Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 2
Apr 2020
Turn off MathJax
Article Contents
Xuejuan Sun, Pei Ni, Yulong Yang, Zhe Chi, Shan Jing. Constraints on the Genesis of the Qixiashan Pb-Zn Deposit, Nanjing: Evidence from Sulfide Trace Element Geochemistry. Journal of Earth Science, 2020, 31(2): 287-297. doi: 10.1007/s12583-019-1270-5
Citation: Xuejuan Sun, Pei Ni, Yulong Yang, Zhe Chi, Shan Jing. Constraints on the Genesis of the Qixiashan Pb-Zn Deposit, Nanjing: Evidence from Sulfide Trace Element Geochemistry. Journal of Earth Science, 2020, 31(2): 287-297. doi: 10.1007/s12583-019-1270-5

Constraints on the Genesis of the Qixiashan Pb-Zn Deposit, Nanjing: Evidence from Sulfide Trace Element Geochemistry

doi: 10.1007/s12583-019-1270-5
Funds:

the National Natural Science Foundation of China 1212011220678

More Information
  • Corresponding author: Pei Ni, peini@nju.edu.cn
  • Received Date: 13 Feb 2019
  • Accepted Date: 30 Oct 2019
  • Publish Date: 01 Feb 2020
  • The large-scale Qixiashan Pb-Zn Deposit in the eastern Middle-Lower Yangtze metallogenic belt is hosted in carbonate rocks. Based on a detailed mineral paragenesis study, in-situ LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) trace element geochemistry data for pyrite and sphalerite from different stages in the Qixiashan Deposit are reported, the Pb-Zn mineralization processes are reconstructed, and a genetic model is constructed. Four paragenetic stages of Pb-Zn ore deposition are identified:the biogenic pyrite mineralization stage (Stage 1), the early stage of hydrothermal Pb-Zn mineralization (Stage 2), the late stage of hydrothermal Pb-Zn mineralization (Stage 3), and the carbonate stage (Stage 4). Stages 2 and 3 are the main ore stages. The trace element characteristics of the sulfide in stages 2 and 3, such as the higher Co/Ni and lower trace element contents of the pyrite and the Fe, Mn, and Ge contents of the sphalerite, indicate that they were generated by magmatic-hydrothermal processes. Furthermore, the lower Cu, Ag, Sb, and Pb contents of the pyrite and sphalerite of Stage 3 compared to Stage 2 suggest an increase in magmatic-hydrothermal activity from Stage 2 to Stage 3. The hydrothermal fluids leached trace elements (e.g., Cu, Ag, Sb, and Pb) from the previously deposited primary pyrite and sphalerite, which were precipitated in the later hydrothermal stage Cu, Au, Ag, Sb, and Pb bearing minerals and secondary pyrite and sphalerite with lower trace element contents (e.g., Cu, Au, Ag, Sb, and Pb). Compared with the pyrite from stages 2 and 3, the Stage 1 pyrite has relatively higher trace elements contents (Sb, Cu, Zn, Au, Ag, Pb, As, and Ni). However, their lower Co/Ni ratio suggests a syngenetic sedimentary origin. Based on the petrographic features and trace element data, a multi-stage mineralization model is proposed. The Stage 1 biogenic pyrite formed stratiform pyrite layers, which provided reducing conditions and a base for the subsequent Pb-Zn mineralization. During Stage 2, subsequent hydrothermal fluid interacted with the stratiform pyrite layers, which resulted in sulfide precipitation and the formation of stratiform Pb-Zn orebodies. In Stage 3, the hydrothermal fluid replaced the limestone along the fractures, which triggered the formation of Pb-Zn vein orebodies.

     

  • loading
  • Berner, L. A., Shaw, J. A., Witt, A. A., et al., 2013. The Relation of Weight Suppression and Body Mass Index to Symptomatology and Treatment Response in Anorexia Nervosa. Journal of Abnormal Psychology, 122(3):694-708. https://doi.org/10.1037/a0033930
    Bralia, A., Sabatini, G., Troja, F., 1979. A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems. Mineralium Deposita, 14(3):353-374. https://doi.org/10.1007/bf00206365
    Butler, I. B., Rickard, D., 2000. Framboidal Pyrite Formation via the Oxidation of Iron (II) Monosulfide by Hydrogen Sulphide. Geochimica et Cosmochimica Acta, 64(15):2665-2672. https://doi.org/10.1016/s0016-7037(00)00387-2
    Cai, C. W., 1983. Ore Genesis and Material Composition of the Qixiashan Pb-Zn Polymetallic Deposit. Geology and Prospecting, 6:18-23 (in Chinese with English Abstract)
    Chang, Y. F., Liu, X. P., Wu, Y. C., 1991. Metallogenic Belt of the Middle and Lower Yangtze River. Geological Publishing House, Beijing. 1-379 (in Chinese)
    Chen, G. Y., Sun, D. S., Chang, L., et al., 1987. Morphogenesis of Pyrite. Geoscience, 1(1):60-76 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b44bb08d9c5ffe1779770d53347ec32
    Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite:A LA-ICPMS Study. Geochimica et Cosmochimica Acta, 73(16):4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
    Gao, J. F., Jackson, S. E., Dubé, B., et al., 2015. Genesis of the Canadian Malartic, Côté Gold, and Musselwhite Gold Deposits: Insights from LA-ICP-MS Element Mapping of Pyrite. In: Dubé, B., Mercier-Langevin, P., eds., Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration. Geological Survey of Canada, Open File 7852.157-175
    Gu, L. X., Zaw, K., Hu, W. X., et al., 2007. Distinctive Features of Late Palaeozoic Massive Sulphide Deposits in South China. Ore Geology Reviews, 31(1/2/3/4):107-138. https://doi.org/10.1016/j.oregeorev.2005.01.002
    Gui, C. J., 2012. Mineral Deposit Genetic Study on the Qixiashan Pb-Zn Deposit in Nanjing, Jiangsu Province, China: [Dissertation]. Nanjing University, Nanjing. 1-56 (in Chinese with English Abstract)
    Gui, C. J., Jing, S., Sun, G. C., 2015. Deep Prospecting Breakthrough of the Qixiashan Lead-Zinc Ore District in Nanjing and Its Enlightenmen. Journal of Geology, 39(1):91-98 (in Chinese with English Abstract)
    Guo, X. S., Xiao, Z. M., Ou, Y. J., et al., 1985. On the Genesis of the Qixishan Lead-Zinc Ore Deposit in Nanjing. Mineral Deposit, 4(1):11-21 (in Chinese with English Abstract)
    Halicz, L., Günther, D., 2004. Quantitative Analysis of Silicates Using LA-ICP-MS with Liquid Calibration. Journal of Analytical Atomic Spectrometry, 19(12):1539-1545. https://doi.org/10.1039/b410132d
    Huston, D. L., Sie, S. H., Suter, G. F., et al., 1995. Trace Elements in Sulfide Minerals from Eastern Australian Volcanic-Hosted Massive Sulfide Deposits:Part I, Proton Microprobe Analyses of Pyrite, Chalcopyrite, and Sphalerite, and Part II, Selenium Levels in Pyrite; Comparison with δ34S Values and Implications for the Source of Sulfur in Volcanogenic Hydrothermal Systems. Economic Geology, 90(5):1167-1196. https://doi.org/10.2113/gsecongeo.90.5.1167
    Jiang, S. J., Liu, S. H., 1990. On the Infrastructure and Metallogenic Model of Qixiashan Pb-Zn-Ag Deposit. Jiangsu Geology, 14(3):9-14 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001745232
    Kelley, K. D., Leach, D. L., Johnson, C. A., et al., 2004. Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska:Implications for Ore Formation. Economic Geology, 99(7):1509-1532. https://doi.org/10.2113/gsecongeo.99.7.1509
    Large, D., Walcher, E., 1999. The Rammelsberg Massive Sulphide Cu-Zn-Pb-Ba-Deposit, Germany:An Example of Sediment-Hosted, Massive Sulphide Mineralisation. Mineralium Deposita, 34(5/6):522-538. https://doi.org/10.1007/s001260050218
    Large, R., Bull, S., Selley, D., et al., 2002. Controls on the Formation of Giant Stratiform Sediment-Hosted Zn-Pb-Ag Deposits: With Particular Reference to the North Australian Proterozoic. University of Tasmania, Centre for (CODES) Special Ore Deposit and Exploration Studies Publication, Tasmania. 1-149
    Large, R. R., Maslennikov, V. V., Robert, F., et al., 2007. Multistage Sedimentary and Metamorphic Origin of Pyrite and Gold in the Giant Sukhoi Log Deposit, Lena Gold Province, Russia. Economic Geology, 102(7):1233-1267. https://doi.org/10.2113/gsecongeo.102.7.1233
    Large, R. R., Danyushevsky, L., Hollit, C., et al., 2009. Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique:Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Economic Geology, 104(5):635-668. https://doi.org/10.2113/gsecongeo.104.5.635
    Leach, D. L., Sangster, D. F., Kelley, K. D., et al., 2005. Sediment-Hosted Lead-Zinc Deposits:A Global Perspective. Economic Geology, 100:561-607. https://doi.org/10.5382/av100.18
    Leach, D. L., Bradley, D. C., Huston, D., et al., 2010. Sediment-Hosted Lead-Zinc Deposits in Earth History. Economic Geology, 105(3):593-625. https://doi.org/10.2113/gsecongeo.105.3.593
    Liu, X. S., Chen, Z. Q., Chen, Y. Q., et al., 1979. The Texture and Structure of Ores from the Sulfide Deposits of Qixiashan Nanjing, and Their Implication to the Ore Genesis. Journal of Nanjing University (Natural Sciences), 4:75-94 (in Chinese with English Abstract)
    Liu, X. S., Chen, Z. Q., 1985. A Study of the Strata-Bound Polymetallic Pyrite Deposit of Qixiashan in Nanjing. Journal of Guilin College of Geology, 5(2):121-130 (in Chinese with English Abstract)
    Liu, S. H., 1991. Interpretation of Gravity and Magnetic Characteristics of the Qixiashan Pb-Zn Polymetal Deposit, Nanjing and Discussion on Its Genesis. Contributions to Geology and Mineral Resources Research, 6(1):76-84 (in Chinese with English Abstract) http://en.cnki.com.cn/article_en/cjfdtotal-dzzk199101007.htm
    Loftus-Hills, G., Solomon, M., 1967. Cobalt, Nickel and Selenium in Sulphides as Indicators of Ore Genesis. Mineralium Deposita, 2(3):228-242 doi: 10.1007-BF00201918/
    Lydon, J. W., 2004. Genetic Models for Sullivan and Other SEDEX Deposits. In: Deb, M., Goodfellow, W. D., eds., Sediment-Hosted Lead-Zinc Sulfide Deposits: Attributes and Models of Some Major Deposits in India, Australia, and Canada. Narosa Publishing House, New Delhi. 149-190
    Mao, J. R., Su, Y. X., Chen, S. Y., 1990. The Intermediate-Acidic Igneous and Mineralization in the Middle-Lower Yangtze River Belt. Geological Publishing House, Beijing. 1-191 (in Chinese)
    Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley, New York. 517-611
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 4:1-64. https://doi.org/10.1016/b0-08-043751-6/03016-4
    Sun, X. J., Ni, P., Yang, Y. L., et al., 2018. Formation of the Qixiashan Pb-Zn Deposit in Middle-Lower Yangtze River Valley, Eastern China:Insights from Fluid Inclusions and in situ LA-ICP-MS Sulfur Isotope Data. Journal of Geochemical Exploration, 192:45-59. https://doi.org/10.1016/j.gexplo.2018.03.011
    Sun, X. J., Ni, P., Chi, Z., et al., 2019. Fluid Inclusion Studies of the Qixiashan Pb-Zn Deposit, Nanjing, China. Acta Petrologica Sinica, 35(12):3749-3762 (in Chinese with English Abstract)
    Tang, Y. C., Wu, Y. C., Chu, G. Z., et al., 1998. Geology of Copper-Gold Polymetallic Deposits in the Along-Changjiang Area of Anhui Province. Geological Publishing House, Beijing. 1-351 (in Chinese)
    Tu, G. C., Xu, Z. L., Wang, S.Y., et al., 1996. Geochemistry of Strata-Bound Deposits in China. Science Press, Beijing. 1-354 (in Chinese with English Abstract)
    Wang, S. X., Zhou, H., 1993. Geological Explanation of the Geophysical and Geochemical Data on Qixiashan Lead, Zinc, and Silver Mine. Journal of Geology, 2:107-113 (in Chinese with English Abstract)
    Wei, X. L., Gong, D. K., 2013. On Prospecting Potential of Deep Copper in Qixiashan Pb-Zn-Ag Mine of Nanjing. Journal of Geology, 37(2):230-250 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsdz201302012
    Wei, X. L., Sun, G. C., Jing, S., et al., 2016. Exploration Report of Replacement Reserves of the Qixiashan Pb-Zn Deposit, Nanjing, Jiangsu Province, China. East China Mineral Exploration and Development Bureau of Nonferrous Metal, Jiangsu Province, Nanjing (in Chinese)
    Xiao, Z. M., Ye, S. Q., Zhong, Q. L., 1996. Geological Characteristics and Exploration Mode of Qixiashan Pb-Zn-Ag Deposit, Nanjing. Geological Publishing House, Beijing. 1-81 (in Chinese)
    Xie, S. C., Yin, H. F., 1997. Biometallogenesis of Pb-Zn-Ag Polymetallic Deposit of Qixiashan in Nanjing. Geological Journal of China Universities, 3(2):192-201 (in Chinese with English Abstract)
    Xu, Z. F., Zeng, Z. H., 2006. Discussions on Relationship between Mineralization and Magmatism in Qixiashan Pb-Zn-Ag Ore Deposit of Nanjing. Jiangsu Geology, 30:177-182 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsdz200603003
    Yang, Y. Z., 1989. Characteristics and Geologic Signification of the Small Amplitude-Low Gradient Magnetic Anomaly in Qixiashan Polymetallic Ore Area, Nanjing. Journal of Guilin College of Geology, 2:202-208 (in Chinese with English Abstract)
    Ye, J. R., 1983. Activation of Platform and the Formation of the Lead-Zinc Polymetallic Ore Deposits in Qixia Mountain. Geotectonia et Metallogenia, 3:248-255 (in Chinese with English Abstract)
    Ye, S. Q., Zeng, Z. H., 2000. A Study on Fluid Inclusions in Qixiashan Lead and Zinc Ore Deposit, Nanjing. Volcanology & Mineral Resources, 21(4):266-274 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hsdzykc200004003
    Yuan, B., Zhang, C. Q., Yu, H. J., et al., 2018. Element Enrichment Characteristics:Insights from Element Geochemistry of Sphalerite in Daliangzi Pb-Zn Deposit, Sichuan, Southwest China. Journal of Geochemical Exploration, 186:187-201. https://doi.org/10.1016/j.gexplo.2017.12.014
    Zhang, M. C., 2015. Research on Metallization of the Qixiashan Lead-Zinc-Silver Polymetallic Deposit, Jiangsu Province, China: [Dissertation]. China University of Geosciences, Beijing. 1-211 (in Chinese with English Abstract)
    Zhang, P., Huang, X. W., Cui, B., et al., 2016. Re-Os Isotopic and Trace Element Compositions of Pyrite and Origin of the Cretaceous Jinchang Porphyry Cu-Au Deposit, Heilongjiang Province, NE China. Journal of Asian Earth Sciences, 129:67-80. https://doi.org/10.1016/j.jseaes.2016.07.032
    Zhai, Y. S., Yao, S. Z., Lin, X. D., 1992. Iron Copper Deposits in the Middle and Lower Reaches of Changjiang River. Geological Publishing House, Beijing. 1-120 (in Chinese)
    Zhong, Q. L., 1998. Discovery and Prospecting of Large Scale Qixiashan Pb-Zn-Ag Polymetallic Deposit in Nanjing. Jiangsu Geology, 22(1):56-61 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSDZ801.012.htm
    Zhou, T. F., Fan, Y., Yuan, F., et al., 2008. Advances on Petrogensis and Metallogeny Study of the Mineralization Belt of the Middle and Lower Reaches of the Yangtze River Area. Acta Petrologica Sinica, 24(8):1665-1678 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808001
    Zhou, T. F., Fan, Y., Yuan, F., et al., 2012. Progress of Geological Study in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 28(10):3051-3066 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210001
    Zhou, T. F., Wang, S. W., Yuan, F., et al., 2016. Magmatism and Related Mineralization of the Intracontinental Porphyry Deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 32(2):271-288 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201602001
    Zhou, T. F., Fan, Y., Wang, S. W., et al., 2017. Metallogenic Regularity and Metallogenic Model of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11):3353-3372 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(412) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return