Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Yuting Cao, Liang Liu, Wenqiang Yang, Yuan Gao, Xiaohui Zhu. Reconstruction the Process of Partial Melting of the Retrograde Eclogite from the North Qaidam, Western China: Constraints from Titanite U-Pb Dating and Mineral Chemistry. Journal of Earth Science, 2019, 30(6): 1166-1177. doi: 10.1007/s12583-019-1253-6
Citation: Yuting Cao, Liang Liu, Wenqiang Yang, Yuan Gao, Xiaohui Zhu. Reconstruction the Process of Partial Melting of the Retrograde Eclogite from the North Qaidam, Western China: Constraints from Titanite U-Pb Dating and Mineral Chemistry. Journal of Earth Science, 2019, 30(6): 1166-1177. doi: 10.1007/s12583-019-1253-6

Reconstruction the Process of Partial Melting of the Retrograde Eclogite from the North Qaidam, Western China: Constraints from Titanite U-Pb Dating and Mineral Chemistry

doi: 10.1007/s12583-019-1253-6
More Information
  • Corresponding author: Yuting Cao
  • Received Date: 21 Jun 2019
  • Accepted Date: 09 Oct 2019
  • Publish Date: 01 Dec 2019
  • Retrograde eclogite and garnet amphibolite of the Lüliangshan unit of the Shenglikou area, North Qaidam, were studied with emphasis on rutile and titanite. A special focus is on the formation of rutile and its corona of titanite (Ttn1) in retrograde eclogite and on coarse-grained titanite (Ttn2) from the garnet amphibolite. Using zirconium (Zr)-in-rutile and Zr-in-titanite thermometers, the temperatures estimated for the formation of an early generation of rutile are 823-884 ℃ at 2.5-2.8 GPa, while 812-894 ℃ at 1.3-1.5 GPa are derived for the formation of coronitic Ttn1 in the retrograde eclogite. Therefore, isothermal decompression must have occurred during exhumation, which also has triggered the partial melting of the retrograde eclogite. Ttn2 of the garnet amphibolite has high REE contents and high Th/U ratios, indicating that it is newly grown from a Ti, Ca, and LREE enriched anatectic melt derived from the partial melting of retrograde eclogite. LA-ICP MS U-Pb dating yields a lower intercept age of 423±4 Ma for Ttn2, which is consistent with the granulite-facies metamorphic age of the retrograde eclogite. Moreover, a temperature of 781-823℃ at 1.0-1.2 GPa is obtained for Ttn2, which fits the P-T conditions of the HP granulite-facies metamorphic stage (P=1.07-1.24 GPa and T=774-814℃), and documents that the crystallization of the melt occurred at the granulite-facies stage at 423 Ma. The high amount of REE of the garnet amphibolite is a consequence of the formation of Ttn2 from the melt. The contents and ratios of Zr and Hf in rutile and Ttn2 differ from those in the garnet amphibolite, and the whole rock Zr/Hf ratios of retrograde eclogite and garnet amphibolite are both higher than the respective ratios in rutile and Ttn2, suggesting that rutile and titanite cannot be the major carriers of Zr and Hf accounting for the high whole rock Zr/Hf ratios.

     

  • loading
  • Auzanneau, E., Vielzeuf, D., Schmidt, M. W., 2006. Experimental Evidence of Decompression Melting during Exhumation of Subducted Continental Crust. Contributions to Mineralogy and Petrology, 152(2): 125-148. https://doi.org/10.1007/s00410-006-0104-5
    Bea, F., Montero, P., Ortega, M., 2006. A LA-ICP-MS Evaluation of Zr Reservoirs in Common Crustal Rocks: Implications for Zr and Hf Geochemistry, and Zircon-Forming Processes. The Canadian Mineralogist, 44(3): 693-714. https://doi.org/10.2113/gscanmin.44.3.693
    Cao, Y. T., Liu, L., Wang, C., et al., 2019a. Timing and Nature of the Partial Melting Processes during the Exhumation of the Garnet-Bearing Biotite Gneiss in the Southern Altyn Tagh HP/UHP Belt, Western China. Journal of Asian Earth Sciences, 170: 274-293. https://doi.org/10.1016/j.jseaes.2018.11.005
    Cao, Y. T., Liu, L., Wang, C., et al., 2019b. Multi-Stage Metamorphism of the UHP Pelitic Gneiss from the Southern Altyn Tagh HP/UHP Belt, Western China: Petrological and Geochronological Evidence. Journal of Earth Science, 30(3): 603-620. https://doi.org/10.1007/s12583-019-0896-7
    Cao, Y. T., Liu, L., Chen, D. L., et al., 2017. Partial Melting during Exhumation of Paleozoic Retrograde Eclogite in North Qaidam, Western China. Journal of Asian Earth Sciences, 148: 223-240. https://doi.org/10.1016/j.jseaes.2017.09.009
    Chen, D. L., Liu, L., Sun, Y., et al., 2009. Geochemistry and Zircon U-Pb Dating and Its Implications of the Yukahe HP/UHP Terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3/4): 259-272. https://doi.org/10.1016/j.jseaes.2008.12.001
    Chen, D. L., Liu, L., Sun, Y., et al., 2012. Felsic Veins within UHP Eclogite at Xitieshan in North Qaidam, NW China: Partial Melting during Exhumation. Lithos, 136-139: 187-200. https://doi.org/10.1016/j.lithos.2011.11.006
    Chen, Y. X., Zheng, Y. F., 2015. Extreme Nb/Ta Fractionation in Metamorphic Titanite from Ultrahigh-Pressure Metagranite. Geochimica et Cosmochimica Acta, 150: 53-73. http://dx.doi.org/10.1016/j.gca.2014.12.002
    Chen, Y. X., Zheng, Y. F., Hu, Z., 2013a. Petrological and Zircon Evidence for Anatexis of UHP Quartzite during Continental Collision in the Sulu Orogen. Journal of Metamorphic Geology, 31(4): 389-413. https://doi.org/10.1111/jmg.12026
    Chen, Y. X., Zheng, Y. F., Hu, Z. C., 2013b. Synexhumation Anatexis of Ultrahigh-Pressure Metamorphic Rocks: Petrological Evidence from Granitic Gneiss in the Sulu Orogen. Lithos, 156-159: 69-96. https://doi.org/10.1016/j.lithos.2012.10.008
    Ellis, S. M., Little, T. A., Wallace, L. M., et al., 2011. Feedback between Rifting and Diapirism can Exhume Ultrahigh-Pressure Rocks. Earth and Planetary Science Letters, 311(3/4): 427-438. https://doi.org/10.1016/j.epsl.2011.09.031
    Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
    Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837-840. https://doi.org/10.1038/nature00799
    Gao, X. Y., Zheng, Y. F., Xia, X. P., et al., 2014. U-Pb Ages and Trace Elements of Metamorphic Rutile from Ultrahigh-Pressure Quartzite in the Sulu Orogen. Geochimica et Cosmochimica Acta, 143: 87-114. https://doi.org/10.1016/j.gca.2014.04.032
    Gao, X. Y., Zheng, Y. F., Chen, Y. X., 2012a. Dehydration Melting of Ultrahigh-Pressure Eclogite in the Dabie Orogen: Evidence from Multiphase Solid Inclusions in Garnet. Journal of Metamorphic Geology, 30(2): 193-212. https://doi.org/10.1111/j.1525-1314.2011.00962.x
    Gao, X. Y., Zheng, Y. F., Chen, Y. X., et al., 2012b. Geochemical and U-Pb Age Constraints on the Occurrence of Polygenetic Titanites in UHP Metagranite in the Dabie Orogen. Lithos, 136-139: 93-108. https://doi.org/10.1016/j.lithos.2011.03.020
    Hayden, L. A., Watson, E. B., Wark, D. A., 2008. A Thermobarometer for Sphene (Titanite). Contributions to Mineralogy and Petrology, 155(4): 529-540. https://doi.org/10.1007/s00410-007-0256-y
    Hermann, J., Rubatto, D., Korsakov, A., et al., 2001. Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66-82. https://doi.org/10.1007/s004100000218
    Hermann, J., 2002. Experimental Constraints on Phase Relations in Subducted Continental Crust. Contributions to Mineralogy and Petrology, 143(2): 219-235. https://doi.org/10.1007/s00410-001-0336-3
    Hermann, J., Spandler, C., Hack, A., et al., 2006. Aqueous Fluids and Hydrous Melts in High-Pressure and Ultra-High Pressure Rocks: Implications for Element Transfer in Subduction Zones. Lithos, 92(3/4): 399-417. https://doi.org/10.1016/j.lithos.2006.03.055
    John, T., Klemd, R., Gao, J., et al., 2008. Trace-Element Mobilization in Slabs due to non Steady-State Fluid-Rock Interaction: Constraints from an Eclogite-Facies Transport Vein in Blueschist (Tianshan, China). Lithos, 103(1/2): 1-24. https://doi.org/10.1016/j.lithos.2007.09.005
    John, T., Klemd, R., Klemme, S., et al., 2011. Nb-Ta Fractionation by Partial Melting at the Titanite-Rutile Transition. Contributions to Mineralogy and Petrology, 161(1): 35-45. https://doi.org/10.1007/s00410-010-0520-4
    Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437(7059): 724-727. https://doi.org/10.1038/nature03971
    Kylander-Clark, A. R. C., Hacker, B. R., Mattinson, J. M., 2008. Slow Exhumation of UHP Terranes: Titanite and Rutile Ages of the Western Gneiss Region, Norway. Earth and Planetary Science Letters, 272(3/4): 531-540. https://doi.org/10.1016/j.epsl.2008.05.019
    Labrousse, L., Jolivet, L., Agard, P., et al., 2002. Crustal-Scale Boudinage and Migmatization of Gneiss during Their Exhumation in the UHP Province of Western Norway. Terra Nova, 14(4): 263-270. https://doi.org/10.1046/j.1365-3121.2002.00422.x
    Labrousse, L., Prouteau, G., Ganzhorn, A. C., 2011. Continental Exhumation Triggered by Partial Melting at Ultrahigh Pressure. Geology, 39(12): 1171-1174. https://doi.org/10.1130/g32316.1
    Li, P., Zhang, C., Liu, X. Y., et al., 2017. The Metamorphism Processes of the Xindaduo Eclogite in Tibet and Its Constrain on the Evolutionary of the Paleo-Tethys Subduction Zone. Acta Petrologica Sinica, 33(12): 3753-3765 (in Chinese with English Abstract)
    Li, X. L., Zhang, L. F., Wei, C. J., et al., 2017. Application of Zr-in-Rutile Thermometry and Its Interpretation on the Archean Eclogite from Belomorian Province, Russia. Acta Petrologica Sinica, 3(10): 3263-3277 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201710018
    Li, Y., Zhang, C., Liu, X. Y., et al., 2019. Metamorphism and Oceanic Crust Exhumation—Constrained by the Jilang Eclogite and Meta-Quartzite from the Sumdo (U)HP Metamorphic Belt. Journal of Earth Science, 30(3): 510-524. https://doi.org/10.1007/s12583-019-0894-9
    Liao, X. Y., Liu, L., Wang, Y. W., et al., 2016. Multi-Stage Metamorphic Evolution of Retrograde Eclogite with a Granulite-Facies Overprint in the Zhaigen Area of the North Qinling Belt, China. Gondwana Research, 30: 79-96. https://doi.org/10.1016/j.gr.2015.09.012
    Liebscher, A., Franz, G., Frei, D., et al., 2007. High-Pressure Melting of Eclogite and the P-T-X History of Tonalitic to Trondhjemitic Zoisite- Pegmatites, Munchberg Massif, Germany. Journal of Petrology, 48(5): 1001-1019. https://doi.org/10.1093/petrology/egm008
    Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1-39. https://doi.org/10.1016/j.jseaes.2010.08.007
    Liu, L., Zhang, J. F., Cao, Y. T., et al., 2018. Evidence of Former Stishovite in UHP Eclogite from the South Altyn Tagh, Western China. Earth and Planetary Science Letters, 484: 353-362. https://doi.org/10.1016/j.epsl.2017.12.023
    Liu, L., Kang, L., Cao, Y. T., et al., 2015. Early Paleozoic Granitic Magmatism Related to the Processes from Subduction to Collision in South Altyn, NW China. Science China: Earth Sciences, 58(9): 1513-1522. https://doi.org/10.1007/s11430-015-5151-1
    Liu, L., Wang, C., Cao, Y. T., et al., 2012. Geochronology of Multi-Stage Metamorphic Events: Constraints on Episodic Zircon Growth from the UHP Eclogite in the South Altyn, NW China. Lithos, 136-139: 10-26. https://doi.org/10.1016/j.lithos.2011.09.014
    Liu, X. C., Wu, Y. B., Gao, S., et al., 2014. Record of Multiple Stage Channelized Fluid and Melt Activities in Deeply Subducted Slab from Zircon U-Pb Age and Hf-O Isotope Compositions. Geochimica et Cosmochimica Acta, 144: 1-24. https://doi.org/10.1016/j.gca.2014.08.016
    Lucassen, F., Dulski, P., Abart, R., et al., 2010. Redistribution of HFSE Elements during Rutile Replacement by Titanite. Contributions to Mineralogy and Petrology, 160(2): 279-295. https://doi.org/10.1007/s00410-009-0477-3
    Ludwig, K. R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, Berkeley. 4: 71
    Nahodilová, R., Faryad, S. W., Dolejš, D., et al., 2011. High-Pressure Partial Melting and Melt Loss in Felsic Granulites in the Kutná Hora Complex, Bohemian Massif (Czech Republic). Lithos, 125(1/2): 641-658. https://doi.org/10.13039/100007543
    Oberti, R., Smith, D. C., Rossi, G., et al., 1991. The Crystal-Chemistry of High-Aluminium Titanites. European Journal of Mineralogy, 3(5): 777-792. https://doi.org/10.1127/ejm/3/5/0777
    Peacock, S. M., Wang, K. L., 1999. Seismic Consequences of Warm Versus Cool Subduction Metamorphism: Examples from Southwest and Northeast Japan. Science, 286(5441): 937-939. https://doi.org/10.1126/science.286.5441.937
    Peacock, S. M., Rushmer, T., Thompson, A. B., 1994. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 121(1/2): 227-244. https://doi.org/10.1016/0012-821x(94)90042-6
    Ragozin, A. L., Liou, J. G., Shatsky, V. S., et al., 2009. The Timing of the Retrograde Partial Melting in the Kumdy-Kol Region (Kokchetav Massif, Northern Kazakhstan). Lithos, 109(3/4): 274-284. https://doi.org/10.1016/j.lithos.2008.06.017
    Ren, Y. F., Chen, D. L., Hauzenberger, C., et al., 2016. Petrology and Geochronology of Ultrahigh-Pressure Granitic Gneiss from South Dulan, North Qaidam Belt, NW China. International Geology Review, 58(2): 171-195. http://dx.doi.org/10.1080/00206814.2015.1058729
    Rudnick, R. L., Barth, M., Horn, I., et al., 2000. Rutile-Bearing Refractory Eclogites: Missing Link between Continents and Depleted Mantle. Science, 287(5451): 278-281. https://doi.org/10.1126/science.287.5451.278
    Schmidt, A., Weyer, S., John, T., et al., 2009. HFSE Systematics of Rutile- Bearing Eclogites: New Insights into Subduction Zone Processes and Implications for the Earth's HFSE Budget. Geochimica et Cosmochimica Acta, 73(2): 455-468. https://doi.org/10.1016/j.gca.2008.10.028
    Schmidt, M. W., Vielzeuf, D., Auzanneau, E., 2004. Melting and Dissolution of Subducting Crust at High Pressures: The Key Role of White Mica. Earth and Planetary Science Letters, 228(1/2): 65-84. https://doi.org/10.1016/j.epsl.2004.09.020
    Sizova, E., Gerya, T., Brown, M., 2012. Exhumation Mechanisms of Melt-Bearing Ultrahigh Pressure Crustal Rocks during Collision of Spontaneously Moving Plates. Journal of Metamorphic Geology, 30(9): 927-955. https://doi.org/10.1111/j.1525-1314.2012.01004.x
    Skjerlie, K. P., Pati o Douce, A. E., 2002. The Fluid-Absent Partial Melting of a Zoisite-Bearing Quartz Eclogite from 1.0 to 3.2 GPa; Implications for Melting in Thickened Continental Crust and for Subduction-Zone Processes. Journal of Petrology, 43(2): 291-314. https://doi.org/10.1093/petrology/43.2.291
    Song, S. G., Niu, Y. L., Su, L., et al., 2014. Adakitic (Tonalitic-Trondhjemitic) Magmas Resulting from Eclogite Decompression and Dehydration Melting during Exhumation in Response to Continental Collision. Geochimica et Cosmochimica Acta, 130: 42-62. https://doi.org/10.1016/j.gca.2014.01.008
    Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2006. Evolution from Oceanic Subduction to Continental Collision: A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3): 435-455. https://doi.org/10.1093/petrology/egi080
    Song, S. G., Zhang, L., Niu, Y., et al., 2005a. Geochronology of Diamond- Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1/2): 99-118. https://doi.org/10.1016/j.epsl.2005.02.036
    Song, S. G., Zhang, L. F., Chen, J., et al., 2005b. Sodic Amphibole Exsolutions in Garnet from Garnet-Peridotite, North Qaidam UHPM Belt, NW China: Implications for Ultradeep-Origin and Hydroxyl Defects in Mantle Garnets. American Mineralogist, 90(5/6): 814-820. https://doi.org/10.2138/am.2005.1684
    Song, S. G., zhang, L. F., Niu, Y. L., 2004. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China. American Mineralogist, 89(8/9): 1330-1336. https://doi.org/10.2138/am-2004-8-922
    Spencer, K. J., Hacker, B. R., Kylander-Clark, A. R. C., et al., 2013. Campaign- Style Titanite U-Pb Dating by Laser-Ablation ICP: Implications for Crustal Flow, Phase Transformations and Titanite Closure. Chemical Geology, 341: 84-101. https://doi.org/10.1016/j.chemgeo.2012.11.012
    Stepanov, A. S., Hermann, J., 2013. Fractionation of Nb and Ta by Biotite and Phengite: Implications for the "Missing Nb Paradox". Geology, 41(3): 303-306. https://doi.org/10.1130/g33781.1
    Storey, C. D., Smith, M. P., Jeffries, T. E., 2007. In situ LA-ICP-MS U-Pb Dating of Metavolcanics of Norrbotten, Sweden: Records of Extended Geological Histories in Complex Titanite Grains. Chemical Geology, 240(1/2): 163-181. https://doi.org/10.1016/j.chemgeo.2007.02.004
    Storkey, A. C., Hermann, J., Hand, M., et al., 2005. Using in Situ Trace-Element Determinations to Monitor Partial-Melting Processes in Metabasites. Journal of Petrology, 46(6): 1283-1308. https://doi.org/10.1093/petrology/egi017
    Stowell, H., Tulloch, A., Zuluaga, C., et al., 2010. Timing and Duration of Garnet Granulite Metamorphism in Magmatic Arc Crust, Fiordland, New Zealand. Chemical Geology, 273(1/2): 91-110. https://doi.org/10.1016/j.chemgeo.2010.02.015
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tomkins, H. S., Powell, R., Ellis, D. J., 2007. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 25(6): 703-713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
    Wallis, S., Tsuboi, M., Suzuki, K., et al., 2005. Role of Partial Melting in the Evolution of the Sulu (Eastern China) Ultrahigh-Pressure Terrane. Geology, 33(2): 129-132. https://doi.org/10.1130/g20991.1
    Wang, C., Liu, L., Xiao, P. X., et al., 2014. Geochemical and Geochronologic Constraints for Paleozoic Magmatism Related to the Orogenic Collapse in the Qimantagh-South Altyn Region, Northwestern China. Lithos, 202/203: 1-20. https://doi.org/10.1016/j.lithos.2014.05.016
    Wang, L., Wang, S. J., Brown, M., et al., 2018. On the Survival of Intergranular Coesite in UHP Eclogite. Journal of Metamorphic Geology, 36(2): 173-194. https://doi.org/10.1111/jmg.12288
    Wang, S. J., Schertl, H. P., Pang, Y. M., 2019. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences, 97(3). https://doi.org/10.1139/cjes-2019-0003
    Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185-187. https://doi.org/10.2138/am.2010.3371
    Xiong, F. H., Meng, Y. K., Yang, J. S., et al., 2019. Geochronology and Petrogenesis of the Mafic Dykes from the Purang Ophiolite: Implications for Evolution of the Western Yarlung-Tsangpo Suture Zone, Southwestern Tibet. Geoscience Frontiers. http://doi.org/10.1016/j.gsf.2019.05.006
    Xiong, Q., Zheng, J. P., Griffin, W. L., et al., 2011. Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China): Meso- Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes. Precambrian Research, 187(1/2): 33-57. https://doi.org/10.1016/j.precamres.2011.02.003
    Yang, J. S., Xu, Z. Q., Song, S. G., et al., 2001. Discovery of Coesite in the North Qaidam Early Palaeozoic Ultrahigh Pressure (UHP) Metamorphic Belt, NW China. Comptes Rendus de l'Académie des Sciences (Series IIA: Earth and Planetary Science), 333(11): 719-724. https://doi.org/10.1016/s1251-8050(01)01718-9
    Yu, S. Y., Li, S. Z., Zhang, J. X., et al., 2019. Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision: A Review of the North Qaidam UHP Belt, NW China. Earth-Science Reviews, 191: 190-211. https://doi.org/10.1016/j.earscirev.2019.02.016
    Yu, S. Y., Zhang, J. X., Mattinson, C. G., et al., 2014. Paleozoic HP Granulite-Facies Metamorphism and Anatexis in the Dulan Area of the North Qaidam UHP Terrane, Western China: Constraints from Petrology, Zircon U-Pb and Amphibole Ar-Ar Geochronology. Lithos, 198/199: 58-76. https://doi.org/10.1016/j.lithos.2014.03.016
    Zack, T., Kronz, A., Foley, S. F., et al., 2002. Trace Element Abundances in Rutiles from Eclogites and Associated Garnet Mica Schists. Chemical Geology, 184(1/2): 97-122. https://doi.org/10.1016/s0009-2541(01)00357-6
    Zack, T., Moraes, R., Kronz, A., 2004. Temperature Dependence of Zr in Rutile: Empirical Calibration of a Rutile Thermometer. Contributions to Mineralogy and Petrology, 148(4): 471-488. https://doi.org/10.1007/s00410-004-0617-8
    Zhang, C., Bader, T., Zhang, L. M., et al., 2019. Metamorphic Evolution and Age Constraints of the Garnet-Bearing Mica Schist from the Xindaduo Area of the Sumdo (U)HP Metamorphic Belt, Tibet. Geological Magazine, 156(7): 1175-1189. https://doi.org/10.1017/s001675681800033x
    Zhang, C., Bader, T., van Roermund, H., et al., 2018. The Metamorphic Evolution and Tectonic Significance of the Sumdo HP-UHP Metamorphic Terrane, Central-South Lhasa Block, Tibet. Geological Society, London, Special Publications, 474(1): 209-229. https://doi.org/10.1144/sp474.4
    Zhang, C., Bader, T., Zhang, L. F., et al., 2017. The Multi-Stage Tectonic Evolution of the Xitieshan Terrane, North Qaidam Orogen, Western China: From Grenville-Age Orogeny to Early-Paleozoic Ultrahigh- Pressure Metamorphism. Gondwana Research, 41: 290-300. https://doi.org/10.1016/j.gr.2015.04.011
    Zhang, C., van Roermund, H., Zhang, L. F., et al., 2012. A Polyphase Metamorphic Evolution for the Xitieshan Paragneiss of the North Qaidam UHP Metamorphic Belt, Western China: In-situ EMP Monazite- and U-Pb Zircon SHRIMP Dating. Lithos, 136-139: 27-45. https://doi.org/10.1016/j.lithos.2011.07.024
    Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2009a. UHP Metamorphic Evolution of Coesite-Bearing Eclogite from the Yuka Terrane, North Qaidam UHPM Belt, NW China. European Journal of Mineralogy, 21(6): 1287-1300. https://doi.org/10.1127/0935-1221/2009/0021-1989
    Zhang, G. B., Zhang, L. F., Song, S. G., et al., 2009b. UHP Metamorphic Evolution and SHRIMP Geochronology of a Coesite-Bearing Meta-Ophiolitic Gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3/4): 310-322. https://doi.org/10.1016/j.jseaes.2008.11.013
    Zhang, G. B., Niu, Y. L., Song, S. G., et al., 2015. Trace Element Behavior and P-T-t Evolution during Partial Melting of Exhumed Eclogite in the North Qaidam UHPM Belt (NW China): Implications for Adakite Genesis. Lithos, 226: 65-80. https://doi.org/10.1016/j.lithos.2014.12.009
    Zhang, G. B., Song, S. G., Zhang, L. F., et al., 2008. The Subducted Oceanic Crust within Continental-Type UHP Metamorphic Belt in the North Qaidam, NW China: Evidence from Petrology, Geochemistry and Geochronology. Lithos, 104(1/2/3/4): 99-118. https://doi.org/10.1016/j.lithos.2007.12.001
    Zhang, J. X., Mattinson, C. G., Meng, F. C., et al., 2008. Polyphase Tectonothermal History Recorded in Granulitized Gneisses from the North Qaidam HP/UHP Metamorphic Terrane, Western China: Evidence from Zircon U-Pb Geochronology. Geological Society of America Bulletin, 120(5/6): 732-749. https://doi.org/10.1130/b26093.1
    Zhang, J. X., Meng, F. C., Li, J. P., et al., 2009a. Coesite in Eclogite from the North Qaidam Mountains and Its Implications. Science Bulletin, 54(6): 1105-1110. https://doi.org/10.1007/s11434-009-0074-x
    Zhang, J. X., Mattinson, C. G., Meng, F. C., et al., 2009b. U-Pb Geochronology of Paragneisses and Metabasite in the Xitieshan Area, North Qaidam Mountains, Western China: Constraints on the Exhumation of HP/UHP Metamorphic Rocks. Journal of Asian Earth Sciences, 35(3/4): 245-258. https://doi.org/10.1016/j.jseaes.2008.08.008
    Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al., 2010. U-Pb Zircon Geochronology of Coesite-Bearing Eclogites from the Southern Dulan Area of the North Qaidam UHP Terrane, Northwestern China: Spatially and Temporally Extensive UHP Metamorphism during Continental Subduction. Journal of Metamorphic Geology, 28(9): 955-978. https://doi.org/10.1111/j.1525-1314.2010.00901.x
    Zhang, J. X., Meng, F. C., Yu, S. Y., et al., 2007. Metamorphic History Recorded in High Pressure Mafic Granulites in the Luliangshan Mountains to the North of Qaidam Basin, Northwest China: Evidence from Petrology and Zircon SHRIMP Geochronology. Earth Science Frontiers, 14: 85-97 (in Chinese with English Abstract) doi: 10.1016/S1872-5791(08)60005-6
    Zhang, L. J., Chu, X., Zhang, L. F., et al., 2018. The Early Exhumation History of the Western Tianshan UHP Metamorphic Belt, China: New Constraints from Titanite U-Pb Geochronology and Thermobarometry.Journal of Metamorphic Geology, 36(5): 631-651. https://doi.org/10.1111/jmg.12422
    Zhao, G. C., Yin, C. Q., Guo, J. H., et al., 2010. Metamorphism of the Luliang Amphibolite: Implications for the Tectonic Evolution of the North China Craton. American Journal of Science, 310(10): 1480-1502. https://doi.org/10.2475/10.2010.10
    Zhao, Z. F., Zheng, Y. F., Chen, R. X., et al., 2007. Element Mobility in Mafic and Felsic Ultrahigh-Pressure Metamorphic Rocks during Continental Collision. Geochimica et Cosmochimica Acta, 71(21): 5244-5266. https://doi.org/10.1016/j.gca.2007.09.009
    Zheng, Y. F., 2004. Fluid Activity during Exhumation of Deep-Subducted Continental Plate. Chinese Science Bulletin, 49(10): 985-998. https://doi.org/10.1360/03wd0188
    Zheng, Y. F., Gao, T. S., Wu, Y. B., et al., 2007. Fluid Flow during Exhumation of Deeply Subducted Continental Crust: Zircon U-Pb Age and O-Isotope Studies of a Quartz Vein within Ultrahigh-Pressure Eclogite. Journal of Metamorphic Geology, 25(2): 267-283. https://doi.org/10.1111/j.1525-1314.2007.00696.x
    Zheng, Y. F., Xia, Q. X., Chen, R. X., et al., 2011. Partial Melting, Fluid Supercriticality and Element Mobility in Ultrahigh-Pressure Metamorphic Rocks during Continental Collision. Earth-Science Reviews, 107(3/4): 342-374. https://doi.org/10.1016/j.earscirev.2011.04.004
    Zong, K. Q., Liu, Y. S., Hu, Z. C., et al., 2010. Melting-Induced Fluid Flow during Exhumation of Gneisses of the Sulu Ultrahigh-Pressure Terrane. Lithos, 120(3/4): 490-510. https://doi.org/10.1016/j.lithos.2010.09.013
    Zhu, X. H., Cao, Y. T., Liu, L., et al., 2014. P-T Path and Geochronoloty of High Pressure Granitic Granulite from Danshuiquan Area in Altyn Tagh. Acta Petrologica Sinica, 30(12): 3717-3728 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(826) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return