Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 2
Apr 2020
Turn off MathJax
Article Contents
He Yang, Wanli Ma, Rui Wang, Xueli Ma, Keyong Wang. Factors Controlling Deposition of Metallic Minerals in the Meng'entaolegai Ag-Pb-Zn Deposit, Inner Mongolia, China: Evidence from Fluid Inclusions, Isotope Systematics, and Thermodynamic Model. Journal of Earth Science, 2020, 31(2): 271-286. doi: 10.1007/s12583-019-1273-2
Citation: He Yang, Wanli Ma, Rui Wang, Xueli Ma, Keyong Wang. Factors Controlling Deposition of Metallic Minerals in the Meng'entaolegai Ag-Pb-Zn Deposit, Inner Mongolia, China: Evidence from Fluid Inclusions, Isotope Systematics, and Thermodynamic Model. Journal of Earth Science, 2020, 31(2): 271-286. doi: 10.1007/s12583-019-1273-2

Factors Controlling Deposition of Metallic Minerals in the Meng'entaolegai Ag-Pb-Zn Deposit, Inner Mongolia, China: Evidence from Fluid Inclusions, Isotope Systematics, and Thermodynamic Model

doi: 10.1007/s12583-019-1273-2
More Information
  • Corresponding author: Keyong Wang, wangky@jlu.edu.cn
  • Received Date: 29 Nov 2018
  • Accepted Date: 30 Sep 2019
  • Publish Date: 01 Feb 2020
  • The Meng'entaolegai Ag-Pb-Zn vein-type deposit in Inner Mongolia,NE China is hosted in biotite/muscovite granite. This deposit includes the western (Zn-rich,deepest),middle (Zn-Pb rich) and eastern (Pb-Ag-rich,shallowest) ore-blocks. To better understand the metallogenic processes in ore district,we have undertaken a series of studies including fluid inclusion microthermometry,H-O-S-Pb isotope compositions and thermodynamic modeling. Based on fluid inclusion petrography,microthermometry results and H-O isotope compositions,the ore-forming H2O-NaCl fluid inclusions are characterized by medium temperature and medium salinity. And two kinds of fluid processes (boiling in western and middle ore-block and fluid mixing in the eastern ore-block) were identified to explain the ore fluid evolution. More importantly,log fO2-pH diagrams of δ34S contours with the stability fields of Fe-and Cu-,Zn-,Pb-,and Ag-bearing minerals were constructed to restore the physicochemical conditions of ore-forming fluid in the western (270℃ and 80 bars),middle (250℃ and 70 bars),and eastern (230℃ and 50 bars) ore-blocks. As a result,the ore-forming conditions in the western and middle ore-block were similar. In the eastern ore-block,the fluids may have changed from acidic,S-poor and δ34S(ΣS)≈2.8 to neutral,S-richer and δ34S(ΣS)≈0.5,which imply that neutral S-rich meteoric water was mixed with the magmatic fluid. Meanwhile,the activity of Ag+ was estimated to be about 10 ppm-9 ppm in the middle ore-block,but in the eastern ore-block it was about ~10 ppm-12 ppm. We proposed that the key for Ag ore deposition was likely to be neutralization led by fluid mixing.

     

  • loading
  • Chen, Y. J., Chen, H. Y., Zaw, K., et al., 2007. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China:An Overview. Ore Geology Reviews, 31(1/2/3/4):139-169. doi: 10.1016/j.oregeorev.2005.01.001
    Chi, G. X., Haid, T., Quirt, D., et al., 2016. Petrography, Fluid Inclusion Analysis, and Geochronology of the End Uranium Deposit, Kiggavik, Nunavut, Canada. Mineralium Deposita, 52(2):211-232. doi: 10.1007/s00126-016-0657-9
    Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24 (9):1945-1953 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200809001
    Clayton, R. N., Mayeda, T. K., 1963. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis. Geochimica et Cosmochimica Acta, 27(1):43-52. doi: 10.1016/0016-7037(63)90071-1
    Driesner, T., Heinrich, C. A., 2007. The System H2O-NaCl. Part I: Correlation Formulae for Phase Relations in Temperature-Pressure-Composition Space from 0 to 1 000℃, 0 to 5 000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(20): 4880-4901. doi: 10.1016/j.gca.2006.01.033
    Fan, H. R., Hu, F. F., Wilde, S. A., et al., 2011. The Qiyugou Gold-Bearing Breccia Pipes, Xiong'ershan Region, Central China:Fluid-Inclusion and Stable-Isotope Evidence for an Origin from Magmatic Fluids. International Geology Review, 53(1):25-45. doi: 10.1080/00206810902875370
    Giggenbach, W. F., 1982. Geochemistry of Hydrothermal Ore Deposits, 2nd Edition. Geochimica et Cosmochimica Acta, 46(5):833. doi: 10.1016/0016-7037(82)90034-5
    Goldstein, R. H., 2001. Fluid Inclusions in Sedimentary and Diagenetic Systems. Lithos, 55(1/2/3/4):159-193. doi: 10.1016/s0024-4937(00)00044-x
    Greg, M. A., David, A. C., 1993. Thermodynamics in Geochemistry: The Equilibrium Model. Oxford University Press, Oxford. 1189
    Hedenquist, J. W., Henley, R. W., 1985. The Importance of CO2 on Freezing Point Measurements of Fluid Inclusions; Evidence from Active Geothermal Systems and Implications for Epithermal Ore Deposition. Economic Geology, 80(5):1379-1406. doi: 10.2113/gsecongeo.80.5.1379
    Helgeson, H. C., Kirkham, D. H., 1974. Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures; II, Debye-Huckel Parameters for Activity Coefficients and Relative Partial Molal Properties. American Journal of Science, 274(10):1199-1261. doi: 10.2475/ajs.274.10.1199
    Hennet, R. J. C., Crerar, D. A., Schwartz, J., 1988. Organic Complexes in Hydrothermal Systems. Economy Geology, 83(4):742-764 doi: 10.2113/gsecongeo.83.4.742
    Hollister, L. S., Burruss, R. C., 1976. Phase Equilibria in Fluid Inclusions from the Khtada Lake Metamorphic Complex. Geochimica et Cosmochimica Acta, 40(2):163-175. doi: 10.1016/0016-7037(76)90174-5
    Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. In: Malpas, J., Fletcher, C. J. N., Ali, J. R., et al., eds., Aspects of the Tectonic Evolution of China. Special Publication 226, 73-100
    Jiang, S. H., Nie, F. J., Liu, Y. F., et al., 2011. Geochronology of Intrusive Rocks Occurring in and around the Mengentaolegai Silver-Polymetallic Deposit, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 46(6):1755-1769 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201106011
    Johnson, J. W., Oelkers, E. H., Helgeson, H. C., 1992. SUPCRT92:A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5 000 Bar and 0 to 1 000℃. Computers & Geosciences, 18(7):899-947. doi: 10.1016/0098-3004(92)90029-q
    Kissin, S. A., Mango, H., 2014. Silver Vein Deposits. Treatise on Geochemistry, Elsevier, Oxford. 425-432
    Klemm, L. M., Pettke, T., Heinrich, C. A., et al., 2007. Hydrothermal Evolution of the El Teniente Deposit, Chile:Porphyry Cu-Mo Ore Deposition from Low-Salinity Magmatic Fluids. Economic Geology, 102(6):1021-1045. doi: 10.2113/gsecongeo.102.6.1021
    Li, X. M., Li, Z. K., Xiong, S. K., et al., 2019. Mineralization Characteristics of the Laoliwan Ag-Pb-Zn Deposit and Geochemical Features of the Ore-Bearing Granite Porphyry in the Southern North China Craton:Implications for Ore Genesis. Earth Science, 44(1):69-87. doi: 10.3799/dqkx.2018.147 (in Chinese with English Abstract)
    Liu, C. H., Bagas, L., Wang, F. X., 2016. Isotopic Analysis of the Super-Large Shuangjianzishan Pb-Zn-Ag Deposit in Inner Mongolia, China:Constraints on Magmatism, Metallogenesis, and Tectonic Setting. Ore Geology Reviews, 75:252-267. doi: 10.1016/j.oregeorev.2015.12.019
    Liu, Y. F., Jiang, S. H., Bagas, L., 2016. The Genesis of Metal Zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) Deposits in the Shallow Part of a Porphyry Sn-W-Rb System, Inner Mongolia, China. Ore Geology Reviews, 75:150-173. doi: 10.1016/j.oregeorev.2015.12.006
    Maanijou, M., Rasa, I., Lentz, D. R., 2012. Petrology, Geochemistry, and Stable Isotope Studies of the Chehelkureh Cu-Zn-Pb Deposit, Zahedan, Iran. Economic Geology, 107(4):683-712. doi: 10.2113/econgeo.107.4.683
    Mao, J. W., Xie, G. Q., Zhang, Z. H., et al., 2005. Mesozoic Large-Scale Metallogenic Pluses in North China and Corresponding Geodynamic Settings. Acta Petrolei Sinica, 21:169-188 (in Chinese with English Abstract) doi: 10.1007/s10114-004-0408-1
    Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5):551-578. doi: 10.2113/gsecongeo.67.5.551
    Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits, Wiley, New York. 517-611
    Ouyang, H. G., Mao, J. W., Santosh, M., et al., 2014. The Early Cretaceous Weilasituo Zn-Cu-Ag Vein Deposit in the Southern Great Xing'an Range, Northeast China:Fluid Inclusions, H, O, S, Pb Isotope Geochemistry and Genetic Implications. Ore Geology Reviews, 56:503-515. doi: 10.1016/j.oregeorev.2013.06.015
    Qi, J. P., Chen, Y. J., Pirajno, F., 2005. Geological Characteristics and Tectonic Setting of the Epithermal Deposits in the Northeast China. Journal of Mineralogy & Petrology, 25:47-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys200502009
    Robinson, B. W., Kusakabe, M., 1975. Quantitative Preparation of Sulfur Dioxide, for Sulfur-34/Sulfur-32 Analyses, from Sulfides by Combustion with Cuprous Oxide. Analytical Chemistry, 47(7):1179-1181. doi: 10.1021/ac60357a026
    Robinson, B. W., Ohmoto, H., 1973. Mineralogy, Fluid Inclusions, and Stable Isotopes of the Echo Bay U-Ni-Ag-Cu Deposits, Northwest Territories, Canada. Economic Geology, 68(5):635-656. doi: 10.2113/gsecongeo.68.5.635
    Roedder, E., 1984, Fluid Inclusions. In: Ribbe, P. H., ed., Reviews in Mineralogy. Mineralogical Society of America, Chantilly. 644
    Ruan, B. X., Lü, X. B., Yang, W., et al., 2015. Geology, Geochemistry and Fluid Inclusions of the Bianjiadayuan Pb-Zn-Ag Deposit, Inner Mongolia, NE China:Implications for Tectonic Setting and Metallogeny. Ore Geology Reviews, 71:121-137. doi: 10.1016/j.oregeorev.2015.05.004
    Shu, Q. H., Chang, Z. S., Lai, Y., et al., 2016. Regional Metallogeny of Mo-Bearing Deposits in Northeastern China, with New Re-Os Dates of Porphyry Mo Deposits in the Northern Xilamulun District. Economic Geology, 111(7):1783-1798. doi: 10.2113/econgeo.111.7.1783
    Shu, Q., Lai, Y., Sun, Y., et al., 2013. Ore Genesis and Hydrothermal Evolution of the Baiyinnuo'er Zinc-Lead Skarn Deposit, Northeast China:Evidence from Isotopes (S, Pb) and Fluid Inclusions. Economic Geology, 108(4):835-860. doi: 10.2113/econgeo.108.4.835
    Skirrow, R. G., Walshe, J. L., 2002. Reduced and Oxidized Au-Cu-Bi Iron Oxide Deposits of the Tennant Creek Inlier, Australia:An Integrated Geologic and Chemical Model. Economic Geology, 97(6):1167-1202. doi: 10.2113/gsecongeo.97.6.1167
    Steele-MacInnis, M., Lecumberri-Sanchez, P., Bodnar, R. J., 2012. HOKIEFLINCS_H2O-NACL: A Microsoft Excel Spreadsheet for Interpreting Microthermometric Data from Fluid Inclusions Based on the PVTX Properties of H2O-NaCl. Computers & Geosciences 49 (Complete), 334-337
    Su, W. C., Hu, R. Z., Qi, L., et al., 2001. Trace Elements in Fluid Inclusions in the Carlin-Type Gold Deposits, Southwestern Guizhou Province. Chinese Journal of Geochemistry, 20(3):233-239. doi: 10.1007/bf03166144
    Taylor, H. P. Jr, 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problem of Hydrothermal Alteration and Ore Deposition. Economic Geology, 69(6): 843-883
    Wang, Z. G., Wang, K. Y., Wan, D., et al., 2017. Metallogenic Age and Hydrothermal Evolution of the Jidetun Mo Deposit in Central Jilin Province, Northeast China:Evidence from Fluid Inclusions, Isotope Systematics, and Geochronology. Ore Geology Reviews, 89:731-751. doi: 10.1016/j.oregeorev.2017.07.014
    Wilde, S. A., Zhou, J. B., 2015. The Late Paleozoic to Mesozoic Evolution of the Eastern Margin of the Central Asian Orogenic Belt in China. Journal of Asian Earth Sciences, 113:909-921. doi: 10.1016/j.jseaes.2015.05.005
    Wilkinson, J. J., 2001. Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55(1/2/3/4):229-272. doi: 10.1016/s0024-4937(00)00047-5
    Wu, H. Y., Zhang, L. C., Wan, B., et al., 2011a. Re-Os and 40Ar/39Ar Ages of the Jiguanshan Porphyry Mo Deposit, Xilamulun Metallogenic Belt, NE China, and Constraints on Mineralization Events. Mineralium Deposita, 46(2):171-185. doi: 10.1007/s00126-010-0320-9
    Wu, H. Y., Zhang, L. C., Wan, B., et al., 2011b. Geochronological and Geochemical Constraints on Aolunhua Porphyry Mo-Cu Deposit, Northeast China, and Its Tectonic Significance. Ore Geology Reviews, 43(1):78-91. doi: 10.1016/j.oregeorev.2011.07.007
    Zartman, R. E., Doe, B. R., 1981. Plumbotectonics-The Model. Tectonophysics, 75(1/2):135-162. doi: 10.1016/0040-1951(81)90213-4
    Zeng, Q. D., Liu, J. M., Zhang, Z. L., et al., 2009. Geology and Lead-Isotope Study of the Baiyinnuoer Zn-Pb-Ag Deposit, South Segment of the Da Hinggan Mountains, Northeastern China. Resource Geology, 59(2):170-180. doi: 10.1111/j.1751-3928.2009.00088.x
    Zeng, Q. D., Liu, J. M., Zhang, Z. L., et al., 2011. Geology and Geochronology of the Xilamulun Molybdenum Metallogenic Belt in Eastern Inner Mongolia, China. International Journal of Earth Sciences, 100(8):1791-1809. doi: 10.1007/s00531-010-0617-z
    Zhai, D. G., Liu, J. J., 2014. Gold-Telluride-Sulfide Association in the Sandaowanzi Epithermal Au-Ag-Te Deposit, NE China:Implications for Phase Equilibrium and Physicochemical Conditions. Mineralogy and Petrology, 108(6):853-871. doi: 10.1007/s00710-014-0334-6
    Zhai, D. G., Liu, J. J., Cook, N. J., et al., 2018. Mineralogical, Textural, Sulfur and Lead Isotope Constraints on the Origin of Ag-Pb-Zn Mineralization at Bianjiadayuan, Inner Mongolia, NE China. Mineralium Deposita, 54(1):47-66. doi: 10.1007/s00126-018-0804-6
    Zhai, D. G., Liu, J. J., Wang, J. P., et al., 2013. Fluid Evolution of the Jiawula Ag-Pb-Zn Deposit, Inner Mongolia:Mineralogical, Fluid Inclusion, and Stable Isotopic Evidence. International Geology Review, 55(2):204-224. doi: 10.1080/00206814.2012.692905
    Zhai, D. G., Liu, J. J., Wang, J. P., et al., 2014a. Zircon U-Pb and Molybdenite Re-Os Geochronology, and Whole-Rock Geochemistry of the Hashitu Molybdenum Deposit and Host Granitoids, Inner Mongolia, NE China. Journal of Asian Earth Sciences, 79:144-160. doi: 10.1016/j.jseaes.2013.09.008
    Zhai, D. G., Liu, J. J., Zhang, H. Y., et al., 2014b. Origin of Oscillatory Zoned Garnets from the Xieertala F-Zn Skarn Deposit, Northern China:In-situ LA-ICP-MS Evidence. Lithos, 190-191:279-291. doi: 10.1016/j.lithos.2013.12.017
    Zhai, D. G., Liu, J. J., Zhang, H. Y., et al., 2014c. S-Pb Isotopic Geochemistry, U-Pb and Re-Os Geochronology of the Huanggangliang Fe-Sn Deposit, Inner Mongolia, NE China. Ore Geology Reviews, 59:109-122. doi: 10.1016/j.oregeorev.2013.12.005
    Zhang, Q., Zhan, X. Z., Liu, Z. H., et al., 2004. Trace Element Geochemistry of Meng'entaolegai Ag-Pb-Zn-In Deposit, Inner Mongolia, China. Acta Mineralogica Sinica, 24(1):39-47 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200401007
    Zhang, Q., Zhu, X. Q., He, Y. L., et al., 2006. Indium Enrichment in the Meng'entaolegai Ag-Pb-Zn Deposit, Inner Mongolia, China. Resource Geology, 56(3):337-346. doi: 10.1111/j.1751-3928.2006.tb00287.x
    Zhao, Y. M., Zhang, D. Q., 1997. Metallogeny and Prospective Evaluation of Copper-Polymetallic Deposits in the Da Hinggan Mountains and Its Adjacent Regions. Seismological Press, Beijing. 83-106 (in Chinese with English Abstract)
    Zhu, J. J., Hu, R., Richards, J. P., et al., 2015. Genesis and Magmatic-Hydrothermal Evolution of the Yangla Skarn Cu Deposit, Southwest China. Economic Geology, 110(3):631-652. doi: 10.2113/econgeo.110.3.631
    Zhu, X. Q., Zhang, Q., He, Y. L., et al., 2006. Hydrothermal Source Rocks of the Meng'entaolegai Ag-Pb-Zn Deposit in the Granite Batholith, Inner Mongolia, China:Constrained by Isotopic Geochemistry. Geochemical Journal, 40(3):265-275. doi: 10.2343/geochemj.40.265
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views(323) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return