Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Fanxue Meng, Wenliang Xu, Qinglin Xu, Jingliang Guo, Yu Zhang. Decoupling of Lu-Hf and Sm-Nd Isotopic System in Deep-Seated Xenoliths from the Xuzhou-Suzhou Area, China: Differences in Element Mobility during Metamorphism. Journal of Earth Science, 2019, 30(6): 1266-1279. doi: 10.1007/s12583-019-1255-4
Citation: Fanxue Meng, Wenliang Xu, Qinglin Xu, Jingliang Guo, Yu Zhang. Decoupling of Lu-Hf and Sm-Nd Isotopic System in Deep-Seated Xenoliths from the Xuzhou-Suzhou Area, China: Differences in Element Mobility during Metamorphism. Journal of Earth Science, 2019, 30(6): 1266-1279. doi: 10.1007/s12583-019-1255-4

Decoupling of Lu-Hf and Sm-Nd Isotopic System in Deep-Seated Xenoliths from the Xuzhou-Suzhou Area, China: Differences in Element Mobility during Metamorphism

doi: 10.1007/s12583-019-1255-4
More Information
  • Corresponding author: Fanxue Meng; Qinglin Xu
  • Received Date: 27 Apr 2019
  • Accepted Date: 06 Nov 2019
  • Publish Date: 01 Dec 2019
  • This paper presents whole-rock Hf isotopic data for a suite of eclogite and garnet clinopyroxenite xenoliths hosted in the Early Cretaceous dioritic intrusions from the Xuzhou-Suzhou area along the southeastern margin of the Eastern Block of the North China Craton (NCC). Six of the eight studied xenolith samples plot significantly above the terrestrial Hf-Nd isotopic array and have εHf(0) value up to +60. All the samples define a well correlated 147Sm/144Nd-143Nd/144Nd age of 2 081 Ma, which is considered to record the granulite-facies metamorphism. In contrast, the Lu-Hf isotope system faithfully records the protolith information. The mineralogical assemblage, especially garnet and/or zircon (rutile to some extent) mainly controlled the decoupling of Hf-Nd isotope. The metamorphic modification on protolith characteristics and the differences in element mobility during metamorphism may also reinforce the observed decoupling between the Sm-Nd and Lu-Hf isotope systems; i.e., the absence of the correlations in εNd-εHf and also 87Sr/86Sr-143Nd/144Nd diagram. The Lu/Hf isochron age of 2 424 Ma is similar to the zircon age peak of the studied xenoliths and the dominant age of NCC basement, indicating that the igneous protolith has an affinity to the Archean basement of the NCC. Furthermore, the positive εHf(t) values at 2 500 Ma indicate a crustal growth event of 2 500 Ma in the NCC.

     

  • loading
  • Albarède, F., Blichert-Toft, J., Vervoort, J. D., et al., 2000. Hf-Nd Isotope Evidence for a Transient Dynamic Regime in the Early Terrestrial Mantle. Nature, 404(6777): 488-490. https://doi.org/10.1038/35006621
    Ames, L., Zhou, G. Z., Xiong, B. C., 1996. Geochronology and Isotopic Character of Ultrahigh-Pressure Metamorphism with Implications for Collision of the Sino-Korean and Yangtze Cratons, Central China. Tectonics, 15(2): 472-489. https://doi.org/10.1029/95tc02552
    Aulbach, S., Griffin, W. L., O'Reilly, S. Y., et al., 2004. Genesis and Evolution of the Lithospheric Mantle beneath the Buffalo Head Terrane, Alberta (Canada). Lithos, 77(1/2/3/4): 413-451. https://doi.org/10.1016/j.lithos.2004.04.020
    Ayers, J. C., Dunkle, S., Gao, S., et al., 2002. Constraints on Timing of Peak and Retrograde Metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, East-Central China, Using U-Th-Pb Dating of Zircon and Monazite. Chemical Geology, 186: 315-331. http://dx.doi.org/10.1016/S0009-2541(02)00008-6
    Bea, F., Montero, P., Molina, J. F., et al., 2017. Lu-Hf Ratios of Crustal Rocks and Their Bearing on Zircon Hf Isotope Model Ages: The Effects of Accessories. Chemical Geology, 484: 179-190. https://doi.org/10.1016/j.chemgeo.2017.11.034
    Bedini, R. M., Blichert-Toft, J., Boyet, M., et al., 2004. Isotopic Constraints on the Cooling of the Continental Lithosphere. Earth and Planetary Science Letters, 223(1/2): 99-111. https://doi.org/10.1016/j.epsl.2004.04.012
    Bizimis, M., Sen, G., Salters, V. J. M., 2004. Hf-Nd Isotope Decoupling in the Oceanic Lithosphere: Constraints from Spinel Peridotites from Oahu, Hawaii. Earth and Planetary Science Letters, 217(1/2): 43-58. https://doi.org/10.1016/s0012-821x(03)00598-3
    Blichert-Toft, J., Albarède, F., Kornprobst, J., 1999. Lu-Hf Isotope Systematics of Garnet Pyroxenites from Beni Bousera, Morocco: Implications for Basalt Origin. Science, 283(5406): 1303-1306. https://doi.org/10.1126/science.283.5406.1303
    Blichert-Toft, J., Agranier, A., Andres, M., et al., 2005. Geochemical Segmentation of the Mid-Atlantic Ridge North of Iceland and Ridge-Hot Spot Interaction in the North Atlantic. Geochemistry, Geophysics, Geosystems, 6(1). https://doi.org/10.1029/2004gc000788
    Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278
    Blichert-Toft, J., Frei, R., 2001. Complex Sm-Nd and Lu-Hf Isotope Systematics in Metamorphic Garnets from the Isua Supracrustal Belt, West Greenland. Geochimica et Cosmochimica Acta, 65(18): 3177-3189. https://doi.org/10.1016/s0016-7037(01)00680-9
    Carlson, R. W., Irving, A. J., Schulze, D. J., et al., 2004. Timing of Precambrian Melt Depletion and Phanerozoic Refertilization Events in the Lithospheric Mantle of the Wyoming Craton and Adjacent Central Plains Orogen. Lithos, 77(1/2/3/4): 453-472. https://doi.org/10.1016/j.lithos.2004.03.030
    Chen, J. F., Jahn, B. M., 1998. Crustal Evolution of Southeastern China: Nd and Sr Isotopic Evidence. Tectonophysics, 284(1/2): 101-133. https://doi.org/10.1016/s0040-1951(97)00186-8
    Chen, Y. X., Zhou, K., Zheng, Y. F., et al., 2017. Zircon Geochemical Constraints on the Protolith Nature and Metasomatic Process of the Mg-Rich Whiteschist from the Western Alps. Chemical Geology, 467: 177-195. https://doi.org/10.13039/501100002855
    Cheng, H., 2019. Garnet Lu-Hf and Sm-Nd Geochronology: A Time Capsule of the Metamorphic Evolution of Orogenic Belts. In: Zhang, L. F., Zhang, Z., Schertl., H.-P., et al., eds, HP-UHP Metamorphism and Tectonic Evolution of Orogenic Belts. Geological Society, London, Special Publications, 474(1): 47-67
    Choi, S. H., Mukasa, S. B., Andronikov, A. V., et al., 2007. Extreme Sr-Nd-Pb-Hf Isotopic Compositions Exhibited by the Tinaquillo Peridotite Massif, Northern Venezuela: Implications for Geodynamic Setting. Contributions to Mineralogy and Petrology, 153(4): 443-463. https://doi.org/10.1007/s00410-006-0159-3
    Chu, Z. Y., Wu, F. Y., Walker, R. J., et al., 2009. Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. Journal of Petrology, 50(10): 1857-1898. https://doi.org/10.1093/petrology/egp055
    Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3/4): 228-242. https://doi.org/10.1016/j.gr.2008.06.001
    Debaille, V., Blichert-Toft, J., Agranier, A., et al., 2006. Geochemical Component Relationships in MORB from the Mid-Atlantic Ridge, 22-35°N. Earth and Planetary Science Letters, 241(3/4): 844-862. https://doi.org/10.1016/j.epsl.2005.11.004
    Dessai, A. G., Markwick, A., Vaselli, O., et al., 2004. Granulite and Pyroxenite Xenoliths from the Deccan Trap: Insight into the Nature and Composition of the Lower Lithosphere beneath Cratonic India. Lithos, 78(3): 263-290. https://doi.org/10.1016/j.lithos.2004.04.038
    Duchêne, S., Blichert-Toft, J., Luais, B., et al., 1997. The Lu-Hf Dating of Garnets and the Ages of the Alpine High-Pressure Metamorphism. Nature, 387(6633): 586-589. https://doi.org/10.1038/42446
    Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas. Geochimica et Cosmochimica Acta, 64(5): 933-938. https://doi.org/10.1016/s0016-7037(99)00355-5
    Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13/14): 2071-2088. https://doi.org/10.1016/s0016-7037(99)00153-2
    Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
    Green, T. H., Pearson, N. J., 1986. Ti-Rich Accessory Phase Saturation in Hydrous Mafic-Felsic Compositions at High P, T. Chemical Geology, 54(3/4): 185-201. https://doi.org/10.1016/0009-2541(86)90136-1
    Griffin, W. L., Brueckner, H. K., 1985. REE, Rb-Sr and Sm-Nd Studies of Norwegian Eclogites. Chemical Geology, 52(2): 249-271. https://doi.org/10.1016/0168-9622(85)90021-1
    Guo, J. H., Sun, M., Chen, F. K., et al., 2005. Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision. Journal of Asian Earth Sciences, 24(5): 629-642. https://doi.org/10.1016/j.jseaes.2004.01.017
    Guo, J. L., Gao, S., Wu, Y. B., et al., 2014. Titanite Evidence for Triassic Thickened Lower Crust along Southeastern Margin of North China Craton. Lithos, 206/207: 277-288. https://doi.org/10.1016/j.lithos.2014.08.002
    Guo, S. S., Li, S. G., 2009. SHRIMP Zircon U-Pb Ages for the Paleoproterozoic Metamorphic-Magmatic Events in the Southeast Margin of the North China Craton. Science in China Series D: Earth Sciences, 52(8): 1039-1045. https://doi.org/10.1007/s11430-009-0099-7
    Hamelin, C., Bezos, A., Dosso, L., et al., 2013. Atypically Depleted Upper Mantle Component Revealed by Hf Isotopes at Lucky Strike Segment. Chemical Geology, 341: 128-139. https://doi.org/10.1016/j.chemgeo.2013.01.013
    Hirajima, T., Nakamura, D., 2003. The Dabie Shan-Sulu Orogen. In: Carswell, D. A., Compagnoni, R., eds., Ultrahigh Pressure Metamorphism. EMU Notes Mineral., 5. Eötvös Univ. Press, Budapest. 105-144
    Hoffmann, J. E., Münker, C., Polat, A., et al., 2011. The Origin of Decoupled Hf-Nd Isotope Compositions in Eoarchean Rocks from Southern West Greenland. Geochimica et Cosmochimica Acta, 75(21): 6610-6628. https://doi.org/10.1016/j.gca.2011.08.018
    Hou, G. T., Liu, Y. L., Li, J. H., 2006. Evidence for ~1.8 Ga Extension of the Eastern Block of the North China Craton from SHRIMP U-Pb Dating of Mafic Dyke Swarms in Shandong Province. Journal of Asian Earth Sciences, 27(4): 392-401. https://doi.org/10.1016/j.jseaes.2005.05.001
    Huang, X. L., Niu, Y. L., Xu, Y. G., et al., 2010. Geochemistry of TTG and TTG-Like Gneisses from Lushan-Taihua Complex in the Southern North China Craton: Implications for Late Archean Crustal Accretion. Precambrian Research, 182(1/2): 43-56. https://doi.org/10.1016/j.precamres.2010.06.020
    Huang, X. L., Wilde, S. A., Yang, Q. J., et al., 2012. Geochronology and Petrogenesis of Gray Gneisses from the Taihua Complex at Xiongʼer in the Southern Segment of the Trans-North China Orogen: Implications for Tectonic Transformation in the Early Paleoproterozoic. Lithos, 134/135: 236-252. https://doi.org/10.1016/j.lithos.2012.01.004
    Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen across the Archean-Proterozoic Boundary. Precambrian Research, 233: 337-357. https://doi.org/10.1016/j.precamres.2013.05.016
    Huang, X. L., Xu, Y. G., Liu, D. Y., 2004. Geochronology, Petrology and Geochemistry of the Granulite Xenoliths from Nushan, East China. Geochimica et Cosmochimica Acta, 68(1): 127-149. https://doi.org/10.1016/s0016-7037(03)00416-2
    Ionov, D. A., Blichert-Toft, J., Weis, D., 2005. Hf Isotope Compositions and HREE Variations in Off-Craton Garnet and Spinel Peridotite Xenoliths from Central Asia. Geochimica et Cosmochimica Acta, 69(9): 2399-2418. https://doi.org/10.1016/j.gca.2004.11.008
    Ionov, D. A., Shirey, S. B., Weis, D., et al., 2006. Os-Hf-Sr-Nd Isotope and PGE Systematics of Spinel Peridotite Xenoliths from Tok, SE Siberian Craton: Effects of Pervasive Metasomatism in Shallow Refractory Mantle. Earth and Planetary Science Letters, 241(1/2): 47-64. https://doi.org/10.1016/j.epsl.2005.10.038
    Ishikawa, A., Kuritani, T., Makishima, A., et al., 2007. Ancient Recycled Crust beneath the Ontong Java Plateau: Isotopic Evidence from the Garnet Clinopyroxenite Xenoliths, Malaita, Solomon Islands. Earth and Planetary Science Letters, 259(1/2): 134-148. https://doi.org/10.1016/j.epsl.2007.04.034
    Jahn, B. M., 1998. Geochemical and Isotopic Characteristics of UHP Eclogites and Ultramafic Rocks of the Dabie Orogen: Implications for Continental Subduction and Collisional Tectonics. In: Hacker, B. R., Liou, J. G., eds., When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Kluwer Academic Publishers, Dordrecht. 203-239
    Jahn, B. M., Fan, Q. C., Yang, J. J., et al., 2003a. Petrogenesis of the Maowu Pyroxenite-Eclogite Body from the UHP Metamorphic Terrane of Dabieshan: Chemical and Isotopic Constraints. Lithos, 70(3/4): 243-267. https://doi.org/10.1016/s0024-4937(03)00101-4
    Jahn, B. M., Rumble, D., Liou, J. G., 2003b. Geochemistry and Isotope Tracer Study of UHP Metamorphic Rocks. EMU Notes in Mineralogy, 5: 365-414
    Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1
    Jiang, N., Guo, J. H., 2010. Hannuoba Intermediate-Mafic Granulite Xenoliths Revisited: Assessment of a Mesozoic Underplating Model. Earth and Planetary Science Letters, 293(3/4): 277-288. https://doi.org/10.1016/j.epsl.2010.02.042
    Jiang, N., Guo, J. H., Chang, G. H., 2013. Nature and Evolution of the Lower Crust in the Eastern North China Craton: A Review. Earth-Science Reviews, 122: 1-9. https://doi.org/10.1016/j.earscirev.2013.03.006
    John, T., Scherer, E. E., Haase, K., et al., 2004. Trace Element Fractionation during Fluid-Induced Eclogitization in a Subducting Slab: Trace Element and Lu-Hf-Sm-Nd Isotope Systematics. Earth and Planetary Science Letters, 227(3/4): 441-456. https://doi.org/10.1016/j.epsl.2004.09.009
    Johnson, C. M., Beard, B. L., 1993. Evidence from Hafnium Isotopes for Ancient Sub-Oceanic Mantle beneath the Rio Grande Rift. Nature, 362(6419): 441-444. https://doi.org/10.1038/362441a0
    Johnson, C. M., Shirey, S. B., Barovich, K. M., 1996. New Approaches to Crustal Evolution Studies and the Origin of Granitic Rocks: What can the Lu-Hf and Re-Os Isotope Systems Tell Us?. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1/2): 339-352. https://doi.org/10.1017/s0263593300006738
    Kemp, A. I. S., Hawkesworth, C. J., 2004. Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust. Treatise on Geochemistry, 3: 349-411
    Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180  km Depth. Nature, 437(7059): 724-727. https://doi.org/10.1038/nature03971
    Kröner, A., Wilde, S. A., Li, J. H., et al., 2005. Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China. Journal of Asian Earth Sciences, 24(5): 577-595. https://doi.org/10.1016/j.jseaes.2004.01.001
    Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/s1367-9120(03)00071-3
    Li, X.-P., Wang, X., Chen, S., et al., 2018. Petrology and Zircon U-Pb Dating of Meta-Calcsilicate from the Jiaobei Terrane in the Jiao-Liao-Ji Belt of the North China Craton. Precambrian Research, 313: 221-241. https://doi.org/10.1016/j.precamres.2018.04.018
    Liou, J. G., Zhang, R. Y., Ernst, W. G., et al., 1998. High-Pressure Minerals from deeply Subducted Metamorphic Rocks. In: Hemley, R., Mao, D., eds., Ultrahigh Pressure Mineralogy. Reviews in Mineralogy and Geochemistry, 37(1): 33-96
    Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339-342. https://doi.org/10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2
    Liu, S. W., Santosh, M., Wang, W., et al., 2011. Zircon U-Pb Chronology of the Jianping Complex: Implications for the Precambrian Crustal Evolution History of the Northern Margin of North China Craton. Gondwana Research, 20(1): 48-63. https://doi.org/10.1016/j.gr.2011.01.003
    Liu, Y. C., Wang, A. D., Li, S. G., et al., 2013. Composition and Geochronology of the Deep-Seated Xenoliths from the Southeastern Margin of the North China Craton. Gondwana Research, 23(3): 1021-1039. https://doi.org/10.1016/j.gr.2012.06.009
    Liu, Y. C., Wang, A. D., Rolfo, F., et al., 2009. Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton. Journal of Metamorphic Geology, 27(2): 125-138. https://doi.org/10.1111/j.1525-1314.2008.00810.x
    Liu, Y. H., Yang, H. J., Takazawa, E., et al., 2015. Decoupling of the Lu-Hf, Sm-Nd, and Rb-Sr Isotope Systems in Eclogites and a Garnetite from the Sulu Ultra-High Pressure Metamorphic Terrane: Causes and Implications. Lithos, 234/235: 1-14. https://doi.org/10.13039/501100001868
    Liu, Y. S., Gao, S., Jin, S. Y., et al., 2001. Geochemistry of Lower Crustal Xenoliths from Neogene Hannuoba Basalt, North China Craton: Implications for Petrogenesis and Lower Crustal Composition. Geochimica et Cosmochimica Acta, 65(15): 2589-2604. https://doi.org/10.1016/s0016-7037(01)00609-3
    Liu, Y. S., Gao, S., Yuan, H. L., et al., 2004. U-Pb Zircon Ages and Nd, Sr, and Pb Isotopes of Lower Crustal Xenoliths from North China Craton: Insights on Evolution of Lower Continental Crust. Chemical Geology, 211(1/2): 87-109. https://doi.org/10.1016/j.chemgeo.2004.06.023
    Ma, C. Q., Ehlers, C., Xu, C. H., et al., 2000. The Roots of the Dabieshan Ultrahigh-Pressure Metamorphic Terrane: Constraints from Geochemistry and Nd-Sr Isotope Systematics. Precambrian Research, 102(3/4): 279-301. https://doi.org/10.1016/s0301-9268(00)00069-3
    Martin, C., Duchêne, S., Luais, B., et al., 2010. Behavior of Trace Elements in Relation to Lu-Hf and Sm-Nd Geochronometers during Metamorphic Dehydration-Hydration in the HP Domain of Vårdalsneset, Western Gneiss Region, Norway. Contributions to Mineralogy and Petrology, 159(4): 437-458. https://doi.org/10.1007/s00410-009-0434-1
    Meng, F. X., 2011. Mesozoic-Cenozoic Evolution of the North China Craton: Evidence from Hf Isotopes and Detrital Zircons: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
    Meng, F. X., Gao S., Song, Z. J., et al., 2018. Mesozoic High-Mg Andesites from the Daohugou Area, Inner Mongolia: Upper-Crustal Fractional Crystallization of Parental Melt Derived from Metasomatized Lithospheric Mantle Wedge. Lithos, 302/303: 535-548. https://doi.org/10.1016/j.lithos.2018.01.032
    Meng, Y. K., Santosh, M., Li, R. H., et al., 2018. Petrogenesis and Tectonic Implications of Early Cretaceous Volcanic Rocks from Lingshan Island in the Sulu Orogenic Belt. Lithos, 312/313: 244-257. https://doi.org/10.13039/501100002858
    Montanini, A., Harlov, D., 2006. Petrology and Mineralogy of Granulite-Facies Mafic Xenoliths (Sardinia, Italy): Evidence for KCl Metasomatism in the Lower Crust. Lithos, 92(3/4): 588-608. https://doi.org/10.1016/j.lithos.2006.03.053
    Patchett, P. J., 1983. Hafnium Isotope Results from Mid-Ocean Ridges and Kerguelen. Lithos, 16(1): 47-51. https://doi.org/10.1016/0024-4937(83)90033-6
    Patchett, P. J., Tatsumoto, M., 1980. Hafnium Isotope Variations in Oceanic Basalts. Geophysical Research Letters, 7(12): 1077-1080. https://doi.org/10.1029/gl007i012p01077
    Pietranik, A. B., Hawkesworth, C. J., Storey, C. D., et al., 2008. Episodic, Mafic Crust Formation from 4.5 to 2.8 Ga: New Evidence from Detrital Zircons, Slave Craton, Canada. Geology, 36(11): 875-878. https://doi.org/10.1130/g24861a.1
    Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2
    Polat, A., Hofmann, A. W., Münker, C., et al., 2003. Contrasting Geochemical Patterns in the 3.7-3.8 Ga Pillow Basalt Cores and Rims, Isua Greenstone Belt, Southwest Greenland: Implications for Postmagmatic Alteration Processes. Geochimica et Cosmochimica Acta, 67(3): 441-457. https://doi.org/10.1016/s0016-7037(02)01094-3
    Rosman, K. J. R., Taylor, P. D. P., 1998. Isotopic Compositions of the Elements 1997 (Technical Report). Pure and Applied Chemistry, 70(1): 217-235. https://doi.org/10.1351/pac199870010217
    Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12): 2173-2187. https://doi.org/10.1016/s0016-7037(02)01321-2
    Rudnick, R. L., 1990. Continental Crust: Growth from below. Nature, 347: 711-712 doi: 10.1038/347711a0
    Rumble, D., Liou, J. G., Jahn, B. M., 2005. Continental Crust Subduction and Ultrahigh Pressure Metamorphism. In: Rudnick, R. L., eds., Treatise on Geochemistry. The Crust: Elseiver-Pergamon, Oxford. 293-320
    Salters, V. J. M., Hart, S. R., 1991. The Mantle Sources of Ocean Ridges, Islands and Arcs: The Hf-Isotope Connection. Earth and Planetary Science Letters, 104(2/3/4): 364-380. https://doi.org/10.1016/0012-821x(91)90216-5
    Salters, V. J. M., Mallick, S., Hart, S. R., et al., 2011. Domains of Depleted Mantle: New Evidence from Hafnium and Neodymium Isotopes. Geochemistry, Geophysics, Geosystems, 12(8): Q08001. https://doi.org/10.1029/2011gc003617
    Salters, V. J. M., White, W. M., 1998. Hf Isotope Constraints on Mantle Evolution. Chemical Geology, 145(3/4): 447-460. https://doi.org/10.1016/s0009-2541(97)00154-x
    Salters, V. J. M., Zindler, A., 1995. Extreme 176Hf/177Hf in the Sub-Oceanic Mantle. Earth and Planetary Science Letters, 129(1/2/3/4): 13-30. https://doi.org/10.1016/0012-821x(94)00234-p
    Scherer, E. E., Cameron, K. L., Blichert-Toft, J., 2000. Lu-Hf Garnet Geochronology: Closure Temperature Relative to the Sm-Nd System and the Effects of Trace Mineral Inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413-3432. https://doi.org/10.1016/s0016-7037(00)00440-3
    Scherer, E. E., Cameron, K. L., Johnson, C. M., et al., 1995. Hafnium Isotope Evidence for the Cenozoic Formation of Mafic Garnet Granulite in the Deep Crust beneath Kilboume Hole, New Mexico. EOS, 76: 707
    Schmidberger, S. S., Simonetti, A., Francis, D., et al., 2002. Probing Archean Lithosphere Using the Lu-Hf Isotope Systematics of Peridotite Xenoliths from Somerset Island Kimberlites, Canada. Earth and Planetary Science Letters, 197(3/4): 245-259. https://doi.org/10.1016/s0012-821x(02)00491-0
    Schmitz, M. D., Vervoort, J. D., Bowring, S. A., et al., 2004. Decoupling of the Lu-Hf and Sm-Nd Isotope Systems during the Evolution of Granulitic Lower Crust beneath Southern Africa. Geology, 32(5): 405-408. https://doi.org/10.1130/g20241.1
    Simon, N. S. C., Carlson, R. W., Pearson, D. G., et al., 2007. The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle. Journal of Petrology, 48(3): 589-625. https://doi.org/10.1093/petrology/egl074
    Stracke, A., Snow, J. E., Hellebrand, E., et al., 2011. Abyssal Peridotite Hf Isotopes Identify Extreme Mantle Depletion. Earth and Planetary Science Letters, 308(3/4): 359-368. https://doi.org/10.1016/j.epsl.2011.06.012
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford
    Tollstrup, D. L., Gill, J. B., 2005. Hafnium Systematics of the Mariana Arc: Evidence for Sediment Melt and Residual Phases. Geology, 33(9): 737-740. https://doi.org/10.1130/g21639.1
    Turner, S., Handler, M., Bindeman, I., et al., 2009. New Insights into the Origin of O-Hf-Os Isotope Signatures in Arc Lavas from Tonga-Kermadec. Chemical Geology, 266(3/4): 187-193. https://doi.org/10.1016/j.chemgeo.2009.05.027
    Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4): 533-556. https://doi.org/10.1016/s0016-7037(98)00274-9
    Vervoort, J. D., Patchett, P. J., 1996. Behavior of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites. Geochimica et Cosmochimica Acta, 60(19): 3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3
    Vervoort, J. D., Patchett, P. J., Albarède, F., et al., 2000. Hf-Nd Isotopic Evolution of the Lower Crust. Earth and Planetary Science Letters, 181(1/2): 115-129. https://doi.org/10.1016/s0012-821x(00)00170-9
    Vervoort, J. D., Patchett, P. J., Blichert-Toft, J., et al., 1999. Relationships between Lu-Hf and Sm-Nd Isotopic Systems in the Global Sedimentary System. Earth and Planetary Science Letters, 168(1/2): 79-99. https://doi.org/10.1016/s0012-821x(99)00047-3
    Vervoort, J. D., Patchett, P. J., Gehrels, G. E., et al., 1996. Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes. Nature, 379(6566): 624-627. https://doi.org/10.1038/379624a0
    Vervoort, J. D., Plank, T., Prytulak, J., 2011. The Hf-Nd Isotopic Composition of Marine Sediments. Geochimica et Cosmochimica Acta, 75(20): 5903-5926. https://doi.org/10.1016/j.gca.2011.07.046
    Wade, J. A., Plank, T., Stern, R. J., et al., 2005. The May 2003 Eruption of Anatahan Volcano, Mariana Islands: Geochemical Evolution of a Silicic Island-Arc Volcano. Journal of Volcanology and Geothermal Research, 146(1/2/3): 139-170. https://doi.org/10.1016/j.jvolgeores.2004.11.035
    Wang, F., Liu, F. L., Liu, P. H., et al., 2017. In situ Zircon U-Pb Dating and Whole-Rock Geochemistry of Metasedimentary Rocks from South Liaohe Group, Jiao-Liao-Ji Orogenic Belt: Constraints on the Depositional and Metamorphic Ages, and Implications for Tectonic Setting. Precambrian Research, 303: 764-780. https://doi.org/10.1016/j.precamres.2017.10.002
    Wang, Q. H., Xu, W. L., Wang, D. Y., et al., 2005. Geochemical Characteristics of Eclogite Xenoliths in Mesozoic Intrusive Complex from Xu-Huai Area and Its Tectonic Significance. Earth ScienceJournal of China University of Geosciences, 30: 413-420 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200504003
    Wang, S. J., Schertl, H. P., Pang, Y. M., 2019. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences, 97(3). https://doi.org/10.1139/cjes-2019-0003
    Winchester, J. A., Floyd, P. A., 1976. Geochemical Magma Type Discrimination: Application to Altered and Metamorphosed Basic Igneous Rocks. Earth and Planetary Science Letters, 28(3): 459-469. https://doi.org/10.1016/0012-821x(76)90207-7
    Wittig, N., Baker, J. A., Downes, H., 2007. U-Th-Pb and Lu-Hf Isotopic Constraints on the Evolution of Sub-Continental Lithospheric Mantle, French Massif Central. Geochimica et Cosmochimica Acta, 71(5): 1290-1311. https://doi.org/10.1016/j.gca.2006.11.025
    Woodhead, J. D., Hergt, J. M., Davidson, J. P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192(3): 331-346. https://doi.org/10.1016/s0012-821x(01)00453-8
    Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
    Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3/4): 339-362. https://doi.org/10.1016/j.precamres.2008.10.002
    Xia, Q. X., Zheng, Y. F., Zhou, L. G., 2008. Dehydration and Melting during Continental Collision: Constraints from Element and Isotope Geochemistry of Low-T/UHP Granitic Gneiss in the Dabie Orogen. Chemical Geology, 247(1/2): 36-65. https://doi.org/10.1016/j.chemgeo.2007.09.013
    Xiao, Y., Zhang, H. F., Fan, W. M., et al., 2010. Evolution of Lithospheric Mantle beneath the Tan-Lu Fault Zone, Eastern North China Craton: Evidence from Petrology and Geochemistry of Peridotite Xenoliths. Lithos, 117(1/2/3/4): 229-246. https://doi.org/10.1016/j.lithos.2010.02.017
    Xu, W. L., Gao, S., Wang, Q. H., et al., 2006a. Mesozoic Crustal Thickening of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 34(9): 721-724. https://doi.org/10.1130/g22551.1
    Xu, W. L., Wang, Q. H., Wang, D. Y., et al., 2006b. Mesozoic Adakitic Rocks from the Xuzhou-Suzhou Area, Eastern China: Evidence for Partial Melting of Delaminated Lower Continental Crust. Journal of Asian Earth Sciences, 27(4): 454-464. https://doi.org/10.1016/j.jseaes.2005.03.010
    Xu, W. L., Gao, S., Yang, D. B., et al., 2009. Geochemistry of Eclogite Xenoliths in Mesozoic Adakitic Rocks from Xuzhou-Suzhou Area in Central China and Their Tectonic Implications. Lithos, 107(3/4): 269-280. https://doi.org/10.1016/j.lithos.2008.11.004
    Xu, W. L., Wang, D. Y., Liu, X. C., et al., 2002. Discovery of Eclogite Inclusions and its Geological Significance in Early Jurassic Intrusive Complex in Xuzhounorthern Anhui, Eastern China. Chinese Science Bulletin, 47(14): 1212-1216. https://doi.org/10.1007/bf02907612
    Xu, W. L., Wang, Q. H., Liu, X. C., et al., 2004. Chronology and Sources of Mesozoic Intrusive Complexes in the Xuzhou-Huainan Region, Central China: Constraints from SHRIMP Zircon U-Pb Dating. Acta Geologica Sinica—English Edition, 78(1): 96-106
    Yang, D. B., Xu, W. L., Pei, F. P., et al., 2008. Chronology and Pb Isotope Compositions of Early Cretaceous Adakitic Rocks in Xuzhou-Huaibei Area, Central China Constraints on Magma Sources and Tectonic Evolution in the Eastern North China Craton. Acta Petrologica Sinica, 24(8): 1745-1758 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808008
    Yu, S. Y., Xu, Y. G., Huang, X. L., et al., 2009. Hf-Nd Isotopic Decoupling in Continental Mantle Lithosphere beneath Northeast China: Effects of Pervasive Mantle Metasomatism. Journal of Asian Earth Sciences, 35(6): 554-570. https://doi.org/10.1016/j.jseaes.2009.04.005
    Yuan, H. L., Gao, S., Luo, Y., et al., 2007. Study of Lu-Hf Geochronology: A Case Study of Eclogite from Dabie UHP Belt. Acta Petrologica Sinica, 23(2): 232-239 (in Chinese with English Abstract)
    Zhai, M. G., 2009. Two Kinds of Granulites (HT-HP and HT-UHT) in North China Craton: Their Genetic Relation and Geotectonic Implications. Acta Petrologica Sinica, 25(8): 1553-1571 (in Chinese with English Abstract)
    Zhai, M. G., Bian, A. G., Zhao, T. P., 2000. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and Its Breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China Series D: Earth Sciences, 43(S1): 219-232. https://doi.org/10.1007/bf02911947
    Zhai, M. G., Guo, J. H., Liu, W. J., 2005. Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton: A Review. Journal of Asian Earth Sciences, 24(5): 547-561. https://doi.org/10.1016/j.jseaes.2004.01.018
    Zhai, M. G., Li, T. S., Peng, P., et al., 2010. Precambrian Key Tectonic Events and Evolution of the North China Craton. Geological Society, London, Special Publications, 338(1): 235-262. https://doi.org/10.1144/sp338.12
    Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
    Zhai, M. G., Santosh, M., Zhang, L. C., 2011. Precambrian Geology and Tectonic Evolution of the North China Craton. Gondwana Research, 20(1): 1-5. https://doi.org/10.1016/j.gr.2011.04.004
    Zhai, M., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 122(1/2/3/4): 183-199. https://doi.org/10.1016/s0301-9268(02)00211-5
    Zhang, H. F., 2012. Destruction of Ancient Lower Crust through Magma Underplating beneath Jiaodong Peninsula, North China Craton: U-Pb and Hf Isotopic Evidence from Granulite Xenoliths. Gondwana Research, 21(1): 281-292. https://doi.org/10.1016/j.gr.2011.05.013
    Zhang, Y., Meng, F. X., Niu, Y. L., 2016. Hf Isotope Systematics of Seamounts near the East Pacific Rise (EPR) and Geodynamic Implications. Lithos, 262: 107-119. https://doi.org/10.1016/j.lithos.2016.06.026
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2): 55-88. https://doi.org/10.1016/s0301-9268(00)00076-0
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45-73. https://doi.org/10.1016/S0301-9268(00)00154-6
    Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2004a. U-Pb and Hf-Isotope Analysis of Zircons in Mafic Xenoliths from Fuxian Kimberlites: Evolution of the Lower Crust beneath the North China Craton. Contributions to Mineralogy and Petrology, 148(1): 79-103. https://doi.org/10.1007/s00410-004-0587-x
    Zheng, J. P., Lu, F. X., Yu, C. M., et al., 2004b. An in situ Zircon Hf Isotopic, U-Pb Age and Trace Element Study of Banded Granulite Xenolith from Hannuoba Basalt: Tracking the Early Evolution of the Lower Crust in the North China Craton. Chinese Science Bulletin, 49(3): 277-285. https://doi.org/10.1007/bf03182813
    Zheng, J. P., Griffin, W. L., Qi, L., et al., 2009. Age and Composition of Granulite and Pyroxenite Xenoliths in Hannuoba Basalts Reflect Paleogene Underplating beneath the North China Craton. Chemical Geology, 264(1/2/3/4): 266-280. https://doi.org/10.1016/j.chemgeo.2009.03.011
    Zheng, J. P., Sun, M., Lu, F. X., et al., 2001. Garnet-Bearing Granulite Facies Rock Xenoliths from Late Mesozoic Volcaniclastic Breccia, Xinyang, Henan Province. Acta Geologica Sinica—English Edition, 75(4): 445-451. https://doi.org/10.1111/j.1755-6724.2001.tb00062.x
    Zheng, J. P., Sun, M., Lu, F. X., et al., 2003. Mesozoic Lower Crustal Xenoliths and their Significance in Lithospheric Evolution beneath the Sino-Korean Craton. Tectonophysics, 361(1/2): 37-60. https://doi.org/10.1016/s0040-1951(02)00537-1
    Zheng, J. P., Sun, M., Lu, F. X., et al., 2005. Xinyang Mafic Granulitic Xenoliths and Its Significance for the Early Mesozoic Lower Crustal Nature on the South Margin of the North China Craton. Acta Petrologica Sinica, 21(1): 91-98 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200501009
    Zheng, Y. F., 2003. Neoproterozoic Magmatic Activity and Global Change. Chinese Science Bulletin, 48(16): 1639-1656. https://doi.org/10.1360/03wd0342
    Zheng, Y. F., Fu, B., Xiao, Y. L., et al., 1999. Hydrogen and Oxygen Isotope Evidence for Fluid-Rock Interactions in the Stages of Pre- and Post-UHP Metamorphism in the Dabie Mountains. Lithos, 46(4): 677-693. https://doi.org/10.1016/s0024-4937(98)00090-5
    Zheng, Y. F., Zhao, Z. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chemical Geology, 231(1/2): 135-158. https://doi.org/10.1016/j.chemgeo.2006.01.005
    Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(1107) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return