Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Guidong Wei, Fanmei Kong, Hao Liu, Xiaoman Wang, Yancheng Zhang, Xiaohan Liu. Petrology, Metamorphic P-T Paths and Zircon U-Pb Ages for Paleoproterozoic Mafic Granulites from Xuanhua, North China Craton. Journal of Earth Science, 2019, 30(6): 1197-1214. doi: 10.1007/s12583-019-1251-8
Citation: Guidong Wei, Fanmei Kong, Hao Liu, Xiaoman Wang, Yancheng Zhang, Xiaohan Liu. Petrology, Metamorphic P-T Paths and Zircon U-Pb Ages for Paleoproterozoic Mafic Granulites from Xuanhua, North China Craton. Journal of Earth Science, 2019, 30(6): 1197-1214. doi: 10.1007/s12583-019-1251-8

Petrology, Metamorphic P-T Paths and Zircon U-Pb Ages for Paleoproterozoic Mafic Granulites from Xuanhua, North China Craton

doi: 10.1007/s12583-019-1251-8
More Information
  • Corresponding author: Fanmei Kong
  • Received Date: 15 Jun 2019
  • Accepted Date: 20 Sep 2019
  • Publish Date: 01 Dec 2019
  • The studied mafic granulites are located at Xiwangshan, Xuanhua region in the north of the Trans-North China Orogen (TNCO), occurring as lens within tonalite-trondhjemite-granodiorite (TTG) gneisses in the eastern part of the Xiwangshan area. The rocks contain the representative granulite-facies minerals such as garnet, clinopyroxene, orthopyroxene, plagioclase, amphibolite, rutile and quartz, and also well-developed melt pseudomorph and antiperthite. Although the prograde metamorphic stage (M1) cannot be retrieved due to rare preservation of pre-peak-stage mineral associations, three distinct mineral assemblages that formed in different metamorphic stages can be identified, based on petrography and mineralogy characteristics. The peak stage (M2) is characterized by Grt2+Cpx2+Amp2+Pl2+Rt+melt pseudomorphs, and a post-peak decompression stage (M3) contains a mineral assemblage of Grt3+Opx3+ Cpx3+Amp3+Pl3, while a later-retrogression stage (M4) is featured by coronas of Amp4+Pl4 surrounding garnet. By calculating metamorphic P-T conditions using THERMOCALC, stage M2 was constrained to be 13.2-14.8 kbar and 1 050-1 080℃, and M3 recorded P-T conditions of 5.7-7.3 kbar and 825-875℃, while M4 yielded P of~5 kbar and T of~660℃, consistent with amphibolite facies metamorphism. Taking into account of all these petrological data, we propose that the mafic granulite experienced a high-pressure (HP) and ultra-high temperature (UHT) granulite-facies metamorphism during the peak metamorphism, which was accompanied with a clockwise P-T path. U-Pb dating of metamorphic zircons in the granulites yields two groups of ages at 1 853±14 and 1 744±44 Ma, respectively. We suggest that the older age corresponded to the HP-UHT metamorphism, while the younger age represented an retrograde metamorphic event during cooling.

     

  • loading
  • Anderson, J. R., Payne, J. L., Kelsey, D. E., et al., 2012. High-Pressure Granulites at the Dawn of the Proterozoic. Geology, 40(5): 431–434. doi: 10.1130/g32854.1
    Anderson, L. J., Smith, R. D., 1995. The Effects of Temperature and fO2 on the Al-in-Hornblende Barometer. American Mineralogist, 80(5/6): 549–559. doi: 10.2138/am-1995-5-614
    Brown, M., 2007. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 49(3): 193–234. doi: 10.2747/0020-6814.49.3.193
    Brown, M., 2014. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 5(4): 553–569. doi: 10.1016/j.gsf.2014.02.005
    Brown, M., Johnson, T., 2018. Secular Change in Metamorphism and the Onset of Global Plate Tectonics. American Mineralogist, 103(2): 181–196. doi: 10.2138/am-2018-6166
    Chen, S., Li, X.-P., Kong, F. M., et al., 2018a. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219–1235. doi: 10.1007/s12583-017-0956-9
    Chen, S., Li, X.-P., Duan, W. Y., et al., 2018b. Petrological and Geochronological Study of Amphibolite from Jiaobei Terrane. Earth Science, 43(3): 716–732. doi: 10.3799/dqkx.2018.903 (in Chinese with English Abstract)
    Chopin, F., Schulmann, K., Štípská, P., et al., 2012. Microstructural and Metamorphic Evolution of a High-Pressure Granitic Orthogneiss during Continental Subduction (Orlica-Śnieżnik Dome, Bohemian Massif). Journal of Metamorphic Geology, 30(4): 347–376. doi: 10.1111/j.1525-1314.2011.00970.x
    Dong, J., Wei, C. J., Zhang, J. X., 2019. Ultra High Temperature Metamorphism of Mafic Granulites from South Altyn Orogen, West China: A Result from the Rapid Exhumation of Deeply Subducted Continental Crust. Journal of Metamorphic Geology, 37(3): 315–338. doi: 10.1111/jmg.12464
    Ernst, W. G., Liu, J., 1998. Experimental Phase-Equilibrium Study of Al-and Ti-Contents of Calcic Amphibole in MORB: A Semiquantitative Thermobarometer. American Mineralogist, 83(9/10): 952–969. doi: 10.2138/am-1998-9-1004
    Ernst, W. G., Liou, J. G., 2008. High- and Ultrahigh-Pressure Metamorphism: Past Results and Future Prospects. American Mineralogist, 93(11/12): 1771–1786. doi: 10.2138/am.2008.2940
    Fuhrman, M. L., Lindsley, D. H., 1988. Ternary-Feldspar Modeling and Thermometry. American Mineralogist, 73: 201–215
    Gerya, T. V., Perchuk, L. L., Triboulet, C., et al., 1997. Petrology of the Tumanshet Zonal Metamorphic Complex. Eastern Sayan Petrology, 5(6): 503–533
    Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9): 845–869. doi: 10.1111/jmg.12211
    Guo, J. H., O'Brien, P. J., Zhai, M. G., 2002. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 20(8): 741–756. doi: 10.1046/j.1525-1314.2002.00401.x
    Guo, J. H., Sun, M., Chen, F. K., et al., 2005. Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision. Journal of Asian Earth Sciences, 24(5): 629–642. doi: 10.1016/j.jseaes.2004.01.017
    Guo, J. H., Chen, Y., Peng, P., et al., 2006. Sapphirine Granulite from Daqingshan Area, Inner Mongolia 1.85 Ga Ultrahigh Temperature (UHT) Metamorphism. In: Proceedings of National Conference on Petrology and Geodynamics in China, Nanjing. 213–216 (in Chinese)
    Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93–1.92 Ga Caused by Gabbronorite Intrusions: Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222/223: 124–142. doi: 10.1016/j.precamres.2011.07.020
    Guo, J. H., Zhai, M. G., Peng, P., et al., 2015. Paleoproterozoic Granulites in the North China Craton and Their Geological Implications. In: Precambrian Geology of China. Springer, Berlin, Heidelberg. 137–169. doi: 10.1007/978-3-662-47885-1_3
    Harley, S. L., 1984. An Experimental Study of the Partitioning of Fe and Mg between Garnet and Orthopyroxene. Contributions to Mineralogy and Petrology, 86(4): 359–373. doi: 10.1007/bf01187140
    Holland, T. J. B., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4): 492–501. doi: 10.1007/s00410-003-0464-z
    Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333–383. doi: 10.1111/j.1525-1314.2010.00923.x
    Hu, Z. C., Liu, Y. S., Chen, L., et al., 2011. Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses During Laser Ablation ICP-MS Analysis at High Spatial Resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425–430. doi: 10.1039/c0ja00145g
    Huang, G. Y., Brown, M., Guo, J. H., et al., 2018. Challenges in Constraining the P-T Conditions of Mafic Granulites: An Example from the Northern Trans-North China Orogen. Journal of Metamorphic Geology, 36(6): 739–768. doi: 10.1111/jmg.12308
    Jiao, S. J., Fitzsimons, C. M., Guo, J. H., 2017. Paleoproterozoic UHT Metamorphism in the Daqingshan Terrane, North China Craton: New Constraints from Phase Equilibria Modeling and SIMS U-Pb Zircon Dating. Precambrian Research, 303: 208–227. doi: 10.1016/j.precamres.2017.03.024.
    Korhonen, F. J., Brown, M., Clark, C., et al., 2013. Osumilite-Melt Interactions in Ultrahigh Temperature Granulites: Phase Equilibria Modelling and Implications for the P-T-t Evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31(8): 881–907. doi: 10.1111/jmg.12049
    Krogh, E. J., 1988. The Garnet-Clinopyroxene Fe-Mg Geothermometer—A Reinterpretation of Existing Experimental Data. Contributions to Mineralogy and Petrology, 99(1): 44–48. doi: 10.1007/bf00399364
    Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. American Mineralogist, 82(9): 1019–1037. doi: 10.1180/minmag.1997.061.405.13
    Liao, Y., Wei, C. J., 2019. Ultrahigh-Temperature Mafic Granulite in the Huai'an Complex, North China Craton: Evidence from Phase Equilibria Modelling and Amphibole Thermometers. Gondwana Research, 76: 62–76. doi: 10.1016/j.gr.2019.05.010
    Li, J. H., Zhai, M. G., Qian, X. L., et al., 1998. The Geological Occurrence, Regional Tectonic Setting and Exhumation of Late Archaean High-Pressure Granulite with the High Grade Metamorphic Terranes, North to Central Portion of North China Craton. Acta Petrologica Sinica, 14: 176–189 (in Chinese with English Abstract)
    Li, X.-P., Wang, H., Kong, F. M., 2019. Probe into the Genesis of High Temperature-Ultrahigh Temperature Metamorphism: The Enlightenment from the Western Khondalite Belt of the North China Craton and the Namaqua Mobile Belt and the Bushveld Metamorphic Complex of South Africa. Acta Petrologica Sinica, 35(2): 295–311. doi: 10.18654/1000-0569/2019.02.02 (in Chinese with English Abstract)
    Li, X.-P., Wang, X., Chen, S., et al., 2018. Petrology and Zircon U-Pb Dating of Meta-Calcsilicate from the Jiaobei Terrane in the Jiao-Liao-Ji Belt of the North China Craton. Precambrian Research, 313: 221–241. doi: 10.1016/j.precamres.2018.04.018
    Li, X.-P., Yang, Z. Y., Zhao, G. C., et al., 2011. Geochronology of Khondalite-Series Rocks of the Jining Complex: Confirmation of Depositional Age and Tectonometamorphic Evolution of the North China Craton. International Geology Review, 53(10): 1194–1211. doi: 10.1080/00206810903548984
    Li, X. W., Wei, C. J., 2016. Phase Equilibria Modelling and Zircon Age Dating of Pelitic Granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 34(6): 595–615. doi: 10.1111/jmg.12195
    Li, X. W., Wei, C. J., 2018. Ultrahigh-Temperature Metamorphism in the Tuguiwula Area, Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 36(4): 489–509. doi: 10.1111/jmg.12301
    Li, Y., Zhang, C., Liu, X. Y., et al., 2019. Metamorphism and Oceanic Crust Exhumation—Constrained by the Jilang Eclogite and Meta-Quartzite from the Sumdo (U)HP Metamorphic Belt. Journal of Earth Science, 30(3): 510–524. doi: 10.1007/s12583-019-0894-9
    Liu, H., Li, X.-P., Kong, F. M., et al., 2019. Ultra-High Temperature Overprinting of High Pressure Pelitic Granulites in the Huai'an Complex, North China Craton: Evidence from Thermodynamic Modeling and Isotope Geochronology. Gondwana Research, 72: 15–33. doi: 10.1016/j.gr.2019.02.003
    Liu, F., Guo, J. H., Peng, P., et al., 2012. Zircon U-Pb Ages and Geochemistry of the Huai'an TTG Gneisses Terrane: Petrogenesis and Implications for 2.5 Ga Crustal Growth in the North China Craton. Precambrian Research, 212/213: 225–244. doi: 10.1016/j.precamres.2012.06.006
    Liu, J. H., Liu, F. L., Ding, Z. J., et al., 2013. The Growth, Reworking and Metamorphism of Early Precambrian Crust in the Jiaobei Terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf Isotopic Systematics, and REE Concentrations of Zircon from Archean Granitoid Gneisses. Precambrian Research, 224: 287–303. doi: 10.1016/j.precamres.2012.10.003
    Liu, T., Wei, C. J., 2018. Metamorphic Evolution of Archean Ultrahigh-Temperature Mafic Granulites from the Western Margin of Qian'an Gneiss Dome, Eastern Hebei Province, North China Craton: Insights into the Archean Tectonic Regime. Precambrian Research, 318: 170–187. doi: 10.1016/j.precamres.2018.10.007
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. doi: 10.1007/s11434-010-3052-4
    Liu, Y. C., Wang, A. D., Rolfo, F., et al., 2009. Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton. Journal of Metamorphic Geology, 27(2): 125–138. doi: 10.1111/j.1525-1314.2008.00810.x
    Liu, S. W., Zhao, G. C., Wilde, S. A., et al., 2006. Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes: Constraints on the Tectonothermal Evolution of the Trans-North China Orogen. Precambrian Research, 148(3/4): 205–224. doi: 10.1016/j.precamres.2006.04.003
    Ludwig, K. R., 2003. Users Manual for Isoplot/Ex (Rev. 2.49). Ageochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 1a, Berkeley. 55
    Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy & Petrology, 39: 55–76. doi: 10.1007/bf01226262
    Newton, R. C., Perkins, D., 1982. Thermodynamic Calibration of Geobarometers Based on the Assemblages Garnet-Plagioclase-Orthopyroxene (Clinopyroxene)-Quartz. American Mineralogist, 67: 203–222
    Nickel, K. G., Brey, G. P., Kogarko, L., 1985. Orthopyroxene-Clinopyroxene Equilibria in the System CaO-MgO-Al2O3-SiO2 (CMAS): New Experimental Results and Implications for Two-Pyroxene Thermometry. Contributions to Mineralogy and Petrology, 91(1): 44–53. doi: 10.1007/bf00429426
    O'Brien, P. J., Walte, N., Li, J. H., 2005. The Petrology of Two Distinct Granulite Types in the Hengshan Mts, China, and Tectonic Implications. Journal of Asian Earth Sciences, 24(5): 615–627. doi: 10.1016/j.jseaes.2004.01.002
    Peng, P., Wang, X. P., Windley, B. F., et al., 2014. Spatial Distribution of 1 950–1 800 Ma Metamorphic Events in the North China Craton: Implications for Tectonic Subdivision of the Craton. Lithos, 202/203: 250–266. doi: 10.1016/j.lithos.2014.05.033
    Peng, P., Zhai, M. G., Guo, J. H., et al., 2007. Nature of Mantle Source Contributions and Crystal Differentiation in the Petrogenesis of the 1.78 Ga Mafic Dykes in the Central North China Craton. Gondwana Research, 12(1/2): 29–46. doi: 10.1016/j.gr.2006.10.022
    Peng, P., Zhai, M. G., Zhang, H. F., et al., 2005. Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes. International Geology Review, 47(5): 492–508. doi: 10.2747/0020-6814.47.5.492
    Perkins, D. III, Chipera, S. J., 1985. Garnet-Orthopyroxene-Plagioclase-Quartz Barometry: Refinement and Application to the English River Subprovince and the Minnesota River Valley. Contributions to Mineralogy and Petrology, 89(1): 69–80. doi: 10.1007/bf01177592
    Powell, R., Holland, T. J. B., 1988. An Internally Consistent Dataset with Uncertainties and Correlations: 3. Applications to Geobarometry, Worked Examples and a Computer Program. Journal of Metamorphic Geology, 6(2): 173–204. doi: 10.1111/j.1525-1314.1988.tb00415.x
    Prakash, D., Arima, M., Mohan, A., 2007. Ultrahigh-Temperature Mafic Granulites from Panrimalai, South India: Constraints from Phase Equilibria and Thermobarometry. Journal of Asian Earth Sciences, 29(1): 41–61. doi: 10.1016/j.jseaes.2006.01.002
    Qian, J. H., Wei, C. J., Clarke, G. L., et al., 2015. Metamorphic Evolution and Zircon Ages of Garnet-Orthoamphibole Rocks in Southern Hengshan, North China Craton: Insights into the Regional Paleoproterozoic P-T-t History. Precambrian Research, 256: 223–240. doi: 10.1016/j.precamres.2014.11.013
    Qian, J. H., Wei, C. J., 2016. P-T-t Evolution of Garnet Amphibolites in the Wutai-Hengshan Area, North China Craton: Insights from Phase Equilibria and Geochronology. Journal of Metamorphic Geology, 34(5): 423–446. doi: 10.1111/jmg.12186
    Qian, J. H., Wei, C. J., Yin, C. Q., 2017. Paleoproterozoic P-T-t Evolution in the Hengshan-Wutai-Fuping Area, North China Craton: Evidence from Petrological and Geochronological Data. Precambrian Research, 303: 91–104. doi: 10.1016/j.precamres.2017.02.016
    Santosh, M., Sajeev, K., Li, J. H., 2006. Extreme Crustal Metamorphism during Columbia Supercontinent Assembly: Evidence from North China Craton. Gondwana Research, 10(3/4): 256–266. doi: 10.1016/j.gr.2006.06.005
    Santosh, M., Tsunogae, T., Li, J. H., et al., 2007a. Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263–285. doi: 10.1016/j.gr.2006.10.009
    Santosh, M., Wilde, S., Li, J., 2007b. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton: Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 159(3/4): 178–196. doi: 10.1016/j.precamres.2007.06.006
    Santosh, M., Kusky, T. M., 2010. Origin of Paired High Pressure-Ultrahigh-Temperature Orogens: A Ridge Subduction and Slab Window Model. Terra Nova, 22(1): 35–42. doi: 10.1111/j.1365-3121.2009.00914.x
    Santosh, M., Liu, S. J., Tsunogae, T., et al., 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222/223: 77–106. doi: 10.1016/j.precamres.2011.05.003
    Santosh, M., Yang, Q. Y., Teng, X. M., et al., 2015. Paleoproterozoic Crustal Growth in the North China Craton: Evidence from the Lüliang Complex. Precambrian Research, 263: 197–231. doi: 10.1016/j.precamres.2015.03.015
    Santosh, M., Teng, X. M., He, X. F., et al., 2016. Discovery of Neoarchean Suprasubduction Zone Ophiolite Suite from Yishui Complex in the North China Craton. Gondwana Research, 38: 1–27. doi: 10.1016/j.gr.2015.10.017
    Shen, Q. H., Geng, Y. S., Song, H. X., 2018. Progress on Metamorphic Petrology and Metamorphic Geology of China in the Last nearly 70 Years. Earth Science, 43(1): 1–23. doi: 10.3799/dqkx.2018.001 (in Chinese with English Abstract)
    Shen, Q. H., Geng, Y. S., Song, H. X., 2014. Geological Characters, Metamorphic Ages, P-T Paths and Their Tectonic Settings of the Granulites in Phanerozoic Orogens, China. Acta Petrolei Sinica, 30: 2777–2807 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410001
    Sun, G. M., Li, X.-P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026–1039. doi: 10.1007/s12583-018-0854-9
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. doi: 10.1144/gsl.sp.1989.042.01.19
    Tang, L., Santosh, M., Tsunogae, T., et al., 2017. Petrology, Phase Equilibria Modelling and Zircon U-Pb Geochronology of Paleoproterozoic Mafic Granulites from the Fuping Complex, North China Craton. Journal of Metamorphic Geology, 35(5): 517–540. doi: 10.1111/jmg.12243
    Tang, L., Santosh, M., 2018. Neoarchean-Paleoproterozoic Terrane Assembly and Wilson Cycle in the North China Craton: An Overview from the Central Segment of the Trans-North China Orogen. Earth-Science Reviews, 182: 1–27. doi: 10.1016/j.earscirev.2018.04.010
    Tsunogae, T., Dunkley, D. J., Horie, K., et al., 2014. Petrology and SHRIMP Zircon Geochronology of Granulites from Vesleknausen, Lützow-Holm Complex, East Antarctica: Neoarchean Magmatism and Neoproterozoic High-Grade Metamorphism. Geoscience Frontiers, 5(2): 167–182. doi: 10.1016/j.gsf.2013.04.003
    Wang, H. Z., Zhang, H. F., Zhai, M. G., et al., 2016. Granulite Facies Metamorphism and Crust Melting in the Huai'an Terrane at ~1.95 Ga, North China Craton: New Constraints from Geology, Zircon U-Pb, Lu-Hf Isotope and Metamorphic Conditions of Granulites. Precambrian Research, 286: 126–151. doi: 10.1016/j.precamres.2016.09.012
    Wang, J., Wu, Y. B., Gao, S., et al., 2010. Zircon U-Pb and Trace Element Data from Rocks of the Huai'an Complex: New Insights into the Late Paleoproterozoic Collision between the Eastern and Western Blocks of the North China Craton. Precambrian Research, 178(1/2/3/4): 59–71. doi: 10.1016/j.precamres.2010.01.007
    Wang, L. J., Guo, J. H., Peng, P., et al., 2011. Metamorphic and Geochronological Study of Garnet-Bearing Basic Granulites from Gushan, the Eastern End of the Khondalite Belt in the North China Craton. Acta Petrolei Sinica, 27: 3689–3700 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112015
    Wang, L. J., Guo, J. H., Peng, P., et al., 2015. Lithological Units at the Boundary Zone between the Jining and Huai'an Complexes (Central-Northern Margin of the North China Craton): A Paleoproterozoic Tectonic Mélange?. Lithos, 227: 205–224. doi: 10.1016/j.lithos.2015.04.006
    Wang, K. Y., Li, J. L., Hao, J., et al., 1996. The Wutaishan Orogenic Belt within the Shanxi Province, Northern China: A Record of Late Archaean Collision Tectonics. Precambrian Research, 78(1/2/3): 95–103. doi: 10.1016/0301-9268(95)00071-2
    Wang, S. J., Wang, L., Brown, M., et al., 2016. Multi-Stage Barite Crystallization in Partially Melted UHP Eclogite from the Sulu Belt, China. American Mineralogist, 101(3): 564–579. doi: 10.2138/am-2016-5384
    Wang, S. J., Wang, L., Brown, M., et al., 2017. Fluid Generation and Evolution during Exhumation of Deeply Subducted UHP Continental Crust: Petrogenesis of Composite Granite-Quartz Veins in the Sulu Belt, China. Journal of Metamorphic Geology, 35(6): 601–629. doi: 10.1111/jmg.12248
    Wang, S. J., Li, X.-P., Schertl, H. P., et al., 2019a. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1): 77–97. doi: 10.1007/s00710-018-0636-1
    Wang, S. J., Schertl, H. P., Pang, Y. M., 2019b. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences. doi: 10.1139/cjes-2019-0003
    Wei, C. J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science. 43: 24–43. doi: 10.3799/dqkx.2018.002 (in Chinese with English Abstract)
    Wei, C. J., Powell, R., 2004. Calculated Phase Relations in High-Pressure Metapelites in the System NKFMASH (Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O). Journal of Petrology, 45(1): 183–202. doi: 10.1093/petrology/egg085
    Wei, C. J., Qian, J. H., Zhou, X. W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485–497. doi: 10.1016/j.gsf.2014.02.008
    White, R. W., Powell, R., Holland, T. B., et al., 2000. The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions: Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497–511. doi: 10.1046/j.1525-1314.2000.00269.x
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187. doi: 10.2138/am.2010.3371
    White, R. W., Powell, R., Holland, T. J. B., et al., 2014. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3): 261–286. doi: 10.1111/jmg.12071
    Wu, J. L., Zhang, H. F., Zhai, M. G., et al., 2016. Discovery of Pelitic High-Pressure Granulite from Manjinggou of the Huai'an Complex, North China Craton: Metamorphic P-T Evolution and Geological Implications. Precambrian Research, 278: 323–336. doi: 10.1016/j.precamres.2016.03.001
    Yang, C., Wei, C. J., 2017. Ultrahigh Temperature (UHT) Mafic Granulites in the East Hebei, North China Craton: Constraints from a Comparison between Temperatures Derived from REE-Based Thermometers and Major Element-Based Thermometers. Gondwana Research, 46: 156–169. doi: 10.1016/j.gr.2017.02.017
    Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2008. Mesozoic Decratonization of the North China Block. Geology, 36(6): 467–470. doi: 10.1130/g24518a.1
    Yoshino, T., Yamamoto, H., Okudaira, T., et al., 1998. Crustal Thickening of the Lower Crust of the Kohistan Arc (N. Pakistan) Deduced from Al Zoning in Clinopyroxene and Plagioclase. Journal of Metamorphic Geology, 16(6): 729–748. doi: 10.1111/j.1525-1314.1998.00168.x
    Zhai, M. G., Guo, J. H., Yan, Y. H., 1992. Discovery and Preliminary Study of the Archean High-Pressure Granulites in the North China. Science in China, 12: 1325–1330 (in Chinese)
    Zhai, M. G., 2009. Two Kinds of Granulites (HT-HP and HT-UHT) in North China Craton: Their Genetic Relation and Geo Tectonic Implications. Acta Petrolei Sinica, 25: 1753–1771 (In Chinese with English Abstract)
    Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6–25. doi: 10.1016/j.gr.2011.02.005
    Zhang, D. D., Guo, J. H., Tian, Z. H., et al., 2016. Metamorphism and P-T Evolution of High Pressure Granulite in Chicheng, Northern Part of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 280: 76–94. doi: 10.1016/j.precamres.2016.04.009
    Zhang, H. F., Wang, H. Z., Santosh, M., et al., 2016. Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC): Implications for Timing of Cratonization and Crustal Evolution History. Precambrian Research, 272: 244–263. doi: 10.1016/j.precamres.2015.11.004
    Zhang, Y. C., Li, X.-P., Sun, G. M., et al., 2019. Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling. Journal of Earth Science, 30(3): 549–562. doi: 10.1007/s12583-019-1222-0
    Zhang, Y. H., Wei, C. J., Tian, W., et al., 2013. Reinterpretation of Metamorphic Age of the Hengshan Complex, North China Craton. Chinese Science Bulletin, 58(34): 4300–4307. doi: 10.1007/s11434-013-5993-x
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1): 55–88. doi: 10.1016/S0301-9268(00)00076-0
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202. doi: 10.1016/j.precamres.2004.10.002.
    Zhao, G. C., Wilde, S. A., Sun, M., et al., 2006. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex: Constraints on Late Archean to Paleoproterozoic Crustal Accretion and Collision of the Trans-North China Orogen. Geochimica et Cosmochimica Acta, 70: A740. doi: 10.1016/j.gca.2006.06.1332
    Zhao, G. C., 2009. Metamorphic Evolution of Major Tectonicunits in the Basement of the North China Craton: Key Issues and Discussion. Acta Petrologica Sinica, 25(8): 1772–1792 (in Chinese with English Abstract)
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2001. High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton: Petrology and Tectonic Implications. Journal of Petrology, 42(6): 1141–1170. doi: 10.1093/petrology/42.6.1141
    Zhao, G. C., Wilde, S. A., Guo, J. H., et al., 2010. Single Zircon Grainsrecord Two Continental Collisional Events in the North China Craton. Precambrian Research 177(3/4): 266–276. doi: 10.1016/j.precamres.2009.12.007
    Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222/223: 55–76. doi: 10.1016/j.precamres.2012.09.016
    Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207–1240. doi: 10.1016/j.gr.2012.08.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(756) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return