Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Long Du, Chao Yuan, Xu-Ping Li, Yunying Zhang, Zongying Huang, Xiaoping Long. Petrogenesis and Geodynamic Implications of the Carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science, 2019, 30(6): 1243-1252. doi: 10.1007/s12583-019-1256-3
Citation: Long Du, Chao Yuan, Xu-Ping Li, Yunying Zhang, Zongying Huang, Xiaoping Long. Petrogenesis and Geodynamic Implications of the Carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science, 2019, 30(6): 1243-1252. doi: 10.1007/s12583-019-1256-3

Petrogenesis and Geodynamic Implications of the Carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt

doi: 10.1007/s12583-019-1256-3
More Information
  • Corresponding author: Xiaoping Long
  • Received Date: 15 May 2019
  • Accepted Date: 19 Sep 2019
  • Publish Date: 01 Dec 2019
  • This paper presents new LA-ICP-MS zircon U-Pb geochronology, whole-rock major and trace element geochemistry, and Sr-Nd isotopes systematically on porphyritic granitic and K-feldspar granitic intrusions from the Dananhu belt, eastern Tianshan orogenic belt (ETOB). Zircon U-Pb dating indicates that the porphyritic granitic and K-feldspar granitic plutons were formed at 357±3 and 311±3 Ma, respectively. The porphyritic granites show geochemical and isotopic characteristics (high SiO2, low MgO and Mg#, depleted Sr-Nd isotopic values (about 0.703 4 and 6.13, respectively), with Nb/Ta (13.3-14.7) and Zr/Hf (31.0-33.9) ratios) similar to those of the crustal-derived magmas. The above characteristics suggest they were probably originated from juvenile lower crustal materials. The K-feldspar granites also have high SiO2, low MgO and Mg#, depleted Sr-Nd isotopic values (0.703 3-0.704 6 and 4.41-5.67, respectively). But some trace elements contents vary widely, with variable Nb/Ta (12.7-22.7), Zr/Hf (21.3-36.1) and Nb/La (0.38-1.07) ratios, indicating that the K-feldspar granites were formed by partial melting of juvenile lower crustal materials with old crustal materials. Combined with previous data on Carboniferous granitoids in the Dananhu belt, we infer that all the Carboniferous granitic plutons in the Dananhu belt were most likely emplaced in an island arc environment (Dananhu arc). Subsequently, a tectonic transition from oceanic subduction to post-collisional extension probably occurred in the ETOB.

     

  • loading
  • Cai, H. M., Yang, H., Gong, X. K., 2019. Geochronology and Petrogenesis of Mafic-Intermediate Intrusions on the Northern Margin of the Central Tianshan (NW China): Implications for Tectonic Evolution. Journal of Earth Science, 30(2): 323-334. https://doi.org/10.1007/s12583-018-1205-6
    Condie, K. C., 1999. Mafic Crustal Xenoliths and the Origin of the Lower Continental Crust. Lithos, 46(1): 95-101. https://doi.org/10.1016/s0024-4937(98)00056-5
    Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
    Du, L., Long, X. P., Yuan, C., et al., 2018a. Early Paleozoic Dioritic and Granitic Plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the Initiation of a Magmatic Arc in the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 139-153. https://doi.org/10.1016/j.jseaes.2017.03.026
    Du, L., Long, X. P., Yuan, C., et al., 2018b. Mantle Contribution and Tectonic Transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Early Carboniferous to Early Permian Felsic Intrusions. Lithos, 304-307: 230-244. https://doi.org/10.1016/j.lithos.2018.02.010
    Du, L., Long, X. P., Yuan, C., et al., 2018c. Petrogenesis of Late Paleozoic Diorites and A-Type Granites in the Central Eastern Tianshan, NW China: Response to Post-Collisional Extension Triggered by Slab Breakoff. Lithos, 318/319: 47-59. https://doi.org/10.1016/j.lithos.2018.08.006
    Du, Q. X., Han, Z. Z., Shen, X. L., et al., 2019. Geochronology and Geochemistry of Permo-Triassic Sandstones in Eastern Jilin Province (NE China): Implications for Final Closure of the Paleo-Asian Ocean. Geoscience Frontiers, 10(2): 683-704. https://doi.org/10.1016/j.gsf.2018.03.014
    Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
    Gao, J., Klemd, R., Qian, Q., et al., 2011. The Collision between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP-LT Metamorphic Belt in the Chinese Tianshan Orogen. Tectonophysics, 499(1/2/3/4): 118-131. https://doi.org/10.1016/j.tecto.2011.01.001
    Gu, L. X., Zhang, Z. Z., Wu, C. Z., et al., 2006. Some Problems on Granites and Vertical Growth of the Continental Crust in the Eastern Tianshan Mountains, NW China. Acta Petrologica Sinica, 22: 1103-1120. https://doi.org/1000-0569/2006/022(05)-1103-20 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200605005
    Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2006. Geological Characteristics and Genesis of the Tuwu Porphyry Copper Deposit, Hami, Xinjiang, Central Asia. Ore Geology Reviews, 29(1): 77-94. https://doi.org/10.1016/j.oregeorev.2005.07.032
    Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1/2): 15-51. https://doi.org/10.1016/s0040-1951(00)00176-1
    Huang, Z. Y., Long, X. P., Wang, X. C., et al., 2017. Precambrian Evolution of the Chinese Central Tianshan Block: Constraints on Its Tectonic Affinity to the Tarim Craton and Responses to Supercontinental Cycles. Precambrian Research, 295: 24-37. https://doi.org/10.1016/j.precamres.2017.04.014
    Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
    Kröner, A., Windley, B. F., Badarch, G., et al., 2007. Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Geological Society of America Memoirs, 200: 181-209. https://doi.org/10.1130/2007.1200(11)
    Li, D. F., Zhang, L., Chen, H. Y., et al., 2016. Geochronology and Geochemistry of the High Mg Dioritic Dikes in Eastern Tianshan, NW China: Geochemical Features, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 115: 442-454. https://doi.org/10.1016/j.jseaes.2015.10.018
    Li, J. Y., Xiao, W. J., Wang, K. Z., et al., 2003. Neoproterozoic-Paleozoic Tectonostratigraphic Framework of Eastern Xinjiang, NW China. In: Mao, J. W., Goldfarb, R., Seltmann, R., et al., eds., Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan, IGCP 473 Workshop 2003, Urumuqi, International Association on the Genesis of Ore Deposits (IAGDO), CERAMS, Natural History Museum, London. 31-74
    Li, W. Q., Ma, H. D., Wang, R., et al., 2008. SHRIMP Dating and Nd-Sr Isotopic Tracing of Kanggurtage Ophiolite in Eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 4: 773-780 (in Chinese with English Abstract)
    Liu, W. G., Zhang, J. D., Zhao, H. L., 2016. Geological Characteristics and Geochronology of Dongdagou Oceanic Crust Remmants in Eastern Tianshan, Xinjiang. Western Exploration Engineering, 6: 130-133. https://doi.org/1004-5716(2016)06-0130-04 (in Chinese)
    Mao, Q. G., Xiao, W. J., Fang, T. H., et al., 2014. Geochronology, Geochemistry and Petrogenesis of Early Permian Alkaline Magmatism in the Eastern Tianshan: Implications for Tectonics of the Southern Altaids. Lithos, 190/191: 37-51. https://doi.org/10.1016/j.lithos.2013.11.011
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101: 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
    McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3/4): 358-374. https://doi.org/10.1016/0012-821x(91)90029-h
    McKenzie, D., 1989. Some Remarks on the Movement of Small Melt Fractions in the Mantle. Earth and Planetary Science Letters, 95(1/2): 53-72. https://doi.org/10.1016/0012-821x(89)90167-2
    Meng, Y. K., Ma, S. W., Xu, J. Q., et al., 2018. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43: 1142-1163. https://doi.org/10.3799/dqkx.2018.713 (in Chinese with English Abstract)
    Meng, Y. K., Xiong, F. H., Xu, Z. Q., et al., 2019. Petrogenesis of Late Cretaceous Mafic Enclaves and their Host Granites in the Nyemo Region of Southern Tibet: Implications for the Tectonic-Magmatic Evolution of the Central Gangdese Belt. Journal of Asian Earth Sciences, 176: 27-41. https://doi.org/10.1016/j.jseaes.2019.01.041
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
    Patiño Douce, A. E., 1999. What do Experiments Tell us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1): 55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05
    Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
    Qin, K. Z., Sun, S., Li, J. L., et al., 2002. Paleozoic Epithermal Au and Porphyry Cu Deposits in North Xinjiang, China: Epochs, Features, Tectonic Linkage and Exploration Significance. Resource Geology, 52(4): 291-300. https://doi.org/10.1111/j.1751-3928.2002.tb00140.x
    Qin, K. Z., Su, B. X., Sakyi, P. A., et al., 2011. SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic- Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China): Constraints on a Ca. 280 Ma Mantle Plume. American Journal of Science, 311(3): 237-260. https://doi.org/10.2475/03.2011.03
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
    Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557): 571-578. https://doi.org/10.1038/378571a0
    Rudnick, R. L., Gao, S., 2003. Composition of The Continental Crust. 3. Elsevier-Pergamon, Oxford. 1-64
    Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
    Shi, Y., Wang, Y. W., Wang, J. B., et al., 2018. Physicochemical Control of the Early Permian Xiangshan Fe-Ti Oxide Deposit in Eastern Tianshan (Xinjiang), NW China. Journal of Earth Science, 29(3): 520-536. https://doi.org/10.1007/s12583-017-0969-4
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tang, G. J., Chung, S. L., Hawkesworth, C. J., et al., 2017. Short Episodes of Crust Generation during Protracted Accretionary Processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464: 142-154. https://doi.org/10.1016/j.epsl.2017.02.022
    Tang, G. J., Wang, Q., Wyman, D. A., et al., 2010. Ridge Subduction and Crustal Growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region, Northern Xinjiang (West China). Chemical Geology, 277(3/4): 281-300. https://doi.org/10.1016/j.chemgeo.2010.08.012
    Wang, B., Cluzel, D., Jahn, B. M., et al., 2014. Late Paleozoic Pre- and Syn- Kinematic Plutons of the Kangguer-Huangshan Shear Zone: Inference on the Tectonic Evolution of the Eastern Chinese North Tianshan. American Journal of Science, 314(1): 43-79. https://doi.org/10.2475/01.2014.02
    Wang, S. J., Schertl, H. P., Pang, Y. M., 2019. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences, 97(3). https://doi.org/10.1139/cjes-2019-0003
    Wang, Y. H., Xue, C. J., Liu, J. J., et al., 2015. Early Carboniferous Adakitic Rocks in the Area of the Tuwu Deposit, Eastern Tianshan, NW China: Slab Melting and Implications for Porphyry Copper Mineralization. Journal of Asian Earth Sciences, 103: 332-349. https://doi.org/10.1016/j.jseaes.2014.09.032
    Wang, Y. H., Xue, C. J., Liu, J. J., et al., 2018. Origin of the Subduction-Related Carboniferous Intrusions Associated with the Yandong Porphyry Cu Deposit in Eastern Tianshan, NW China: Constraints from Geology, Geochronology, Geochemistry, and Sr-Nd-Pb-Hf-O Isotopes. Mineralium Deposita, 53(5): 629-647. https://doi.org/10.1007/s00126-017-0763-3
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
    Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
    Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143-173. https://doi.org/10.1016/s0009-2541(02)00018-9
    Xia, L. Q., Xu, X. Y., Xia, Z. C., et al., 2004. Petrogenesis of Carboniferous Rift-Related Volcanic Rocks in the Tianshan, Northwestern China. Geological Society of America Bulletin, 116(3): 419-433. https://doi.org/10.1130/b25243.1
    Xiao, B., Chen, H. Y., Hollings, P., et al., 2017. Magmatic Evolution of the Tuwu-Yandong Porphyry Cu Belt, NW China: Constraints from Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Gondwana Research, 43: 74-91. https://doi.org/10.1016/j.gr.2015.09.003
    Xiao, W. J., Zhang, L. C., Qin, K. Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370-395. https://doi.org/10.1144/0016-764903-165
    Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012
    Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
    Xiong, F. H., Meng, Y. K., Yang, J. S., et al., 2019. Geochronology and Petrogenesis of the Mafic Dykes from the Purang Ophiolite: Implications for Evolution of the Western Yarlung-Tsangpo Suture Zone, Southwestern Tibet. Geoscience Frontiers, http://doi.org/10.1016/j.gsf.2019.05.006
    Yang, X. K., Ji, J. S., Zhang, L. C., et al., 1998. Basic Features and Gold Prognosis of the Regional Ductile Shear Zone in Eastern Tianshan. Geotectonica et Metallogenia, 22: 209-218. https://doi.org/10.16539/j.ddgzyckx.1998.03.004 (in Chinese with English Abstract)
    Yuan, C., Sun, M., Wilde, S., et al., 2010. Post-Collisional Plutons in the Balikun Area, East Chinese Tianshan: Evolving Magmatism in Response to Extension and Slab Break-off. Lithos, 119(3/4): 269-288. https://doi.org/10.1016/j.lithos.2010.07.004
    Zhang, F. F., Wang, Y. H., Liu, J. J., 2016. Petrogenesis of Late Carboniferous Granitoids in the Chihu Area of Eastern Tianshan, Northwest China, and Tectonic Implications: Geochronological, Geochemical, and Zircon Hf-O Isotopic Constraints. International Geology Review, 58(8): 949-966. https://doi.org/10.1080/00206814.2015.1136800
    Zhang, L. C., Xiao, W. J., Qin, K. Z., et al., 2006. The Adakite Connection of the Tuwu-Yandong Copper Porphyry Belt, Eastern Tianshan, NW China: Trace Element and Sr-Nd-Pb Isotope Geochemistry. Mineralium Deposita, 41(2): 188-200. https://doi.org/10.1007/s00126-006-0058-6
    Zhang, Y. Y., Yuan, C., Long, X. P., et al., 2017. Carboniferous Bimodal Volcanic Rocks in the Eastern Tianshan, NW China: Evidence for Arc Rifting. Gondwana Research, 43: 92-106. https://doi.org/10.1016/j.gr.2016.02.004
    Zhang, Y. Y., Sun, M., Yuan, C., et al., 2018. Alternating Trench Advance and Retreat: Insights from Paleozoic Magmatism in the Eastern Tianshan, Central Asian Orogenic Belt. Tectonics, 37(7): 2142-2164. https://doi.org/10.1029/2018tc005051
    Zhou, T. F., Yuan, F., Fan, Y., et al., 2008. Granites in the Sawuer Region of the West Junggar, Xinjiang Province, China: Geochronological and Geochemical Characteristics and Their Geodynamic Significance. Lithos, 106(3/4): 191-206. https://doi.org/10.1016/j.lithos.2008.06.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(533) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return