Bose, K., Ganguly, J., 1995. Quartz-Coesite Transition Revisited:Reversed Experimental Determination at 500-1 200℃ and Retrieved Thermo-chemical Properties. American Mineralogist, 80(3/4):231-238. https://doi.org/10.2138/am-1995-3-404 |
Bucher, K., Stober, I., 2019. Interaction of Mantle Rocks with Crustal Fluids:Sagvandites of the Scandinavian Caledonides. Journal of Earth Science, 30(6):1084-1094. https://doi.org/10.1007/s12583-019-1257-2 |
Cao, Y. T., Liu, L., Yang, W. Q., et al., 2019. Reconstruction the Process of Partial Melting of the Retrograde Eclogite from the North Qaidam, Western China:Constraints from Titanite U-Pb Dating and Mineral Chemistry. Journal of Earth Science, 30(6):1166-1177. https://doi.org/10.1007/s12583-019-1253-6 |
Chopin, C., 1984. Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences. Contributions to Mineralogy and Petrology, 86(2):107-118 doi: 10.1007/BF00381838 |
Du, L., Yuan, C., Li, X.-P., et al., 2019. Petrogenesis and Geodynamic Implications of the Carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science, 30(6):1243-1252. https://doi.org/10.1007/s12583-019-1256-3 |
Ellis, D. J., 1980. Osumilite-Sapphirine-Quartz Granulites from Enderby Land, Antarctica:P-T Conditions of Metamorphism, Implications for Garnet-Cordierite Equilibria and the Evolution of the Deep Crust. Contributions to Mineralogy and Petrology, 74(2):201-210 doi: 10.1007/BF01132005 |
Fasshauer, D. W., Chatterjee, N. D., Marler, B., 1997. Synthesis, Structure, Thermodynamic Properties, and Stability Relations of K-Cymrite, K[AlSi3O8]·H2O. Physics and Chemistry of Minerals, 24(6):455-462. https://doi.org/10.1007/s002690050060 |
Hacker, B. R., Rubie, D. C., Kirby, S. H., et al., 2005. The Calcite→ Aragonite Transformation in Low-Mg Marble:Equilibrium Relations, Transformation Mechanisms, and Rates. Journal of Geophysical Re-search, 110(B3):B03205. https://doi.org/10.1029/2004jb003302 |
Hagen, B., Hoernes, S. R., Rötzler, J., 2008. Geothermometry of the Ultrahigh-Temperature Saxon Granulites Revisited. Part Ⅱ:Thermal Peak Conditions and Cooling Rates Inferred from Oxygen-Isotope Fractionations. European Journal of Mineralogy, 20(6):1117-1133. https://doi.org/10.1127/0935-1221/2008/0020-1858 |
Harley, S. L., 1985. Garnet-Orthopyroxene Bearing Granulites from Enderby Land, Antarctica:Metamorphic Pressure Temperature-Time Evolution of the Archaean Napier Complex. Journal of Petrology, 26(4):819-856. https://doi.org/10.1093/petrology/26.4.819 |
Harley, S. L., 1998. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 138(1):81-107. https://doi.org/10.1144/gsl.sp.1996.138.01.06 |
Herzberg, C., Condie, K., Korenaga, J., 2010. Thermal History of the Earth and Its Petrological Expression. Earth and Planetary Science Letters, 292(1/2):79-88. https://doi.org/10.1016/j.epsl.2010.01.022 |
Holdaway, M. J., 1971. Stability of Andalusite and the Aluminum Silicate Phase Diagram. American Journal of Science, 271(2):97-131. https://doi.org/10.2475/ajs.271.2.97 |
Kelsey, D. E., Hand, M., 2015. On Ultrahigh Temperature Crustal Meta-morphism:Phase Equilibria, Trace Element Thermometry, Bulk Com-position, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 6(3):311-356. https://doi.org/10.1016/j.gsf.2014.09.006 |
Kennedy, C. S., Kennedy, G. C., 1976. The Equilibrium Boundary between Graphite and Diamond. Journal of Geophysical Research, 81(14):2467-2470. https://doi.org/10.1029/jb081i014p02467 |
Kojitani, H., Yamazaki, M., Kojima, M., et al., 2018. Thermodynamic Investigation of the Phase Equilibrium Boundary between TiO2 Rutile and Its α-PbO2-Type High-Pressure Polymorph. Physics and Chemistry of Minerals, 45(10):963-980. https://doi.org/10.1007/s00269-018-0977-7 |
Liu, D. L., Shi, R. D., Ding, L., et al., 2019. Survived Seamount Reveals an in situ Origin for the Central Qiangtang Metamorphic Belt in the Tibetan Plateau. Journal of Earth Science, 30(6):1253-1265. https://doi.org/10.1007/s12583-019-1250-9 |
Liu, L., Zhang, J. F., Green, H. W. II, et al., 2007. Evidence of Former Stishovite in Metamorphosed Sediments, Implying Subduction to >350 km. Earth and Planetary Science Letters, 263(3/4):180-191. https://doi.org/10.1016/j.epsl.2007.08.010 |
Ma, S. T., Li, X.-P., Liu, H., et al., 2019. Ultrahigh Temperature Metamor-phic Record of Pelitic Granulites in the Huangtuyao Area of the Huai'an Complex, North China Craton. Journal of Earth Science, 30(6):1178-1196. https://doi.org/10.1007/s12583-019-1245-6 |
Meng, F. X., Xu, W. L., Xu, Q. L., et al., 2019. Decoupling of Lu-Hf and Sm-Nd Isotopic Systems in Deep-Seated Xenoliths from the Xuzhou-Suzhou Area, China:Differences in Element Mobility during Meta-morphism. Journal of Earth Science, 30(6):1266-1279. https://doi.org/10.1007/s12583-019-1255-4 |
Meng, Y. K., Xiong, F. H., Yang, J. S., et al., 2019. Tectonic Implications and Petrogenesis of the Various Types of Magmatic Rocks from the Zedang Area in Southern Tibet. Journal of Earth Science, 30(6):1125-1143. https://doi.org/10.1007/s12583-019-1248-3 |
Morse, S. A., Talley, J. H., 1971. Sapphirine Reactions in Deep-Seated Granulites near Wilson Lake, Central Labrador, Canada. Earth and Planetary Science Letters, 10(3):325-328. https://doi.org/10.1016/0012-821x(71)90037-9 |
Müller, T., Massonne, H. J., Willner, A. P., 2015. Timescales of Exhumation and Cooling Inferred by Kinetic Modeling:An Example Using a La-mellar Garnet Pyroxenite from the Variscan Granulitgebirge, Germany. American Mineralogist, 100(4):747-759. https://doi.org/10.2138/am-2015-4946 |
O'Brien, P. J., Rötzler, J., 2003. High-Pressure Granulites:Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 21(1):3-20. https://doi.org/10.1046/j.1525-1314.2003.00420.x |
Reinhardt, J., Kleemann, U., 1994. Extensional Unroofing of Granulitic Lower Crust and Related Low-Pressure, High-Temperature Metamorphism in the Saxonian Granulite Massif, Germany. Tectonophysics, 238(1/2/3/4):71-94. https://doi.org/10.1016/0040-1951(94)90050-7 |
Rötzler, J., Romer, R. L., 2001. P-T-t Evolution of Ultrahigh-Temperature Granulites from the Saxon Granulite Massif, Germany. Part Ⅰ:Petrology. Journal of Petrology, 42(11):1995-2013. https://doi.org/10.1093/petrology/42.11.1995 |
Sandiford, M., Neall, F. B., Powell, R., 1987. Metamorphic Evolution of Aluminous Granulites from Labwor Hills, Uganda. Contributions to Mineralogy and Petrology, 95(2):217-225. https://doi.org/10.1007/bf00381271 |
Scambelluri, M., Pettke, T., van Roermund, H. L. M., 2008. Majoritic Garnets Monitor Deep Subduction Fluid Flow and Mantle Dynamics. Geology, 36(1):59-62. https://doi.org/10.1130/g24056a.1 |
Schertl, H.-P., Hertwig, A., Maresch, W. V., 2019. Cathodoluminescence Microscopy of Zircon in HP- and UHP-Metamorphic Rocks:A Fun-damental Technique for Assessing the Problem of Inclusions versus Pseudo-Inclusions. Journal of Earth Science, 30(6):1095-1107. https://doi.org/10.1007/s12583-019-1246-5 |
Smith, D. C., 1984. Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics. Nature, 310(5979):641-644. https://doi.org/10.1038/310641a0 |
Sobolev, N. V., Shatsky, V. S., 1990. Diamond Inclusions in Garnets from Metamorphic Rocks:A New Environment for Diamond Formation. Nature, 343(6260):742-746. https://doi.org/10.1038/343742a0 |
Song, Z. J., Liu, H. M., Meng, F. X., et al., 2019. Zircon U-Pb Ages and Hf Isotopes of Neoproterozoic Meta-Igneous Rocks in the Liansandao Area, Northern Sulu Orogen, Eastern China, and the Tectonic Implications. Journal of Earth Science, 30(6):1230-1242. https://doi.org/10.1007/s12583-019-1252-7 |
Wang, S. J., Li, X.-P., Duan, W. Y., et al., 2019. Record of Early-Stage Rodingitization from the Purang Ophiolite Complex, Western Tibet. Journal of Earth Science, 30(6):1108-1124. https://doi.org/10.1007/s12583-019-1244-7 |
Wei, G. D., Kong, F. M., Liu, H., et al., 2019. Petrology, Metamorphic T-P Paths and Zircon U-Pb Ages for Paleoproterozoic Mafic Granulites from Xuanhua Complex, North China Craton. Journal of Earth Science, 30(6):1197-1214. https://doi.org/10.1007/s12583-019-1251-8 |
Wheller, C. J., Powell, R., 2014. A New Thermodynamic Model for Sap-phirine:Calculated Phase Equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 32(3):287-299. https://doi.org/10.1111/jmg.12067 |
Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371 |
Willner, A. P., Gopon, M., Glodny, J., et al., 2019. Timanide (Ediacaran-Early Cambrian) Metamorphism at the Transition from Eclogite to Amphibolite Facies in the Beloretsk Complex, SW-Urals, Russia. Journal of Earth Science, 30(6):1144-1165. https://doi.org/10.1007/s12583-019-1249-2 |
Yong, W. J., Dachs, E., Withers, A. C., et al., 2006. Heat Capacity and Phase Equilibria of Hollandite Polymorph of KAlSi3O8. Physics and Chemistry of Minerals, 33(3):167-177. https://doi.org/10.1007/s00269-006-0063-4 |
Zhang, L., Zhu, J. J., Xia, B., et al., 2019. Metamorphism and Zircon Geochronological Studies of Metagabbro Vein in the Yushugou Granulite-Peridotite Complex from South Tianshan, China. Journal of Earth Science, 30(6):1215-1229. https://doi.org/10.1007/s12583-019-1254-5 |