Pressure Processing of Continental Crust: Miocene Crustal Xenoliths from the Pamir. Journal of Petrology, 46(8): 1661–1687. https://doi.org/10.1093/petrology/egi030 |
Hacker, B. R., Gnos, E., Ratschbacher, L., et al., 2000. Hot and Dry Deep Crustal Xenoliths from Tibet. Science, 287(5462): 2463–2466. https://doi.org/10.1126/science.287.5462.2463 |
Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017 |
Kapp, P., DeCelles, P. G., 2019. Mesozoic–Cenozoic Geological Evolution of the Himalayan-Tibetan Orogen and Working Tectonic Hypotheses. American Journal of Science, 319(3): 159–254. https://doi.org/10.2475/03.2019.01 |
Kapp, P., Yin, A., Manning, C. E., et al., 2003. Tectonic Evolution of the Early Mesozoic Blueschist-Bearing Qiangtang Metamorphic Belt, Central Tibet. Tectonics, 22(4): 1043. https://doi.org/10.1029/2002tc001383 |
Kapp, P., Υin, Α., Manning, C. E., et al., 2000. Blueschist-Bearing Metamorphic Core Complexes in the Qiangtang Block Reveal Deep Crustal Structure of Northern Tibet. Geology, 28(1): 19–22. https://doi.org/10.1130/0091-7613(2000)028<0019:bbmcci>2.3.co;2 doi: 10.1130/0091-7613(2000)028<0019:bbmcci>2.3.co;2 |
La Bas, M. J., Maitre, R. W. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.1093/petrology/27.3.745 |
La Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3/4): 115–136. https://doi.org/10.1016/s0009-2541(98)00002-3 |
Lai, S. C., Qin, J. F., Grapes, R., 2011. Petrochemistry of Granulite Xenoliths from the Cenozoic Qiangtang Volcanic Field, Northern Tibetan Plateau: Implications for Lower Crust Composition and Genesis of the Volcanism. International Geology Review, 53(8): 926–945. https://doi.org/10.1080/00206810903334914 |
Lee, C. T. A., Luffi, P., Plank, T., et al., 2009. Constraints on the Depths and Temperatures of Basaltic Magma Generation on Earth and other Terrestrial Planets Using New Thermobarometers for Mafic Magmas. Earth and Planetary Science Letters, 279(1/2): 20–33. https://doi.org/10.1016/j.epsl.2008.12.020 |
Li, C., Zhai, Q. G., Dong, Y. S., et al., 2007. Longmu Co-Shuanghu Plate Suture and Evolution Records of Paleo-Tethyan Oceanic in Qiangtang Area, Qinghai-Tibet Plateau. Frontiers of Earth Science in China, 1(3): 257–264. https://doi.org/10.1007/s11707-007-0032-3 |
Li, X. H., Tang, G. Q., Gong, B., et al., 2013. Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 58(36): 4647–4654. https://doi.org/10.1007/s11434-013-5932-x |
Liang, X., Wang, G. H., Yang, B., et al., 2017. Stepwise Exhumation of the Triassic Lanling High-Pressure Metamorphic Belt in Central Qiangtang, Tibet: Insights from a Coupled Study of Metamorphism, Deformation, and Geochronology. Tectonics, 36(4): 652–670. https://doi.org/10.1002/2016tc004455 |
Liu, B., Ma, C. Q., Guo, Y. H., et al., 2016. Petrogenesis and Tectonic Implications of Triassic Mafic Complexes with MORB/OIB Affinities from the Western Garzê-Litang Ophiolitic Mélange, Central Tibetan Plateau. Lithos, 260: 253–267. https://doi.org/10.1016/j.lithos.2016.06.009 |
Liu, D. L., Shi, R. D., Ding, L., et al., 2018. Late Cretaceous Transition from Subduction to Collision along the Bangong-Nujiang Tethys: New Volcanic Constraints from Central Tibet. Lithos, 296–299: 452–470. https://doi.org/10.1016/j.lithos.2017.11.012 |
Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. 4 |
Okamura, Y., 1991. Large-Scale Melange Formation Due to Seamount Subduction: An Example from the Mesozoic Accretionary Complex in Central Japan. The Journal of Geology, 99(5): 661–674. https://doi.org/10.1086/629531 |
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. https://doi.org/10.1007/bf00375192 |
Porter, K. A., White, W. M., 2009. Deep Mantle Subduction Flux. Geochemistry, Geophysics, Geosystems, 10(12): Q12016. https://doi.org/10.1029/2009gc002656 |
Pullen, A., Kapp, P., Gehrels, G. E., et al., 2011. Metamorphic Rocks in Central Tibet: Lateral Variations and Implications for Crustal Structure. Geological Society of America Bulletin, 123(3/4): 585–600. https://doi.org/10.1130/b30154.1 |
Reagan, M. K., Gill, J. B., 1989. Coexisting Calcalkaline and High-Niobium Basalts from Turrialba Volcano, Costa Rica: Implications for Residual Titanates in Arc Magma Sources. Journal of Geophysical Research: Solid Earth, 94(B4): 4619–4633. https://doi.org/10.1029/jb094ib04p04619 |
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Turekian, K., Holland, H., eds., Treatise on Geochemistry (Second Edition). Elsevier, Oxford. 1–51 |
Safonova, I., Kojima, S., Nakae, S., et al., 2015. Oceanic Island Basalts in Accretionary Complexes of SW Japan: Tectonic and Petrogenetic Implications. Journal of Asian Earth Sciences, 113: 508–523. https://doi.org/10.1016/j.jseaes.2014.09.015 |
Safonova, I., Maruyama, S., Kojima, S., et al., 2016. Recognizing OIB and MORB in Accretionary Complexes: A New Approach Based on Ocean Plate Stratigraphy, Petrology and Geochemistry. Gondwana Research, 33: 92–114. https://doi.org/10.1016/j.gr.2015.06.013 |
Sakai, S. T., Hirano, N., Dilek, Y., et al., 2019. Tokoro Belt (NE Hokkaido): An Exhumed, Jurassic–Early Cretaceous Seamount in the Late Cretaceous Accretionary Prism of Northern Japan. Geological Magazine, 42: 1–12. https://doi.org/10.1017/s0016756819000633 |
Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Tang, X. C., Zhang, K. J., 2013. Lawsonite- and Glaucophane-Bearing Blueschists from NW Qiangtang, Northern Tibet, China: Mineralogy, Geochemistry, Geochronology, and Tectonic Implications. International Geology Review, 56(2): 150–166. https://doi.org/10.1080/00206814.2013.820866 |
Wang, Y., Zhang, C., Xiu, S., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17: 413–421 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009 |
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2 |
Wu, H., Li, C., Chen, J. W., et al., 2015. Late Triassic Tectonic Framework and Evolution of Central Qiangtang, Tibet, SW China. Lithosphere, 8(2): 141–149. https://doi.org/10.1130/l468.1 |
Xu, P., Wu, F. Y., Xie, L. W., et al., 2004. Hf Isotopic Compositions of the Standard Zircons for U-Pb Dating. Chinese Science Bulletin, 49(15): 1642–1648. https://doi.org/10.1007/bf03184136 |
Yang, T. N., Hou, Z. Q., Wang, Y., et al., 2012. Late Paleozoic to Early Mesozoic Tectonic Evolution of Northeast Tibet: Evidence from the Triassic Composite Western Jinsha-Garzê-Litang Suture. Tectonics, 31(4): TC4004. https://doi.org/10.1029/2011tc003044 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013a. SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopic Compositions of a Mafic Dyke Swarm in the Qiangtang Terrane, Northern Tibet and Geodynamic Implications. Lithos, 174: 28–43. https://doi.org/10.1016/j.lithos.2012.10.018 |
Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013b. Triassic Arc Magmatism in the Qiangtang Area, Northern Tibet: Zircon U-Pb Ages, Geochemical and Sr-Nd-Hf Isotopic Characteristics, and Tectonic Implications. Journal of Asian Earth Sciences, 63: 162–178. https://doi.org/10.1016/j.jseaes.2012.08.025 |
Zhai, Q. G., Jahn, B. M., Wang, J., et al., 2013c. The Carboniferous Ophiolite in the Middle of the Qiangtang Terrane, Northern Tibet: SHRIMP U-Pb Dating, Geochemical and Sr-Nd-Hf Isotopic Characteristics. Lithos, 168/169: 186–199. https://doi.org/10.1016/j.lithos.2013.02.005 |
Zhai, Q. G., Jahn, B. M., Zhang, R. Y., et al., 2011a. Triassic Subduction of the Paleo-Tethys in Northern Tibet, China: Evidence from the Geochemical and Isotopic Characteristics of Eclogites and Blueschists of the Qiangtang Block. Journal of Asian Earth Sciences, 42(6): 1356–1370. https://doi.org/10.1016/j.jseaes.2011.07.023 |
Zhai, Q. G., Zhang, R. Y., Jahn, B. M., et al., 2011b. Triassic Eclogites from Central Qiangtang, Northern Tibet, China: Petrology, Geochronology and Metamorphic P-T Path. Lithos, 125(1/2): 173–189. https://doi.org/10.1016/j.lithos.2011.02.004 |
Zhai, Q. G., Cai, L., Huang, X. P., 2007. The Fragment of Paleo-Tethys Ophiolite from Central Qiangtang, Tibet: Geochemical Evidence of Metabasites in Guoganjianian. Science in China Series D: Earth Sciences, 50(9): 1302–1309. https://doi.org/10.1007/s11430-007-0051-7 |
Zhang, K. J., Cai, J. X., Zhang, Y. X., et al., 2006a. Eclogites from Central Qiangtang, Northern Tibet (China) and Tectonic Implications. Earth and Planetary Science Letters, 245(3/4): 722–729. https://doi.org/10.1016/j.epsl.2006.02.025 |
Zhang, K. J., Zhang, Y. X., Li, B., et al., 2006b. The Blueschist-Bearing Qiangtang Metamorphic Belt (Northern Tibet, China) as an in situ Suture Zone: Evidence from Geochemical Comparison with the Jinsa Suture. Geology, 34(6): 493–496. https://doi.org/10.1130/g22404.1 |
Zhang, X. Z., Dong, Y. S., Wang, Q., et al., 2017. Metamorphic Records for Subduction Erosion and Subsequent Underplating Processes Revealed by Garnet-Staurolite-Muscovite Schists in Central Qiangtang, Tibet. Geochemistry, Geophysics, Geosystems, 18(1): 266–279. https://doi.org/10.1002/2016gc006576 |
Zhang, Z. J., Deng, Y. F., Teng, J. W., et al., 2011. An Overview of the Crustal Structure of the Tibetan Plateau after 35 Years of Deep Seismic Soundings. Journal of Asian Earth Sciences, 40(4): 977–989. https://doi.org/10.1016/j.jseaes.2010.03.010 |
Zhao, J., Yuan, X., Liu, H., et al., 2010. The Boundary between the Indian and Asian Tectonic Plates below Tibet. Proceedings of the National Academy of Sciences, 107(25): 11229–11233. https://doi.org/10.1073/pnas.1001921107 |