Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Kurt Bucher, Ingrid Stober. Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides. Journal of Earth Science, 2019, 30(6): 1084-1094. doi: 10.1007/s12583-019-1257-2
Citation: Kurt Bucher, Ingrid Stober. Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides. Journal of Earth Science, 2019, 30(6): 1084-1094. doi: 10.1007/s12583-019-1257-2

Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides

doi: 10.1007/s12583-019-1257-2
More Information
  • Corresponding author: Bucher Kurt
  • Received Date: 24 Jun 2019
  • Accepted Date: 25 Sep 2019
  • Publish Date: 01 Dec 2019
  • Sagvandite is an enstatite+magnesite rock formed from dunite or harzburgite bodies occurring as tectonically emplaced fragments from the upper mantle in many orogenic belts by interaction with CO2-bearing crustal fluids at upper amphibolite facies P-T conditions. Sagvandite bodies occur widespread in distinct nappes in the Scandinavian Caledonides in Norway. Common to all of the many sagvandite outcrops is their general structure of radial bundles of very coarse cm-sized enstatite crystals and interstitial magnesite. Often some strongly resorbed primary olivine is preserved, in addition to minor accessory Cr-spinel and chromite. The dunite to sagvandite conversion is governed by three metasomatic reactions:(1) carbonatization of peridotite by CO2-bearing fluids;(2) interaction with external fluids containing dissolved silica;(3) loss of Mg by dissolution of forsterite in NaCl-rich deep fluids. Simultaneous progress ξoverall of all three reactions in proportions that conserve the volume of the original dunite can explain the observed structure and mode of sagvandite. The relationship among the progress ξ of the three reactions suggests that loss of Mg by the ultramafic rock is the dominating process in the iso-volume conversion of dunite to sagvandite.


  • loading
  • Beinlich, A., Plümper, O., Hövelmann, J., et al., 2012. Massive Serpentinite Carbonation at Linnajavri, N-Norway. Terra Nova, 24(6):446-455.
    Berman, R. G., 1988. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2):445-522.
    Bodinier, J. L., Godard, M., 2004. Orogenic, Ophiolitic, and Abyssal Peridotites. In: Carlson, R. W., ed., The Mantle and Core. Treatise on Geochemistry, 2. Elsevier-Pergamon, Oxford
    Bucher, K., Grapes, R., 2011. Petrogenesis of Metamorphic Rocks. 8. Ed. Springer-Verlag, Berlin, Heidelberg. 428
    Bucher, K., Stober, I., 2010. Fluids in the Upper Continental Crust. Geofluids, 10(1/2):241-253.
    Bucher, K., Stober, I., Müller-Sigmund, H., 2015. Weathering Crusts on Peridotite. Contributions to Mineralogy and Petrology, 169(52).
    Bucher-Nurminen, K., 1988. Caledonian Metamorphism of Ultramafic Rocks in the Central Scandinavian Caledonides. Nor. Geol. Unders. Special Publ., 3:86-95
    Bucher-Nurminen, K., 1990. Transfer of Mantle Fluids to the Lower Conti-nental Crust:Constraints from Mantle Mineralogy and Moho Temper-ature. Chemical Geology, 83(3/4):249-261.
    Bucher-Nurminen, K., 1991. Mantle Fragments in the Scandinavian Cale-donides. Tectonophysics, 190(2/3/4):173-192.
    Czirják, A., 1994. Metamorphose und Struktur des Svartissen-Deckenkom-plexes (Dissertation). Albert-Ludwigs-University, Freiburg. 71 (in German)
    Corfu, F., Gasser, D., Chew, D. M., 2014. New Perspectives on the Cale-donides of Scandinavia and Related Areas:Introduction. Geological Society, London, Special Publications, 390(1):1-8.
    Cribb, S. J., 1988. The Torsvik Sagvandite Body, North Norway. Norsk Geologisk Tidskrift, 62:161-168
    De Capitani, C., Petrakakis, K., 2010. The Computation of Equilibrium Assemblage Diagrams with Theriak/Domino Software. American Min-eralogist, 95(7):1006-1016.
    Eikeland, E., Blichfeld, A. B., Tyrsted, C., et al., 2015. Optimized Carbonation of Magnesium Silicate Mineral for CO2 Storage. ACS Applied Materials &Interfaces, 7(9):5258-5264.
    Falk, E. S., Kelemen, P. B., 2015. Geochemistry and Petrology of Listvenite in the Samail Ophiolite, Sultanate of Oman:Complete Carbonation of Peridotite during Ophiolite Emplacement. Geochimica et Cosmochimica Acta, 160:70-90.
    Gadikota, G., Matter, J., Kelemen, P., et al., 2014. Chemical and Morpho-logical Changes during Olivine Carbonation for CO2 Storage in the Presence of NaCl and NaHCO3. Physical Chemistry Chemical Physics, 16(10):4679-4693.
    Gee, D. G., Kumpulainen R., Roberts, D., et al., 1985. Tectonostratigraphic Map, Scale 1: 2 000 000. Sveriges Geologiska Undersökning, Series Ba 35, SGU, Stockholm
    Gee, D. G., Sturt, B. A., 1985. The Caledonide Orogen-Scandinavia and Related Areas. John Wiley and Sons, Chichester. 1266
    Gee, D. G., Fossen, H., Henriksen, N., et al., 2008. From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scan-dinavia and Greenland. Episodes, 31(1):44-51.
    Gustavson, M., Gjelle, S. T., 1991. Geological Map of Norway, Bedrockmap Sheet Mo i Rana 1: 250 000. NGU Norwegian Geological Survey, Trondheim
    Hauser, M., 1994. Metamorphose und Struktur des Svartisen-Deckenkom-plexes, Holandsfjorden, Norwegen: [Dissertation]. Albert-Ludwigs-University, Freiburg, Germany. 62 (in German)
    Hinsken, T., Bröcker, M., Strauss, H., et al., 2017. Geochemical, Isotopic and Geochronological Characterization of Listvenite from the Upper Unit on Tinos, Cyclades, Greece. Lithos, 282/283:281-297.
    Kelemen, P. B., Matter, J., Streit, E. E., et al., 2011. Rates and Mechanisms of Mineral Carbonation in Peridotite:Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage. Annual Review of Earth and Planetary Sciences, 39(1):545-576.
    Kelemen, P. B., Aines, R., Bennett, E., et al., 2018. In situ Carbon Mineralization in Ultramafic Rocks:Natural Processes and Possible Engineered Methods. Energy Procedia, 146:92-102.
    Lackner, K. S., Wendt, C. H., Butt, D. P., et al., 1995. Carbon Dioxide Disposal in Carbonate Minerals. Energy, 20(11):1153-1170.
    Li, X.-P., Rahn, M., Bucher, K., 2004a. Serpentinites of the Zermatt-Saas Ophiolite Complex and Their Texture Evolution. Journal of Metamor-phic Geology, 22(3):159-177.
    Li, X.-P., Rahn, M., Bucher, K., 2004b. Metamorphic Processes in Rod-ingites of the Zermatt-Saas Ophiolites. International Geology Review, 46(1):28-51.
    Li, X.-P., Rahn, M., Bucher, K., 2008. Eclogite Facies Metarodingites-Phase Relations in the System SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-CO2-H2O:An Example from the Zermatt-Saas Ophiolite. Journal of Metamorphic Geology, 26(3):347-364.
    Markl, G., Bucher, K., 1998. Composition of Fluids in the Lower Crust Inferred from Metamorphic Salt in Lower Crustal Rocks. Nature, 391(6669):781-783.
    Menzel, M. D., Garrido, C. J., López Sánchez-Vizcaíno, V., et al., 2018. Carbonation of Mantle Peridotite by CO2-Rich Fluids:The Formation of Listvenites in the Advocate Ophiolite Complex (Newfoundland, Canada). Lithos, 323:238-261.
    Moore, A. C., 1977. The Petrography and Possible Regional Significance of the Hjelmkona Ultramafic Body (Sagvanditc), Nordmøre, Norway. Norsk Geologisk Tidskrift, 57:55-64
    Moore, A. C., Qvale, H., 1977. Three Varieties of Alpine-Type Ultramafic Rocks in the Norwegian Caledonides and Basal Gnesis Complex. Lithos, 10(2):149-161.
    Nasir, S., Al Sayigh, A. R., Al Harthy, A., et al., 2007. Mineralogical and Geochemical Characterization of Listwaenite from the Semail Ophiolite, Oman. Geochemistry, 67(3):213-228.
    Ohnmacht, W., 1974. Petrogenesis of Carbonate-Orthopyroxenites (Sagvandites) and Related Rocks from Troms, Northern Norway. Journal of Petrology, 15(2):303-324.
    Pirard, C., Hermann, J., O'Neill, H. S. C., 2013. Petrology and Geochemistry of the Crust-Mantle Boundary in a Nascent Arc, Massif Du Sud Ophiolite, New Caledonia, SW Pacific. Journal of Petrology, 54(9):1759-1792.
    Pettersen, K., 1883. Sagvandit, en ny Bergart. Tromsø Mus. Aarshefter, 6:72-81
    Qiu, T., Zhu, Y. F., 2018. Listwaenite in the Sartohay Ophiolitic Mélange (Xinjiang, China):A Genetic Model Based on Petrology, U-Pb Chro-nology and Trace Element Geochemistry. Lithos, 302/303:427-446.
    Ravna, E., Kullerud, K., Ellingsen, E., 2006. Prograde Garnet-Bearing Ultramafic Rocks from the Tromsø Nappe, Northern Scandinavian Caledonides. Lithos, 92(3/4):336-356.
    Ringwood, A. E., MacGregor, I. D., Boyd, F. R., 1964. Petrologic Constitution of the Upper Mantle. Carnegie Inst. Washington, Year Book, 63:147-152
    Roberts, D., Nordgulen, Ø., Melezhik, V., 2007. The Uppermost Allochthon in the Scandinavian Caledonides:From a Laurentian Ancestry through Taconian Orogeny to Scandian Crustal Growth on Baltica. Memoir of the Geological Society of America, 200:357-377.
    Schreyer, W., Ohnmacht, W., Mannchen, J., 1972. Carbonate-Orthopyrox-enites (Sagvandites) from Troms, Northern Norway. Lithos, 5(4):345-364.
    Seifritz, W., 1990. CO2 Disposal by Means of Silicates. Nature, 345(6275):486.
    Sørensen, H., 1955a. A Preliminary Note on Some Peridotites from Northern Norway. Norsk Geologisk Tidskrift, 35:93-104
    Sørensen, H., 1955b. A Petrographical and Structural Study of the Rocks around the Peridotite at Engenbræ, Holandsfjord, Northem Norway. Nor. Geol. Unders., 191:71-102
    Stober, I., Bucher, K., 2005a. Deep-Fluids:Neptune Meets Pluto. Hydro-geology Journal, 13(1):112-115.
    Stober, I., Bucher, K., 2005b. The Upper Continental Crust, an Aquifer and Its Fluid:Hydaulic and Chemical Data from 4 km Depth in Fractured Crystalline Basement Rocks at the KTB Test Site. Geofluids, 5(1):8-19.
    Tamura, A., Arai, S., 2006. Harzburgite-Dunite-Orthopyroxenite Suite as a Record of Supra-Subduction Zone Setting for the Oman Ophiolite Mantle. Lithos, 90(1/2):43-56.
    Thayer, T. P., 1969. Alpine-Type Sensu Strictu(Ophiolitic) Peridotites:Refractory Residues from Partial Melting or Igneous Sediments? A Contribution to the Discussion of the Paper:"The Origin of Ultramafic and Ultrabasic Rocks" by P. J. Wyllie. Tectonophysics, 7(5/6):511-516.
    Trommsdorff, V., Skippen, G., 1987. Metasomatism Involving Fluids in CO2-H2O-NaCl. In: Helgeson, H. C., ed., Chemical Transport in Me-tasomatic Processes. Springer. 133-152.
    Walther, J. V., Helgeson, H. C., 1977. Calculation of the Thermodynamic Properties of Aqueous Silica and the Solubility of Quartz and Its Pol-ymorphs at High Pressures and Temperatures. American Journal of Science, 277(10):1315-1351.
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1):185-187.
    Wyllie, J. P., 1969. The Origin of Ultramafic and Ultrabasic Rocks. Tectonophysics, 7(5/6):437-455.
    Zwaan, K. B., Fareth, E., Grogan, P. W., 1998. Geological Map of Norway, Bedrockmap Sheet Tromsø 1: 250 000. NGU Norwegian Geological Survey, Trondheim, Norway
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views(933) PDF downloads(49) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint